

Laplace-Carson transform of fractional order

T. G. Thange¹ and A. R. Gade^{2*}

Abstract

In this paper, we proposed new generalized Laplace-Carson transform of fractional order called Fractional Laplace-Carson transform of order $0 < \alpha < 1$. This transform is applying for functions which are differentiable but by fractional order. By using the definition of fractional order Laplace-Carson transform we prove fundamental properties of this integral transform. Finally, we have obtained convolution and inversion.

Keywords

Laplace-Carson transform, Laplace transform, Mittag-Leffler function, Generalization function, Fractional Derivative and Fractional Integration.

Article History: Received 01 October 2020; Accepted 22 December 2020

©2020 MJM

Contents

1	Introduction
2	Basics of Laplace-Carson Transform and Fractional Derivatives
3	Main Result
3.1	Existence of Fractional order Laplace-Carson transform
4	Convolution theorem of fractional order Laplace-Carson transform
4.1	Inversion formula for fractional Laplace-Carson Transform
4.2	Inversion Theorem of Fractional Order Laplace-Carson transform:
5	Conclusion2257
	References

1. Introduction

We all are familiar about the application of integral transform for the solution of different differential and integral equations [1,2]. It is the best tool for finding the solutions of many of this problem. Laplace-Carson transform is the Laplace type integral transform but it is generalization of Laplace transform [3,4] which is widely used for solving differential equation [7,8] with efficient and more convenient way. If $\Omega(\zeta)$ is continuous and continuously differentiable then by

using regular definitions of different integral transform we solve differential equations of function $\Omega(\zeta)$ but if $\Omega(\zeta)$ is continues but differentiable by fractional order α , then this definitions does not work, in that case we use the definition of fractional order Laplace-Carson transform for finding the solution of differential equations in particular fractional order differential equations of function $\Omega(\zeta)$.

Authors work on different fractional order integral transforms & generalized integral transforms[8,10,16] to solve many real life problems in different fields.

In this Paper firstly we study the basic definitions, like definition of Laplace-Carson transform, Mittag-Leffler function, fractional derivative and so on. After that we define fractional order Laplace-Carson transform and prove some important results and properties and in the final part we give proof of convolution theorem and inversion formula.

2. Basics of Laplace-Carson Transform and Fractional Derivatives

First, we summaries definitions of Laplace, Laplace-Carson transform, fractional order derivative in the finite difference form and other related definitions.

Definition 2.1. Let $\Omega(\zeta)$ is continuous real valued function for $\zeta \in \mathbb{R}^+ = [0, \infty)$, and $|\Omega(\zeta)| \leq Pe^{Q\zeta}(\zeta \geq 0)$ for constants P and Q. Then for $\eta \in \mathbb{C}$, $(Re(\eta)) \geq Q$, define the Laplace transform [9] is,

$$\mathscr{L}[\Omega(\zeta)](\eta) = \int_0^\infty exp(-\eta\zeta)\Omega(\zeta)d\zeta. \tag{2.1}$$

¹ Department of Mathematics, Yogeshwari Mahavidyalaya Ambajogai, Beed, MH, India.

² Department of Mathematics, Arts Commerce and Science College Kille-Dharur, Beed, MH, India.

^{*}Corresponding author: 2 ananthagade45@gmail.com

Definition 2.2 (Laplace-Carson transform [3,4]). *Let* $\Omega(\zeta)$ *is continuous real valued function for* $\zeta \in \mathbb{R}^+ = [0, \infty)$, *and* $|\Omega(\zeta)| \leq Pe^{Q\zeta}(\zeta \geq 0)$ *for constants P and Q. Then for* $\eta \in \mathbb{C}$, $(Re(\eta)) \geq Q$. *i.e.*

$$\Delta = \{\Omega(\zeta) \mid \exists P, Q > 0 \mid \Omega(\zeta) \mid \leq Pe^{Q\zeta}, \text{ where } \zeta \in \mathbb{R}^+ = [0, \infty]\},$$

define the Laplace-Carson transform the integral as,

$$\mathscr{L}\mathscr{C}[\Omega(\zeta)](\eta) = \Omega'(\eta) = \int_{0}^{\infty} \eta \exp(-\eta \zeta)\Omega(\zeta)d\zeta$$
 (2.2)

$$\mathscr{L}\mathscr{C}[\Omega(\zeta)](\eta) = \Omega'(\eta) = \lim_{z \to \infty} \int_{0}^{z} \eta \exp(-\eta \zeta) \Omega(\zeta) d\zeta.$$

The Inverse Laplace-Carson integral transform [3] is defined as,

$$\mathscr{L}\mathscr{C}^{-1}[\Omega^{'}(\zeta)](\eta) = \Omega(\zeta) = \frac{1}{2\pi i} \int_{\mu - i\infty}^{\mu + i\infty} \frac{1}{\eta} e^{(\eta\zeta)} \Omega^{'}(\eta) d\eta, \tag{2.3}$$

where $\zeta > 0$ and μ is real number such that the counter path of integration is in the region of convergence of $\Omega'(\eta)$.

