

https://doi.org/10.26637/MJM0804/0165

Mean labeling pattern of some graphs

G. Ishiyamanji^{1*} and S. Joseph Robin²

Abstract

The concept of mean labeling was introduced by S. Somasundaram and Ponraj in 2003. Many research papers have published in this topic. In this paper we have established a general format for labeling of $T_{m,1}$; T(n); $B_{n,n}$; $D_n t$; $K_2 \odot C_n$.

Keywords

Labeling, Mean labeling, Mean graph.

AMS Subject Classification:

05C12.

^{1,2} Department of Mathematics, Scott Christian College, Nagercoil, Tamilnadu,India.629003, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti-Tirunelveli-627012. *Corresponding author: ¹ manjiishiya@gmail.com; ² prof.robinscc@gmail.com

Article History: Received 10 July 2020; Accepted 22 November 2020

©2020 MJM.

Contents

1 2

1. Introduction

Throughout this paper by a graph we mean a finite simple graph. For basic definitions and notations in graph theory follow Bondy Murthi [2], S.Somasundaram and Ponraj [7] introduced the concept of mean labeling of graphs. In this paper we investigate the existence of mean labeling of some graph.

Definition 1.1. The pan graph is the graph obtained by joining a cycle graph C_m with K_1 as a bridge the m-pan graph is isomorphic with the (m,1) tadpole graph.

Definition 1.2. The graph G of (V, E) obtained from path by attaching exactly two pendent edges to each internal vertices of the path is called twig graph it is denoted by T(n).

Definition 1.3. The Bistar $B_{n,n}$ is the graph obtained by making adjacent the two central vertices of $K_{1,n}$ and $K_{1,n}$.

Definition 1.4. *The graph* $D_n t (n \ge 3, t \ge 1)$ *is obtained from* the cycle C_n by attaching a path of length t to any on vertices of C_n .

Definition 1.5. The graph $K_2 \odot C_n$ is obtained by attaching the cycle C_n at each end point of K_2 .

2. Main Result

Theorem 2.1. The graph $T_{m,1}$ is a mean graph.

Proof. Let $G = T_{m,1}$ be a graph with |V(G)| = m+1; |E(G)| = m+1m + 1;The vertex set of the graph is defined by $V(G) = \{v_i | i =$ $1, 2, 3, \dots, k-1, k, k+1, \dots, m+1$ Here $k = \left| \frac{n}{2} \right|$ $N(v_i) = \{v_{i-1}; v_{i+1}/1 \ge i \ge m+1\}; N(v_1) = \{v_2, v_m\};$ $N(v_{m+1}) = \{v_k\};$ The edge set is defined by $E(G) = \begin{cases} e_i / i = 1, 2, 3, ..., k \\ e_j / j = 1, 2, 3, ..., k \end{cases}$ Labeling pattern of the graph is given below, $L(v_{n-i}) = \begin{cases} n - (i-j)/i = m - 1 \ to \lceil \frac{m+1}{2} \rceil, j = 2 \ to \lceil \frac{m+1}{2} \rceil \\ n - (j-i)/i = \lceil \frac{m-1}{2} \rceil \ to \ 0, \ j = \lceil \frac{m+1}{2} \rceil \ to \ m \end{cases}$ $L(v_{m+1}) = v_k + 1$ $L(e_i) = \{2i/i = 1, 2, 3, \dots, k\}$ $L(e'_i) = \{2j - 1/i = 1, 2, 3, ..., k + 1\}$

The graph satisfies the mean labeling condition. Therefore, the graph G is mean graph.

Theorem 2.2. The graph $D_n t (n \ge 3)$ is a mean graph.

Proof. Let $G = D_n t$ be a graph with n + t vertices and edges. The vertex set is defined by

$$V(G) = \begin{cases} v_i / i = 1, 2, 3, ..., n \\ v'_i / i = 1, 2, 3, ..., t \end{cases}$$

The edge set is defined by

$$E(G) = \begin{cases} e_i/i = 1, 2, 3, ..., k \\ f_i/i = 1, 2, 3, ..., k \\ x_i/i = 1, 2, 3, ..., k \end{cases}$$

$$N(v_i) = \{v_{(i-1, v_{i+1}; 1 < i < n\}; \\ N(v'_i) = \{v'_{i-1}, v'_{i+1}; 1 < i < n\}; \\ N(v_n) = \{v_{n-1}, v_1\}; N(v'_1) = \{v'_2, v_k\}$$

$$N(v'_t) = \{v'_{t-1}\}$$

$$f(e_i) = \{v_i v_i(i+1); 1 \le i \le x\}; f(e'_i) = \{v_i v_{i-1}/i \le i \le k\}$$

 $f(e_i'') = \{v_i v_{i-1}\}$ The labeling pattern is given below, $ML(v_i) = \begin{cases} n - (i-j)/i = n - 1 \text{ to } \lceil \frac{n+1}{2} \rceil \text{ and } j = 2 \text{ to } \lceil \frac{n+1}{2} \rceil \\ n - (j-i)/i = \lceil \frac{n-1}{2} \rceil \text{ to } 0 \text{ and } j = \lceil \frac{n+1}{2} \rceil \text{ to } n \end{cases}$ $ML(v_i') = \{v_{\lfloor \frac{n}{2} \rfloor + i}/i - 1, 2, 3, ..., t\}$ $f(v_i') = \{v_{\frac{n}{2}} v_i\}$ $ML(e_i) = \{2i/i = 1, 2, 3, ..., t\}$ $ML(e_i') = \{n + i/i = 1, 2, 3, ..., t\}$ $ML(e_i'') = \{n + i/i = 1, 2, 3, ..., t\}$ The graph satisfies the mean labeling condition. Therefore, the graph G is mean graph. \Box

