

https://doi.org/10.26637/MJM0804/0166

2-Dominating sets and 2-domination polynomials of pan graph $P_{m,2}$

P.C. Priyanka Nair ^{1*} and T. Anitha Baby²

Abstract

Let *G* be a simple graph of order m. Let $D_2(G,x)$ be the family of 2-dominating sets in *G* with size 1. The polynomial $D_2(G,x) = \sum_{i=\gamma_2(G)}^m d_2(G,i)x^i$ is called the 2-domination polynomial of *G*. Let $D_2(P_{m,2},i)$ be the family of 2-dominating sets of the pan graph $P_{m,2}$ with cardinality *i* and let $d_2(P_{m,2},i) = |D_2(P_{m,2},i)|$. Then, the 2-domination polynomial $D_2(P_{m,2},x)$ of $P_{m,2}$ is defined as, $D_2(P_{m,2},x) = \sum_{i=\gamma_2(P_{m,2})}^{m+2} d_2(P_{m,2},i)x^i$, where $\gamma_2(P_{m,2})$ is the 2-domination number of $P_{m,2}$. In this paper we obtain a recursive formula for $d_2(P_{m,2},i)$. Using this recursive formula we construct the 2-domination polynomial, $D_2(P_{m,2},x) = \sum_{i=\left\lfloor \frac{m+2}{2} \right\rfloor}^{m+2} d_2(P_{m,2},i)x^i$, where $d_2(P_{m,2},i)$ is the number of $d_2(P_{m,2},i) = \sum_{i=\left\lfloor \frac{m+2}{2} \right\rfloor}^{m+2} d_2(P_{m,2},i)x^i$.

2-dominating sets of $P_{m,2}$ of cardinality *i* and some properties of this polynomial have been studied.

Keywords

Pan, 2-dominating set, 2-domination number, 2-domination polynomial.

AMS Subject Classification

97K30, 05C69, 05C31.

^{1,2} Department of Mathematics, Womens Christian College, Nagercoil, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti-Tirunelveli-627012.

*Corresponding author: 1 priyanka86nair@gmail.com; 2

Article History: Received 10 July 2020; Accepted 22 November 2020

©2020 MJM.

Contents

- 1 Introduction.....2288
- 2 2-DOMINATING SETS OF PAN GRAPH $P_{m,2}$2288
- **3 2-DOMINATION POLYNOMIALS OF PAN GRAPH** $P_{m,2}$. **2290**

1. Introduction

A Subset *D* of *V* is a dominating set of *G* if N[D] = V or equivalently, every vertex in V - D is adjacent to at least one vertex in *D*. The domination number of the graph *G* is defined as the minimum size taken over all dominating sets D of vertices in G and is denoted by (G). Let $P_{m,2}$ be a pan graph with m + 2 vertices. Let $D_2(P_{m,2},i)$ be the family of 2-dominating sets of a pan graph $P_{m,2}$ with cardinality i, let $d_2(P_{m,2},i) = |D_2(P_{m,2},i)|$. We call the polynomial $D_2(P_{m,2},x) = \sum_{i=1}^{m+2} \frac{d_2(P_{m,2},i)x^i}{2}$ as a 2-domination poly-

nomial of a pan graph $P_{m,2}$. We use $\lceil m \rceil$, for the smallest inte-

ger greater than or equal to m. In this paper [m] denotes the set $\{1, 2, ..., m\}$

2. 2-DOMINATING SETS OF PAN GRAPH $P_{m,2}$

Definition 2.1. A set $D \subseteq V$ is a 2-dominating set if every vertex in V - D is adjacent to at least two vertices in D. The 2-domination number of a graph G is defined as the minimum size taken over all 2-dominating sets of vertices in G and is denoted by $\gamma_2(G)$.

Definition 2.2. *The pan graph is the graph obtained by joining a cycle graph to a Singleton graph with a bridge. The pan graph is therefore isomorphic with the tadpole graph.*

Definition 2.3. Let $P_{m,2}$ be the pan graph with m + 2 vertices. Label the vertices of $P_{m,2}$ as $v_1, v_2, v_3, ..., v_m, v_{m+1}, v_{m+2}$ where v_m is the vertex of degree 3, v_{m+1} is the vertex of degree 2 and v_{m+2} is the vertex of degree 1.