Definition 2.3 (Derivative of Laplace-Carson integral transform [4,7]). If the function $\Omega^{(n)}(\zeta)$ is the n^{th} derivative of the function $\Omega(\zeta)$ with respect to ζ then it's Laplace-Carson integral transform is defined as,

$$\mathscr{LC}[\Omega^{(n)}(\zeta)] = \eta^{(n)}\Omega'(\eta) - \sum_{k=0}^{n-1} (\eta)^{(n-k)}.\Omega^{(k)}(0), \text{ where } n \ge 1.$$
(2.4)

Definition 2.4 (Laplace-Carson transform of Mittag-Leffler function [9,10,11]).

$$E_{\alpha,\beta}(\zeta) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}$$

 $\alpha, \beta \in \mathbb{C}$ and $Re(\alpha)$, $Re(\beta) > 0$ is given by,

$$\mathscr{L}\mathscr{C}[\zeta^{\tau-1}E_{\alpha,\beta}(\varepsilon\zeta^{\alpha})] = \eta^{\beta}(1 - \varepsilon(\eta)^{\alpha})^{-\tau}, \qquad (2.5)$$

where $Re(\alpha)$, $Re(\beta)$, $Re(\tau) > 0$ and $\varepsilon \in \mathbb{C}$.

Definition 2.5 ([11,12]). $\Gamma(z)$ is Euler Gamma function, which is generalization of factorial function from set of integers to the set of complex numbers. Defined as,

$$\Gamma(\zeta) = \int_0^\infty t^{z-1} e^{-t} dt, z \in \mathbb{C},$$

with Re(z > 0), with $\Gamma(\zeta + 1) = \zeta \Gamma(\zeta)$, where $\zeta \in \mathbb{R}^+$ and $\Gamma(\zeta) = (\zeta - 1)!$ where $\zeta \in \mathbb{R}^+$.

Definition 2.6 (Definition of Fractional order derivative in finite Difference form [9,12]). Let $\Omega : \mathbb{R} \to \mathbb{R}$ denotes a continuous function and h > 0 denote content discretization span then, Define the forward operator FW(h) by the equality,

 $FW(h)(\Omega(\zeta)) = \Omega(\zeta + h)$. Then fractional order derivative of order α , where $0 < \alpha < 1$ of $\Omega(\zeta)$ is,

$$\Delta^{\alpha}\Omega(\zeta) = (FW - 1)^{\alpha} = \sum_{k=0}^{\infty} (-1)^k C_k^{\alpha}\Omega(\zeta + (\alpha - k)h). \quad (2.6)$$

Fractional derivative of order α is the limit,

$$\Omega^{(\alpha)}(\zeta) = \lim_{h \to 0} \frac{\Delta^{\alpha} \Omega(\zeta)}{h^{\alpha}}.$$
 (2.7)

3. Main Result

Definition 3.1. Laplace-Carson transform of fractional order α of non-negative function $\Omega(\zeta)$ denoted by $\mathcal{LC}_{\alpha}[\Omega(\zeta)]$, and defined as,

$$\mathscr{L}\mathscr{C}_{\alpha}[\Omega(\zeta)] = \Omega'_{\alpha}(\eta) = \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})\Omega(\zeta)(d\zeta)^{\alpha},$$
(3.1)

where $\eta \in \mathbb{C}$, and $E_{\alpha}(\zeta)$ is Mittag-Leffler function $E_{\alpha}\Omega(\zeta) = \sum_{k=0}^{\infty} \frac{\zeta^{\alpha}}{\Gamma(\alpha k+1)}$.

3.1 Existence of Fractional order Laplace-Carson transform

Theorem 3.2. If function $\Omega(\zeta)$ is non-negative piecewise continuous in interval $0 \le \zeta \le \xi$ and it is of exponential order α then its fractional Laplace-Carson transform $\Omega'_{\alpha}(\eta)$ exist.

