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Laplace-Carson transform of fractional order
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Abstract

In this paper, we proposed new generalized Laplace-Carson transform of fractional order called Fractional
Laplace-Carson transform of order 0 < a < 1. This transform is applying for functions which are differentiable but
by fractional order. By using the definition of fractional order Laplace-Carson transform we prove fundamental
properties of this integral transform. Finally, we have obtained convolution and inversion.
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First, we summaries definitions of Laplace, Laplace-Carson
1. Introduction transform, fractional order derivative in the finite difference

We all are familiar about the application of integral transform form and other related definitions.

for the solution of different differential and integral equations
[1,2]. Tt is the best tool for finding the solutions of many
of this problem. Laplace-Carson transform is the Laplace
type integral transform but it is generalization of Laplace
transform [3,4] which is widely used for solving differential
equation [7,8] with efficient and more convenient way. If o
Q({) is continuous and continuously differentiable then by Z[Q(0)](n) = /0 exp(—n¢)Q()dE. (2.1

Definition 2.1. Ler Q({) is continuous real valued function
for { € R* =[0,00), and | Q({) |< PeQ% (¢ > 0) for constants
P and Q. Then for n € C,(Re(n)) > O, define the Laplace
transform [9] is,



Definition 2.2 (Laplace-Carson transform [3,4]). Let Q({)
is continuous real valued function for § € RT = [0, ), and

| Q&) |< PeQS (¢ > 0) for constants P and Q. Then for 1 €
T (Re(n)) > O 7.

A={Q({)|3P,0 > 0| Q&) |< Pe%, where { € RT =[0,09]},

define the Laplace-Carson transform the integral as,

zE1())m) =2 m = [ “nexp(—nO)QE)AE 2.2)

26100 =) = lim [ nesp(-ng)RAE)dL.

The Inverse Laplace-Carson integral transform [3] is defined
as,

1@ _o)= L M Lmog
267 QIM =00 = gz [ 219 (myan,
2.3)

where § > 0 and U is real number such that the counter path
!
of integration is in the region of convergence of & ().

Definition 2.3 (Derivative of Laplace-Carson integral trans-
form [4,7]). If the function Q" () is the n™ derivative of
the function Q(§) with respect to § then it’s Laplace-Carson
integral transform is defined as,

n—1
m) - Y. (m)"0.Q%(0), where n > 1.
k=0

2e1Q" ()] =n"a
(2.4)

Definition 2.4 (Laplace-Carson transform of Mittag-Leffler
function [9,10,11]).

Zk

Eqp(8)= Z T(ak+B)

k=0
o, € Cand Re(a), Re(B) > 0 is given by,
LECT B p(e®)] =nP(1—e(m)*) 7,

where Re(at), Re(P), Re(t) > 0and € € C.

(2.5)

Definition 2.5 ([11,12]). I'(z) is Euler Gamma function, which
is generalization of factorial function from set of integers to
the set of complex numbers. Defined as,

r(z;):/ e dr,z € C,
0

with Re(z > 0), with T(§ + 1) = {T(§), where { € RT and
['(§)=(£—1)! where { € RT.

Definition 2.6 (Definition of Fractional order derivative in
finite Difference form [9,12]). Let Q : R — R denotes a
continuous function and h > 0 denote content discretization
span then, Define the forward operator FW(h) by the equality,
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FW(h)(Q(&)) = Q(E +h). Then fractional order derivative
of order a, where 0 < a < 1 of Q({) is,

=)

A*Q(E) = (FW —1)% = Y (-1 CEQUE+ (- kh). (26)
k=0

Fractional derivative of order o is the limit,

A“Q(5)

Q®(¢) = lim P

h—0

2.7

3. Main Result

Definition 3.1. Laplace-Carson transform of fractional order
o of non-negative function Q(§) denoted by L€ o [Q()],
and defined as,

L6a[QAE) = QM) =0 | Ea(-n"CHAG) 0"
3.1

where ) € C, and Eo(§) is Mittag-Leffler function EqQ(§) =
;(X

Lo For 1)

3.1 Existence of Fractional order Laplace-Carson
transform

Theorem 3.2. If function Q({) is non-negative piecewise
continuous in interval 0 < § < & and it is of exponential

. !
order o then its fractional Laplace-Carson transform Q. (1)
exist.

Proof. Suppose that,

(3.2)

Since Q(&) is pricewise continuous in interval [0, ] with
0 < ¢ < & then first integral of RHS of (3.2) exist, since (&)
is of exponential order  for & < {, to check the existence we
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concentrate on second term of RHS of (3.2) then,
o °<’Ea _ o Q d o
[, Ea-n"C0A0) )"
<0 [ 1Bl @0)"

<n“ / Eq 1Q(O)|(d5)"
<ne [ r. EauC) (d0)?
—cn® / Ea(—(n—u)*{*)(d0)”

= Cn® lim : Ea(—(n—u)“C“)(dC)a
. (;C:’;a [0— Eq(— (1 —u)*¢%)].