Theorem 2.3. *The Bistar* $B_{n,m}$ *is a mean graph where* $n \ge 2$ *.*

 $\begin{array}{l} Proof. \ \text{Let } G = B_{n,m} \text{ be a graph } |V(G)| = 2n+2 \\ \text{and } |E(G)| = 2n+1. \\ v' \text{ is adjacent to } v_i \text{ and } u'. \\ u' \text{ is adjacent to } u_i \text{ and } v'. \\ \end{array}$ $\begin{array}{l} \text{The vertex set is } V(G) = \begin{cases} v', u' \\ v_i/i = 0, 1, 2, 3, ..., n-1 \\ u_i/i = 0, 1, 2, 3, ..., n \end{cases}$ $\begin{array}{l} N(v_i) = v'; N(u_i) = u'; N(v') = u'. \\ ML(v') = 1; ML(v_i) = 2i/i = 1, 2, 3, ..., n-1. \\ ML(u_n) = 2i+1/i = 1, 2, 3, ..., n-1; ML(u_n) = 2n. \\ ML(u') = 2n+1. \\ ML(e_i) = i/i = 1, 2, 3, ..., 2n+1. \\ \end{array}$ $\begin{array}{l} \text{Clearly, the vertex and edge satisfies the mean labeling condition. } \end{array}$

Therefore, the graph $G = B_{n,m}$ is mean graph.

Theorem 2.4. The graph $K_2 \odot C_n (n \ge 3)$ is mean graph for all n.

 $\begin{array}{l} \textit{Proof. Let } G = K_2 \odot C_n (n \geq 3) \text{ be a graph} \\ |V(G)| = 2n; |E(G)| = 2n + 1. \\ \textit{The vertex set of the graph is} \\ V(G) = \begin{cases} v_i/i = 1, 2, 3, ..., n \\ v_i'/i = 1, 2, 3, ..., n \end{cases} \\ \textit{The edge set of the graph is} \\ E(G) = \begin{cases} e_i/i = 1, 2, 3, ..., n \\ e_i'/i = 1, 2, 3, ..., n \\ e_i'/i = 1, 2, 3, ..., n \end{cases} \\ \textit{N}(v_i) = \{v_{i-1}, v_{i+1}; 1 < i < n\}. \end{array}$

$$N(v_1) = \{v_n, v_2\}.$$

$$N(v_n) = \{v_1, v_{n-1}\}.$$

$$\begin{split} N(v_k) &= \{v_{k-1}, v_{k+1}, v_{n+1}\} \text{ here } k = \frac{n}{2}. \\ \text{Vertex labeling of the graph is given by} \\ L(v_i) &= \begin{cases} n - (i-j)/i = n - 1 \ to \left\lceil \frac{n+1}{2} \right\rceil, j = 2 \ to \left\lceil \frac{n+1}{2} \right\rceil \\ n - (j-i)/i = \left\lceil \frac{n-1}{2} \right\rceil \ to \ 0, j = \left\lceil \frac{n+1}{2} \right\rceil \ to \ n \end{cases} \\ L(v_i') &= \{n + i/i = 1, 2, 3, ..., n\}. \\ \text{The edge labeling is given below,} \\ L(e_{n-i}) &= \begin{cases} 2(n-i)/i = n - 1 \ to \left\lfloor \frac{n+1}{2} \right\rfloor \\ 2i + 1/i = \lfloor \frac{n-1}{2} \rfloor \ to \ 0 \end{cases} \\ L(e_i') &= \{n + i/i = 1, 2, 3, ..., n\}. \\ \text{The graph satisfies the mean labeling condition.} \\ \text{Hence, } K_2 \odot C_n \text{ is mean graph.} \end{split}$$

Theorem 2.5. *The graph* $T(n)(n \ge 3)$ *is mean graph.*

Proof. Let G = T(n) be a graph with k = 3n - 5 edges m = 3n - 4 vertices. The vertex set of G is defined by $V(G) = \{v_i/i = 0, 1, 2, 3, ..., n\}.$ The edge set of G is defined by $E(G) = \{e_i/i = 1, 2, 3, ..., n\}.$ Labeling pattern of the graph is given below, $ML(v_i) = \begin{cases} v_0 = 0 \\ v_i = i/i = 1, 2, 3, ..., m - 1 \\ v_m = v_{m-1} + 2 \end{cases}$ $ML(e_i) = \{e_i = i/i = 1, 2, 3, ..., k\}.$ The vertex and edge labeling are distinct.

Therefore, the graph G = T(n) is mean graph.

References

- J.A.Bondy and U.S.R. Murthy: Graph Theory and Applications, (North-Holland), New York (1976).
- [2] F. Harary : Graph Theory, Addison Wesley, Reading Massachusetts, 1972.
- ^[3] J.A. Gallian: A dynamic survey of graph labeling, *Electronic journal of combinations*, 12(3)(2007), 343-349
- [4] R. Ponraj and S. Somasundaram, Mean labeling of graphs obtained by identifying two graphs, *Journal of Discrete Mathematical Sciences and Cryptography*, 11(2)(2008), 239-252.
- [5] S. Somasundaram and R. Ponraj, Mean labeling of graphs, *National Academy Science Letter*, 26, 210-213,(2003).
- [6] S.K. Vaidya and Lekha Bijakumar, Some new families of mean Graphs, *Journal of Mathematics Research* 2(3)(2010), 2213-2224.
- [7] R. Ponraj and S. Somasundaram: Further result on mean graphs, *Proceedings of Sacoeference*, 1(4)(2005), 443-448.
- [8] Vasuki and A. Nagarajan: Some results on super mean graph, *International Journal of Mathematical Combinatory*, 3(2009), 82-96.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