Proof. Suppose that,

$$\eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha} \zeta^{\alpha}) \Omega(\zeta) (d\zeta)^{\alpha}$$

$$= \eta^{\alpha} \int_{0}^{\xi} E_{\alpha}(-\eta^{\alpha} \zeta^{\alpha}) \Omega(\zeta) (d\zeta)^{\alpha}$$

$$+ \eta^{\alpha} \int_{\xi}^{\infty} E_{\alpha}(-\eta^{\alpha} \zeta^{\alpha}) \Omega(\zeta) (d\zeta)^{\alpha}. \tag{3.2}$$

Since $\Omega(\zeta)$ is pricewise continuous in interval $[0, \xi]$ with $0 \le \zeta \le \xi$ then first integral of RHS of (3.2) exist, since $\Omega(\zeta)$ is of exponential order α for $\xi < \zeta$, to check the existence we

concentrate on second term of RHS of (3.2) then,

$$\begin{split} &|\eta^{\alpha}\int_{\xi}^{\infty}E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})\Omega(\zeta)(d\zeta)^{\alpha}|\\ &\leq \eta^{\alpha}\int_{\xi}^{\infty}|E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})\Omega(\zeta)|(d\zeta)^{\alpha}\\ &\leq \eta^{\alpha}\int_{\xi}^{\infty}E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})|\Omega(\zeta)|(d\zeta)^{\alpha}\\ &\leq \eta^{\alpha}\int_{\xi}^{\infty}E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})CE_{\alpha}(u^{\alpha}\zeta^{\alpha})(d\zeta)^{\alpha}\\ &= C\eta^{\alpha}\int_{\xi}^{\infty}E_{\alpha}(-(\eta-u)^{\alpha}\zeta^{\alpha})(d\zeta)^{\alpha}\\ &= C\eta^{\alpha}\lim_{n\to\infty}\int_{\xi}^{n}E_{\alpha}(-(\eta-u)^{\alpha}\zeta^{\alpha})(d\zeta)^{\alpha}\\ &= C\eta^{\alpha}\lim_{n\to\infty}\int_{\xi}^{n}E_{\alpha}(-(\eta-u)^{\alpha}\zeta^{\alpha})(d\zeta)^{\alpha}\\ &= \frac{-C\eta^{\alpha}}{(\eta-u)^{\alpha}}\lim_{n\to\infty}E_{\alpha}(-(\eta-u)^{\alpha}\zeta^{\alpha})]_{\xi}^{n}\\ &= \frac{-C\eta^{\alpha}}{(\eta-u)^{\alpha}}[0-E_{\alpha}(-(\eta-u)^{\alpha}\zeta^{\alpha})]. \end{split}$$

But as $\xi \to 0$ then we get the existence of Second term of RHS also,

$$\left| \int_{\xi}^{\infty} E_{\alpha}(-\eta^{\alpha} \zeta^{\alpha}) \Omega(\zeta) (d\zeta)^{\alpha} \right| \leq \frac{C}{(\eta - u)^{\alpha}} = M. \tag{3.3}$$

This completes the proof.

Now we prove basic properties related to fractional order Laplace-Carson transform.

Theorem 3.3. Let functions $\Omega(\zeta) \in \Delta$. Then following Fractional Laplace-Carson Transform of some standard functions hold.

$$\mathscr{LS}_{\alpha}[1]_{\eta} = \eta^{\alpha} \Gamma(\alpha + 1). \tag{3.4}$$

Proof. By using Definition in equation (3.1) for LHS in Equation (3.4) we get,

$$\begin{split} \mathscr{LS}_{\alpha}[1]_{\eta} &= \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha} \zeta^{\alpha})[1] (d\zeta)^{\alpha} \\ &= \eta^{\alpha} \alpha! \; \Gamma_{\alpha}(1) \\ &= \eta^{\alpha} \Gamma(\alpha+1). \end{split}$$

Theorem 3.4 (Linearity Property). Let functions $a\Omega_1(\zeta)$, $b\Omega_2(\zeta) \in \Delta$ then $a\Omega_1(\zeta) + b\Omega_2(\zeta) \in \Delta$ where a and b are nonzero arbitrary constants and,

$$\mathcal{L}\mathcal{C}_{\alpha}[a\Omega_{1}(\zeta) + b\Omega_{2}(\zeta)] = a\mathcal{L}\mathcal{C}_{\alpha}[\Omega_{1}(\zeta)] + b\mathcal{L}\mathcal{C}_{\alpha}[\Omega_{2}(\zeta)]. \tag{3.5}$$

Proof. By using Definition in equation (3.1) for LHS in Equation (3.5) we get,

$$\begin{split} & \mathscr{L}\mathscr{C}_{\alpha}[a\Omega_{1}(\zeta) + b\Omega_{2}(\zeta)] \\ & = \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})[a\Omega_{1}(\zeta) + b\Omega_{2}(\zeta)](d\zeta)^{\alpha} \\ & = a\eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})\Omega_{1}(\zeta)(d\zeta)^{\alpha} \\ & + b\eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})\Omega_{2}(\zeta))(d\zeta)^{\alpha} \\ & = a\mathscr{L}\mathscr{C}_{\alpha}[\Omega_{1}(\zeta)] + b\mathscr{L}\mathscr{C}_{\alpha}[\Omega_{2}(\zeta)]. \end{split}$$

This is the complete proof.