But as & — 0 then we get the existence of Second term of
RHS also,

=M. 3.3)

“ aro o C
/é Ea(-n"¢)Q(E)(@)"| < iz
This completes the proof. O

Now we prove basic properties related to fractional order
Laplace-Carson transform.

Theorem 3.3. Let functions Q({) € A. Then following Frac-
tional Laplace-Carson Transform of some standard functions

hold.

LS 1]y =nT(a+1). (3.4)

Proof. By using Definition in equation (3.1) for LHS in Equa-
tion (3.4) we get,
2 allly =1 [ Ea(-n*¢)11(a0)"

=n%a! Tg(1)
=n°T(a+1).

O

Theorem 3.4 (Linearity Property). Let functions a€2i({),
b (&) € A then aQ () +bQ;(8) € A where a and b are
nonzero arbitrary constants and,

L6 o[aQ1(8) +bQ0(8)] = aLC o[Q(E)]|+0LC a[Q(E)]-

(3.5)
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Proof. By using Definition in equation (3.1) for LHS in Equa-
tion (3.5) we get,

L afa (§) + b2 (D)
=% [ B0 a1 (£) + 62 ())(d)"
—an® [ Ea(-n"¢")2 () (d0)"
b0 [ Ea(=n"C")Q(0)0)"
= 4ol ()] +bLEal({)]

This is the complete proof. O

Theorem 3.5. If Q(() € A and DY is the derivative of a
Sfunction with respect to M of order o then

LCa[§7QUE)] =Dy LC Q)] - L€ a[Q(0)].

(3.6)

INo+1)
n¢

Proof. By using Definition of fractional order Laplace-Carson
transform in (3.1) then,

DELE o[Q(0)]
=D [ Ea(-n{)(Q(0)](@0)")

=D, (1)

But

Dy{N%Eq(—m*¢%)} =T(a+1)Eq(—1*E%)
+n%C%Eq(—*CY).

Taking integration, we get
|| D B0

- [ {r(@+ DEa(-n"¢)
N ()AL ()"
— [ T(@+ DEa(-n“C)RA(0)](dg)"

+ [ 0 Ea(-n¢ A0 @0

—Tla+1) [ Ea(-n“C)IR(¢))d0)"

1% [ Ea(-n"L)(E RAD))(@0)",
Now,

D [ Ea(-"CM) R0}
_ TN« + 1)

L u[QE)]+ ZLCall7QL)]

o
L0,
Ssa2ez
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€500 =Dgn” | " El(—n%L)[Q0)](d0)")
_I(a+1)

T L€ a[Q(0)]
L6al ) = DL Q)] - T )
This is the final proof of above equation. O

Theorem 3.6 (Change of scale property of fractional order
Laplace Carson transform). Ler Q(a{) € A, where a be any
constant then,

LCa0l)y = (I LDl G
Proof. By using Definition of fractional Laplace-Carson trans-
form,

ZEa0aD)ly =1 [ (-] (@E)".
Put, aCzl,thenC:%then,

L al@al)]y =" °°Ea<—na<5>“>[9<x>1(djf
=y [ EE )@
=y [l ”‘: @)
= () ztdo (C)]n/a-

0

Theorem 3.7 (Shifting property). Ler Q(§) € A then for
Q(& —b) € Awhere b is constant, following holds,

LEa]QE )] = Eo(~0“b).LE Q). (38)

Proof. By using Definition of fractional Laplace-Carson trans-
form,
LHS. = %€q]Q(—D))

=N%Jo Ea(—n*C%)Q(E —b)(dE)*.
Put { —b = A then { = A + b then,

LELU ) =1 [ Ea(-0"(2+5)")Q(1)(@2)*
=0 [ a0 Ea(~n"b")Q(A) (@2)"
= 0"Ea(-n") | Ea(-n"2%)Q(1)(@2)"

= Ea(-nb")n° [ Ea(-n"C9AE) @)
=Eq(—Nn%b*) L€ o[Q(§)] =R.H.S.