Lemma 2.4. Let $P_{m,2}$ be the pan graph with m + 2 vertices, then its 2-domination number is $\gamma_2(P_{m,2}) = \left\lceil \frac{m+2}{2} \right\rceil$. Lemma 2.5. Let $P_{m,2}, m \ge 5$ be the pan graph with $|V(P_{m,2})| = m+2$. Then, $d_2(P_{m,2},i) = 0$ if $i < \left\lceil \frac{m+2}{2} \right\rceil$ or i > m+2 and $d_2(P_{m,2},i) > 0$ if $\left\lceil \frac{m+2}{2} \right\rceil \le i \le m+2$. Proof. If $i < \left\lceil \frac{m+2}{2} \right\rceil$ or i > m+2, then there is no 2-dominating set of size *i*. Therefore, $D_2(P_{m,2},i) = \phi$, if $i < \left\lceil \frac{m+2}{2} \right\rceil$ and i > m+2. By Lemma 2.4, the minimum size of the 2-dominating set of $P_{m,2}$ is $\left\lceil \frac{m+2}{2} \right\rceil$. Therefore, $d_2(P_{m,2},i) > 0$, if $i \ge \left\lceil \frac{m+2}{2} \right\rceil$ and $i \le m+2$. Thus, we get, $d_2(P_{m,2},i) > 0$, if $i < \left\lceil \frac{m+2}{2} \right\rceil$ or i > m+2 and $d_2(P_{m,2},i) > 0$ if $\left\lceil \frac{m+2}{2} \right\rceil \le i \le m+2$.

Lemma 2.6. If $D_2(P_{m,2},i) \neq \phi$, then for every $m \ge 6$, we have

- 1. $D_2(P_{m-1,2}, i-1) = \phi, D_2(P_{m-2,2}, i-1) \neq \phi,$ $D_2(P_{m-3,2}, i-1) \neq \phi \text{ iff } m = 2k \text{ and } i = k+1 \text{ for some } k \geq 3.$
- 2. $D_2(P_{m-2,2}, i-1) = \phi, D_2(P_{m-3,2}, i-1) = \phi$ and $D_2(P_{m-1,2}, i-1) \neq \phi$ iff i = m+2.
- 3. $D_2(P_{m-1,2}, i-1) \neq \phi, D_2(P_{m-2,2}, i-1) \neq \phi$ and $D_2(P_{m-3,2}, i-1) = \phi$ if f = m+1

 $\begin{array}{l} Proof. \ (i) \ \text{Assume that}, D_2(P_{m-1,2},i-1) = \phi, \ D_2(P_{m-2,2},i-1) \neq \phi \ \text{and} \\ D_2(P_{m-3,2},i-1) \neq \phi. \ \text{Since}, D_2(P_{m-1,2},i-1) = \phi, \ \text{by Lemma} \\ 2.5, \ i-1 > m+1 \ \text{or} \ i-1 < \left\lceil \frac{m+1}{2} \right\rceil. \ \text{If} \ i-1 > m+1, \\ \text{then} \ i > m+2, \ \text{which implies} \ D_2(P_{m,2},i) = \phi, \ \text{which is a} \\ \text{contradiction. Therefore,} \ i-1 < \left\lceil \frac{m+1}{2} \right\rceil. \ \text{That is,} \ i \leq \\ \left\lceil \frac{m+1}{2} \right\rceil. \ \text{mathematical contradiction. Therefore,} \ i-1 < \left\lceil \frac{m+1}{2} \right\rceil. \ \text{That is,} \ i \leq \\ \left\lceil \frac{m+1}{2} \right\rceil \ \dots \ (1). \\ \text{Since,} \ D_2(P_{m-2,2},i-1) \neq \phi \ \text{and} \ D_2(P_{m-3,2},i-1) \neq \phi, \ \text{we} \\ \text{have,} \ \left\lceil \frac{m}{2} \right\rceil \leq i-1 \leq m-2 \ \text{and} \ \left\lceil \frac{(m-1)}{2} \right\rceil \leq i-1 \leq m-3. \\ \text{Therefore,} \ \left\lceil \frac{m}{2} \right\rceil \leq i-1 \leq m-3. \ \text{This implies that}, \ \left\lceil \frac{m+2}{2} \right\rceil \leq i \leq \\ \left\lceil \frac{m+1}{2} \right\rceil. \ \text{This inequality is true only when} \ m = 2k \ \text{and} \\ i = k+1 \ \text{for some} \ k \geq 3. \\ \text{Conversely, assume that} \ m = 2k \ \text{and} \ i = k+1. \\ \text{Therefore,} \ k = \frac{m}{2} \ \text{and} \ i-1 = k. \ i-1 = k \ \text{implies} \ i-1 = \frac{m}{2} < \\ \left\lceil \frac{m+1}{2} \right\rceil. \ \text{Therefore,} \ D_2(P_{m-1,2},i-1) = \phi. \ \text{Also,} \ D_2(P_{m-2,2},i-1) = \\ \ D_2(P_{m-2,2},i-1) = 0 \ \text{Also,} \$