Theorem 3.5. If $\Omega(\zeta) \in \Delta$ and D_{η}^{α} is the derivative of a function with respect to η of order α then

$$\mathcal{L}\mathcal{C}_{\alpha}[\zeta^{\alpha}\Omega(\zeta)] = D^{\alpha}_{\eta}\mathcal{L}\mathcal{C}_{\alpha}[\Omega(\zeta)] - \frac{\Gamma(\alpha+1)}{\eta^{\alpha}}\mathcal{L}\mathcal{C}_{\alpha}[\Omega(\zeta)]. \tag{3.6}$$

Proof. By using Definition of fractional order Laplace-Carson transform in (3.1) then,

$$egin{aligned} D^{lpha}_{\eta}\mathscr{L}\mathscr{C}_{lpha}[\Omega(\zeta)] &= D^{lpha}_{\eta}\Omega^{\prime}_{lpha}(\eta) \ &= D^{lpha}_{\eta}\{\eta^{lpha}\int_{0}^{\infty}E_{lpha}(-\eta^{lpha}\zeta^{lpha})[\Omega(\zeta)](d\zeta)^{lpha}\} \end{aligned}$$

But

$$D_{\eta}^{\alpha} \{ \eta^{\alpha} E_{\alpha} (-\eta^{\alpha} \zeta^{\alpha}) \} = \Gamma(\alpha + 1) E_{\alpha} (-\eta^{\alpha} \zeta^{\alpha})$$

+ $\eta^{\alpha} \zeta^{\alpha} E_{\alpha} (-\eta^{\alpha} \zeta^{\alpha}).$

Taking integration, we get

$$\begin{split} &\int_0^\infty D_\eta^\alpha \{\eta^\alpha E_\alpha(-\eta^\alpha \zeta^\alpha)\} [\Omega(\zeta)] (d\zeta)^\alpha \\ &= \int_0^\infty \{\Gamma(\alpha+1) E_\alpha(-\eta^\alpha \zeta^\alpha) \\ &+ \eta^\alpha \zeta^\alpha E_\alpha(-\eta^\alpha \zeta^\alpha)\} [\Omega(\zeta)] (d\zeta)^\alpha \\ &= \int_0^\infty \Gamma(\alpha+1) E_\alpha(-\eta^\alpha \zeta^\alpha) [\Omega(\zeta)] (d\zeta)^\alpha \\ &+ \int_0^\infty \eta^\alpha \zeta^\alpha E_\alpha(-\eta^\alpha \zeta^\alpha) [\Omega(\zeta)] (d\zeta)^\alpha \\ &= \Gamma(\alpha+1) \int_0^\infty E_\alpha(-\eta^\alpha \zeta^\alpha) [\Omega(\zeta)] (d\zeta)^\alpha \\ &+ \eta^\alpha \int_0^\infty E_\alpha(-\eta^\alpha \zeta^\alpha) [\zeta^\alpha \Omega(\zeta)] (d\zeta)^\alpha. \end{split}$$

Now,

$$\begin{split} D^{\alpha}_{\eta} \{ \eta^{\alpha} \int_{0}^{\infty} & E_{\alpha}(-\eta^{\alpha} \zeta^{\alpha}) [\Omega(\zeta)] (d\zeta)^{\alpha} \} \\ &= \frac{\Gamma(\alpha+1)}{n^{\alpha}} \mathscr{L} \mathscr{C}_{\alpha} [\Omega(\zeta)] + \mathscr{L} \mathscr{C}_{\alpha} [\zeta^{\alpha} \Omega(\zeta)] \end{split}$$

$$egin{aligned} \mathscr{L}\mathscr{C}_{lpha}[\zeta^{lpha}\Omega(\zeta)] &= D^{lpha}_{\eta}\{\eta^{lpha}\int_{0}^{\infty}E_{lpha}(-\eta^{lpha}\zeta^{lpha})[\Omega(\zeta)](d\zeta)^{lpha}\} \ &- rac{\Gamma(lpha+1)}{\eta^{lpha}}\mathscr{L}\mathscr{C}_{lpha}[\Omega(\zeta)] \end{aligned}$$

$$\mathscr{L}\mathscr{C}_{lpha}[\zeta^{lpha}\Omega(\zeta)] = D^{lpha}_{\eta}\mathscr{L}\mathscr{C}_{lpha}[\Omega(\zeta)] - rac{\Gamma(lpha+1)}{\eta^{lpha}}\mathscr{L}\mathscr{C}_{lpha}[\Omega(\zeta)].$$

This is the final proof of above equation.