2256
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Theorem 3.8. Ler Ey({) be the Mittag-Leffler function and
Q(&) € A then,

ZLCa[Ea(—c*E*)QO)n = LCa[QE)]n1e-

Proof. By using Definition of fractional Laplace-Carson trans-
form,

(3.9)

—*C)Q(()]
— 7@ /O Eo(—1"C%) Ea(—c“L®)Q(L))(dE)”
=% [ Ea(-nL7+ LA (a)"

=% [ Ea(-(n+0°CI0(0](d0)"
= LC|QE) e =RH.S

O

Theorem 3.9. Let Q({) € A then,
ZLC u[DEQUE)) = n** LCa[QE)] 1T (1+a)Q(0).
(3.10)

Proof. By using Definition of fractional Laplace-Carson trans-

form,
Z2€uDFAE) =" [ Ea(-n"C)DEQOE)",

By using the definition of fractional integration by part for-
mula we get,

LHS.= 2% [D{Q(L)]

—n“T(1+ @)QE)Ea(-1°C%)5

- /O“’DgEa(— “LQA)(dg”

1) [ Ea(-ng")0(0) (0"
= —1°T(1+@)Q0) + (1) / Ea(-1*E)AE) ()"

=-N°T(1+ @)Q(0) + (n**).LCo[Q(L)]
= 2% LEC[Q(E)] - T(1+ @)Q(0) = RH.S.

=—-n°T(1 4+ a)Q(0) —

Theorem 3.10. Let Q(&) € A then,
Ly U QA dl"‘]— T(1+a) "' L%Q()]. G.11)

Proof. By using the definition of fractional order Laplace
Transform integral transform [3],

2, [ [ ar@)a0) } P(1+ )" () %2 [2(0)).
Using the duality of Laplace and L-C transform [13],
¢
L | 2(0)@0)7] =nT(1+ @) () “ L ul00)

=T(14+a) ' 2%.[Q(0)].
O
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4. Convolution theorem of fractional
order Laplace-Carson transform

Theorem 4.1. [f the convolution of order o of two functions
Q(8) and Q,(§) is define by the integral of the form,

¢
(Ql(C)*Qz(C))a:/O Qi (§ —v)Qa(v)(dv)*.
Then we can write,
fga[(ﬂl(é)*ﬂz(é))abn%f%a[ﬂl(é)]f‘fa[ﬂz(@}-

Proof. We starts from Definition,

L€ al(@1(5)+2(E)a)
oo ¢
=% [ Eu(-n"¢%) /0 (£ = )R (@) (d0)"
=% [ Ea(=n"(C =) Eal—n"()")
[ ooty

By changing variable { —v — A, and V — & taking limits
from zero to infinite we get,

LECal(21(8)*2(8))al
= na,/o Eq(—n“A%)Q1(A)(dA)"
/OwEa(—n“é“)Qz(é)(dé)“
a/“’Ea _ %a)gl(z)(dl)“]n—la
e [ Ea(n"E)02(8) (@)
a a a L
/ Ea(-n"C)(8)(d0)] g
n /0 Ea(—1*$)Q(8)(dS)"]
_ %g%[gl(g)w%[ﬂz(m
0

4.1 Inversion formula for fractional Laplace-Carson
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holds where Uy, is the period of complexed value Mittag-
Leffler function defined by the equality, Eq(i(0¢)%) = 1.

Proof. From equation (3.9) we can write,

o= [ Eali(pf)*)8a(C)at”.
R

By using the value 84 (&) to LHS of the above equation we
get,
a . o o tee . o o
= [ @O Ealip0)) iz | Ealit-u0)*) )
o o " . o . o o
— [ 40 55 [ Ealilp D) Ealit—ul) e
= [, [ (@) 5z Ealil(p — ) du)*

(
= [, |, toyaatit=90) o) (d0)"

- [ &0yt
,

4.2 Inversion Theorem of Fractional Order Laplace-
Carson transform:

Lemma 4.4. Fractional order Laplace-Carson transform de-

fine in Definition 4,

O

LC[QAE)] = - / Eo(—1%L)Q(E)(dE)",
4.3)

then its inversion formula is,

Q) = oz [T B Q) ). @)

(ﬂa)a oo

Proof. By substituting equation (3.1) in (4.4) and using (4.1)
in (4.2) we get,

A0) = o /"“’ “Ea(n)(dn) "0

/Ea
0

/g )(dA)® /ﬂmEa(—n“l“)
190( oo

Transform Eq(m*¢*)(dn)*
Definition 4.2 ([9,12]). The Dirac’s distribution also known 1 o0 —joo
as generalized function, 04 (z) of order a, where a € (0,1), = W./o Q(l)(dl)a/Jrim Eq(—*(A — &)%) (dn)*
is define as, 1 = ()
= i e @Me(d =)
[ (6186 ~a)dt® = a2(a). @ e
' = 2 | 2@)su(g ~2)(ar)*
In particular, [;Q(8)8x(8)dE* = a2(0). 1
Lemma 4.3 ((9,12]). The equality o )
o oo - Q(C)
(B)® ). Eq(i(—p&)*)(dp)™ = 8a({), (4.2) O
2257 :C
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5. Conclusion

From the above study we have developed fractional order
Laplace-Carson transform. Also, we establish properties of
fractional order Laplace-Carson transform. Further, some
main results like convolution and inversion theorem.
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