Theorem 3.6 (Change of scale property of fractional order Laplace Carson transform). Let $\Omega(a\zeta) \in \Delta$, where a be any constant then,

$$\mathscr{L}\mathscr{C}_{\alpha}[\Omega(a\zeta)]_{\eta} = (\frac{1}{a})^{\alpha} \mathscr{L}\mathscr{C}_{\alpha}[\Omega(\zeta)]_{\eta/a}.$$
 (3.7)

Proof. By using Definition of fractional Laplace-Carson transform.

$$\mathscr{L}\mathscr{C}_{lpha}[\Omega(a\zeta)]_{\eta}=\eta^{lpha}\int_{0}^{\infty}E_{lpha}(-\eta^{lpha}\zeta^{lpha})[\Omega(a\zeta)](d\zeta)^{lpha}.$$

Put, $a\zeta = \lambda$, then $\zeta = \frac{\lambda}{a}$ then,

$$\begin{split} \mathscr{L}\mathscr{C}_{\alpha}[\Omega(a\zeta)]_{\eta} &= \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}(\frac{\lambda}{a})^{\alpha})[\Omega(\lambda)] \frac{(d\lambda)^{\alpha}}{a^{\alpha}} \\ &= (\frac{1}{a})^{\alpha} \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(\frac{(-\eta\lambda)^{\alpha}}{a^{\alpha}})[\Omega(\lambda)](d\lambda)^{\alpha} \\ &= (\frac{1}{a})^{\alpha} \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(\frac{(-\eta\zeta)^{\alpha}}{a^{\alpha}})[\Omega(\zeta)](d\zeta)^{\alpha} \\ &= (\frac{1}{a})^{\alpha} \mathscr{L}\mathscr{C}_{\alpha}[\Omega(\zeta)]_{\eta/a}. \end{split}$$

Theorem 3.7 (Shifting property). Let $\Omega(\zeta) \in \Delta$ then for $\Omega(\zeta - b) \in \Delta$ where b is constant, following holds,

$$\mathscr{L}\mathscr{C}_{\alpha}[\Omega(\zeta - b)] = E_{\alpha}(-\eta^{\alpha}b^{\alpha})\mathscr{L}\mathscr{C}_{\alpha}[\Omega(\zeta)]. \quad (3.8)$$

Proof. By using Definition of fractional Laplace-Carson transform

$$\begin{array}{l} L.H.S. = \mathscr{L}\mathscr{C}_{\alpha}[\Omega(\zeta-b)] \\ = \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})\Omega(\zeta-b)(d\zeta)^{\alpha}. \\ \text{Put } \zeta-b = \lambda \text{ then } \zeta = \lambda+b \text{ then,} \end{array}$$

$$\begin{split} \mathscr{L}\mathscr{C}_{\alpha}[\Omega(\zeta-b)] &= \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}(\lambda+b)^{\alpha})\Omega(\lambda)(d\lambda)^{\alpha} \\ &= \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\lambda^{\alpha})E_{\alpha}(-\eta^{\alpha}b^{\alpha})\Omega(\lambda)(d\lambda)^{\alpha} \\ &= \eta^{\alpha} E_{\alpha}(-\eta^{\alpha}b^{\alpha}) \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\lambda^{\alpha})\Omega(\lambda)(d\lambda)^{\alpha} \\ &= E_{\alpha}(-\eta^{\alpha}b^{\alpha})\eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})\Omega(\zeta)(d\zeta)^{\alpha} \\ &= E_{\alpha}(-\eta^{\alpha}b^{\alpha})\mathscr{L}\mathscr{C}_{\alpha}[\Omega(\zeta)] = R.H.S. \end{split}$$

Theorem 3.8. Let $E_{\alpha}(\zeta)$ be the Mittag-Leffler function and $\Omega(\zeta) \in \Delta$ then,

$$\mathscr{L}\mathscr{C}_{\alpha}[E_{\alpha}(-c^{\alpha}\zeta^{\alpha})\Omega(\zeta)]_{n} = \mathscr{L}\mathscr{C}_{\alpha}[\Omega(\zeta)]_{n+c}. \quad (3.9)$$

Proof. By using Definition of fractional Laplace-Carson transform.

$$\begin{split} L.H.S. &= \mathscr{L}\mathscr{C}_{\alpha}[E_{\alpha}(-c^{\alpha}\zeta^{\alpha})\Omega(\zeta)] \\ &= \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})E_{\alpha}(-c^{\alpha}\zeta^{\alpha})\Omega(\zeta)](d\zeta)^{\alpha} \\ &= \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-[\eta^{\alpha}\zeta^{\alpha} + c^{\alpha}\zeta^{\alpha}]\Omega(\zeta)](d\zeta)^{\alpha} \\ &= \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-[(\eta + c)^{\alpha}\zeta^{\alpha}]\Omega(\zeta)](d\zeta)^{\alpha} \\ &= \mathscr{L}\mathscr{C}_{\alpha}[\Omega(\zeta)]_{\eta+c} = R.H.S \end{split}$$

Theorem 3.9. *Let* $\Omega(\zeta) \in \Delta$ *then,*

$$\mathscr{LC}_{\alpha}[D^{\alpha}_{\zeta}\Omega(\zeta)] = \eta^{2\alpha}\mathscr{LC}_{\alpha}[\Omega(\zeta)] - \eta^{\alpha}\Gamma(1+\alpha)\Omega(0). \tag{3.10}$$

Proof. By using Definition of fractional Laplace-Carson transform.

$$\mathscr{L}\mathscr{C}_{\alpha}[D^{\alpha}_{\zeta}\Omega(\zeta)] = \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})D^{\alpha}_{\zeta}\Omega(\zeta)(d\zeta)^{\alpha}.$$

By using the definition of fractional integration by part formula we get,

$$\begin{split} L.H.S. &= \mathscr{L}\mathscr{C}_{\alpha}[D^{\alpha}_{\zeta}\Omega(\zeta)] \\ &= \eta^{\alpha}\Gamma(1+\alpha)\Omega(\zeta)E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})|_{0}^{\infty} \\ &- \int_{0}^{\infty}D^{\alpha}_{\zeta}E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})\Omega(\zeta)(d\zeta^{\alpha}) \\ &= -\eta^{\alpha}\Gamma(1+\alpha)\Omega(0) - (-\eta^{2\alpha})\int_{0}^{\infty}E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})\Omega(\zeta)(d\zeta)^{\alpha} \\ &= -\eta^{\alpha}\Gamma(1+\alpha)\Omega(0) + (\eta^{2\alpha})\int_{0}^{\infty}E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})\Omega(\zeta)(d\zeta)^{\alpha} \\ &= -\eta^{\alpha}\Gamma(1+\alpha)\Omega(0) + (\eta^{2\alpha})\mathscr{L}\mathscr{C}_{\alpha}[\Omega(\zeta)] \\ &= -\eta^{\alpha}\mathscr{L}\mathscr{C}_{\alpha}[\Omega(\zeta)] - \Gamma(1+\alpha)\Omega(0) = R.H.S. \end{split}$$

Theorem 3.10. *Let* $\Omega(\zeta) \in \Delta$ *then,*

$$\mathscr{L}\mathscr{C}_{\alpha}\left[\int_{0}^{\zeta} \Omega(\lambda) d\lambda^{\alpha}\right] = \Gamma(1+\alpha)^{-1} \mathscr{L}\mathscr{C}_{\alpha}[\Omega(\zeta)]. (3.11)$$

Proof. By using the definition of fractional order Laplace Transform integral transform [3],

$$\mathscr{L}_{lpha}\left[\int_{0}^{\zeta}\Omega(heta)(d heta)^{lpha}
ight]=\Gamma(1+lpha)^{-1}(\eta)^{-lpha}\mathscr{L}_{lpha}[\Omega(heta)].$$

Using the duality of Laplace and L-C transform [13],

$$\mathscr{L}\mathscr{C}_{\alpha} \left[\int_{0}^{\zeta} \Omega(\theta) (d\theta)^{\alpha} \right] = \eta^{\alpha} \Gamma(1+\alpha)^{-1} (\eta)^{-\alpha} \mathscr{L}\mathscr{C}_{\alpha} [\Omega(\theta)]$$

$$= \Gamma(1+\alpha)^{-1} \mathscr{L}\mathscr{C}_{\alpha} [\Omega(\theta)].$$

2256

4. Convolution theorem of fractional order Laplace-Carson transform

Theorem 4.1. If the convolution of order α of two functions $\Omega_1(\zeta)$ and $\Omega_2(\zeta)$ is define by the integral of the form,

$$(\Omega_1(\zeta) * \Omega_2(\zeta))_{\alpha} = \int_0^{\zeta} \Omega_1(\zeta - v) \Omega_2(v) (dv)^{\alpha}.$$

Then we can write,

$$\mathscr{L}\mathscr{C}_{lpha}[(\Omega_1(\zeta)*\Omega_2(\zeta))_{lpha}] = rac{1}{\eta^{lpha}}\mathscr{L}\mathscr{C}_{lpha}[\Omega_1(\zeta)]\mathscr{L}\mathscr{C}_{lpha}[\Omega_2(\zeta)].$$

Proof. We starts from Definition,

$$\begin{split} & \mathscr{L}\mathscr{C}_{\alpha}[(\Omega_{1}(\zeta) * \Omega_{2}(\zeta))_{\alpha}] \\ & = \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha}) \int_{0}^{\zeta} \Omega_{1}(\zeta - v) \Omega_{2}(v) (dv)^{\alpha} (d\zeta)^{\alpha} \\ & = \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}(\zeta - v)^{\alpha}) E_{\alpha}(-\eta^{\alpha}(v)^{\alpha}) \\ & \int_{0}^{\zeta} \Omega_{1}(\zeta - v) \Omega_{2}(v) (dv)^{\alpha} (d\zeta)^{\alpha}. \end{split}$$

By changing variable $\zeta - v \to \lambda$, and $V \to \xi$ taking limits from zero to infinite we get,

$$\begin{split} &\mathcal{L}\mathcal{C}_{\alpha}[(\Omega_{1}(\zeta)*\Omega_{2}(\zeta))_{\alpha}] \\ &= \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\lambda^{\alpha})\Omega_{1}(\lambda)(d\lambda)^{\alpha} \\ &\quad \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\xi^{\alpha})\Omega_{2}(\xi)(d\xi)^{\alpha} \\ &= [\eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\lambda^{\alpha})\Omega_{1}(\lambda)(d\lambda)^{\alpha}] \frac{1}{\eta^{\alpha}} \\ &\quad [\eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\xi^{\alpha})\Omega_{2}(\xi)(d\xi)^{\alpha}] \\ &= [\eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\xi^{\alpha})\Omega_{1}(\zeta)(d\zeta)^{\alpha}] \frac{1}{\eta^{\alpha}} \\ &\quad [\eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})\Omega_{2}(\zeta)(d\zeta)^{\alpha}] \\ &= \frac{1}{\eta^{\alpha}} \mathcal{L}\mathcal{C}_{\alpha}[\Omega_{1}(\zeta)] \mathcal{L}\mathcal{C}_{\alpha}[\Omega_{2}(\zeta)]. \end{split}$$

4.1 Inversion formula for fractional Laplace-Carson Transform

Definition 4.2 ([9,12]). The Dirac's distribution also known as generalized function, $\delta_{\alpha}(z)$ of order α , where $\alpha \in (0,1)$, is define as,

$$\int_{\mathscr{Q}} \Omega(\zeta) \delta_{\alpha}(\zeta - a) d\zeta^{\alpha} = \alpha \Omega(a). \tag{4.1}$$

In particular, $\int_{\mathscr{R}} \Omega(\zeta) \delta_{\alpha}(\zeta) d\zeta^{\alpha} = \alpha \Omega(0)$.

Lemma 4.3 ([9,12]). *The equality*

$$\frac{\alpha}{(\vartheta_{\alpha})^{\alpha}} \int_{-\infty}^{+\infty} E_{\alpha}(i(-\rho\zeta)^{\alpha})(d\rho)^{\alpha} = \delta_{\alpha}(\zeta), \tag{4.2}$$

holds where ϑ_{α} is the period of complexed value Mittag-Leffler function defined by the equality, $E_{\alpha}(i(\vartheta_{\alpha})^{\alpha}) = 1$.

Proof. From equation (3.9) we can write,

$$\alpha = \int_{\mathscr{R}} E_{\alpha}(i(\rho\zeta)^{\alpha}) \delta_{\alpha}(\zeta) d\zeta^{\alpha}.$$

By using the value $\delta_{\alpha}(\zeta)$ to LHS of the above equation we get,

$$\begin{split} &= \int_{\mathscr{R}} (d\zeta)^{\alpha} E_{\alpha}(i(\rho\zeta)^{\alpha}) \frac{\alpha}{(\vartheta_{\alpha})^{\alpha}} \int_{-\infty}^{+\infty} E_{\alpha}(i(-u\zeta)^{\alpha})(du)^{\alpha} \\ &= \int_{\mathscr{R}} (d\zeta)^{\alpha} \frac{\alpha}{(\vartheta_{\alpha})^{\alpha}} \int_{\mathscr{R}} E_{\alpha}(i(\rho\zeta)^{\alpha}) E_{\alpha}(i(-u\zeta)^{\alpha})(du)^{\alpha} \\ &= \int_{\mathscr{R}} \int_{\mathscr{R}} (d\zeta)^{\alpha} \frac{\alpha}{(\vartheta_{\alpha})^{\alpha}} E_{\alpha}(i((\rho-u)\zeta)^{\alpha})(du)^{\alpha} \\ &= \int_{\mathscr{R}} \int_{\mathscr{R}} \frac{\alpha}{(\vartheta_{\alpha})^{\alpha}} E_{\alpha}(i(-\varphi\zeta)^{\alpha})(d\varphi)^{\alpha}(d\zeta)^{\alpha} \\ &= \int_{\mathscr{R}} \delta_{\alpha}(\zeta)(d\zeta)^{\alpha}. \end{split}$$

4.2 Inversion Theorem of Fractional Order Laplace-Carson transform:

Lemma 4.4. Fractional order Laplace-Carson transform define in Definition 4,

$$\mathscr{L}\mathscr{C}_{\alpha}[\Omega(\zeta)] = \Omega'_{\alpha}(\eta) = \eta^{\alpha} \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha}\zeta^{\alpha})\Omega(\zeta)(d\zeta)^{\alpha},$$
(4.3)

then its inversion formula is,

$$\Omega(\zeta) = \frac{1}{(\vartheta_{\alpha})^{\alpha}} \int_{+i\infty}^{-i\infty} \eta^{-\alpha} E_{\alpha}(\eta^{\alpha} \zeta^{\alpha}) \Omega'_{\alpha}(\eta) (d\eta)^{\alpha}. \tag{4.4}$$

Proof. By substituting equation (3.1) in (4.4) and using (4.1) in (4.2) we get,

$$\begin{split} \Omega(\zeta) &= \frac{1}{(\vartheta_{\alpha})^{\alpha}} \int_{+i\infty}^{-i\infty} \eta^{-\alpha} E_{\alpha}(\eta^{\alpha} \zeta^{\alpha}) (d\eta)^{\alpha} \eta^{\alpha} \\ & \int_{0}^{\infty} E_{\alpha}(-\eta^{\alpha} \lambda^{\alpha}) \Omega(\lambda) (d\lambda)^{\alpha} \\ &= \frac{1}{(\vartheta_{\alpha})^{\alpha}} \int_{0}^{\infty} \Omega(\lambda) (d\lambda)^{\alpha} \int_{+i\infty}^{-i\infty} E_{\alpha}(-\eta^{\alpha} \lambda^{\alpha}) \\ & E_{\alpha}(\eta^{\alpha} \zeta^{\alpha}) (d\eta)^{\alpha} \\ &= \frac{1}{(\vartheta_{\alpha})^{\alpha}} \int_{0}^{\infty} \Omega(\lambda) (d\lambda)^{\alpha} \int_{+i\infty}^{-i\infty} E_{\alpha}(-\eta^{\alpha} (\lambda - \zeta)^{\alpha}) (d\eta)^{\alpha} \\ &= \frac{1}{(\vartheta_{\alpha})^{\alpha}} \int_{0}^{\infty} \frac{(\vartheta_{\alpha})^{\alpha}}{\alpha} \Omega(\lambda) \delta_{\alpha} (\lambda - \zeta) (d\lambda)^{\alpha} \\ &= \frac{1}{\alpha} \int_{\mathscr{R}} \Omega(\lambda) \delta_{\alpha} (\zeta - \lambda) (d\lambda)^{\alpha} \\ &= \frac{1}{\alpha} \alpha \Omega(\zeta) \\ &= \Omega(\zeta). \end{split}$$

5. Conclusion

From the above study we have developed fractional order Laplace-Carson transform. Also, we establish properties of fractional order Laplace-Carson transform. Further, some main results like convolution and inversion theorem.

References

- [1] Hassan Eltayeb, Adem Kilicman, and Mohemed B. Jleli, Fractional integral transform and its applications, *Hindawi publication Corporation*, (2014).
- [2] Xiao-Jun Yang, Dhumtru Beleanu, Shrivastava, H. M., Local fractional integral transform and their applications, *Ebook*, 1(2015), 0–262.
- Donolato, C., Analytical and numerical inversion of the Laplace-Carson transform by a differential Method, *Computer physics Communications*, 145(2002), 298–309.
- [4] Toshikazu Kimura, Applications the Laplace-Carson transform to Option Pricing: A Tutorial, *Chinees Publi*cation, (2016), 68–89.
- [5] Makarov, A. M., Applications of the Laplace- Carson method of integral transform to the theory of unsteady visco-plastic flows, *J. Engtg. Physics Theosophy's*, 19(1970), 94–99.
- ^[6] Tukaram G. Thange, Anantha R. Gade, Analytical solution for time fractional diffusion equation by Laplace-Carson Decomposition method, *Our heritage*, 68(6)(2020), 45–50.
- [7] Guy Jumarie, (2019), Laplace transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative, *Applied mathematics letters*, 22, 1659–1664.
- ^[8] Tukaram G. Thange, Anantha R. Gade, on the Aboodh transform of fractional differential operator, *Malaya Journal of mathematic*, 8(01)(2020), 225–229.
- [9] Lakshmikantam, V. and Vatsala, A. S., Basic theory of fractional differential equation, *Nonlinear Analysis*, 69(2008).
- [10] Joseph M. Kimeu, *Fractional calculus definitions and application*, top scholar master's thesis and specialist project.
- [11] Raman Chauhan, Kumar, N. and Aggarwal, S., Dualities between Laplace-Carson transform and Some useful integral transform, *International journal of innovative technology and exploring engineering*, 8(12)(2019), 2278–3075.
- [12] Elif Demirci, Nuri O Zalp, A methods for solving differential equation of fractional order, *Journal of computational and applied mathematics*, 236(2012).
- [13] Alfaqeih, S. and Ozis, T. Note on double Aboodh transform of fractional order and its properties, *online mathematics*, 01(2019), 2672–7501.
- [14] Thange T. G. and Gade A. R., A new approach for solving a system of fractional partial differential Equation,

Advances in Mathematics: Sci Journal, 09(2020), 1933–1944.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