1) =
$$D_2(P_{2k-2,2}, k) \neq \phi$$
,
since $\left\lceil \frac{(2k-2+2)}{2} \right\rceil = \lceil 2k/2 \rceil = k$.
 $D_2(P_{m-3,2}, i-1) = D_2(P_{2k-3,2}, k) \neq \phi$, Since $\lceil (2k-3+2)/2 \rceil = \left\lceil \frac{(2k-1)}{2} \right\rceil = k$.

(ii) Assume that $D_2(P_{m-2,2}, i-1) = \phi$, $D_2(P_{m-3,2}, i-1) = \phi$ and $D_2(P_{m-1,2}, i-1) \neq \phi$. Since, $D_2(P_{m-2,2}, i-1) = \phi$ and $D_2(P_{m-3,2}, i-1) = \phi$, by Lemma 2.5, we have, i-1 > m or $i-1 < \left\lceil \frac{m}{2} \right\rceil$ and i-1 > m-1 or $i-1 < \left\lceil \frac{(m-1)}{2} \right\rceil$. Therefore, i-1 > m or $i-1 < \left\lceil \frac{(m-1)}{2} \right\rceil$. If $i-1 < \left\lceil \frac{(m-1)}{2} \right\rceil$, then $i-1 < \left\lceil \frac{m+2}{2} \right\rceil$ holds. Therefore, by Lemma 2.5, $D_2(P_{m,2}, i) \neq \phi$, which is a contradiction. So, we have, i-1 > m. Therefore, i > m+1. Therefore, $i \ge m+2$(1). Also, since $D_2(P_{m-1,2}, i-1) \neq \phi$, we have $\left\lceil \frac{m+1}{2} \right\rceil \le i-1 \le m+1$. Therefore, $i \le m+2$(2). From (1) and (2) we get, i = m+2.

Conversely, if i = m + 2, $D_2(P_{m-1,2}, i-1) = D_2(P_{m-1,2}, m+1) \neq \phi$. $D_2(P_{m-2,2}, i-1) = D_2(P_{m-2,2}, m+1) = \phi$. $D_2(P_{m-3,2}, i-1) = D_2(P_{m-3,2}, i-1) = \phi$. (iii) Assume that, $D_2(P_{m-1,2}, i-1) \neq \phi$, $D_2(P_{m-2,2}, i-1) \neq \phi$ and $D_2(P_{m-3,2}, i-1) = \phi$. Since, $D_2(P_{m-3,2}, i-1) = \phi$, by Lemma 2.5, we have, i-1 > m-1 or $i-1 < \left\lceil \frac{(m-1)}{2} \right\rceil$. If $i-1 < \left\lceil \frac{(m-1)}{2} \right\rceil$, then $i < \left\lceil \frac{m+2}{2} \right\rceil$ holds. Therefore, $D_2(P_{m,2}, i) = \phi$, which is a contradiction. Therefore, i-1 > m-1. i > m. Therefore, $i \ge m+1$(1). Since, $D_2(P_{m-1,2}, i-1) \neq \phi$ and $D_2(P_{m-2,2}, i-1) \neq \phi$, we have $\left\lceil \frac{m+1}{2} \right\rceil \le i-1 \le m+1$ and $\left\lceil \frac{m}{2} \right\rceil \le i-1 \le m$. Therefore, $\left\lceil \frac{m+1}{2} \right\rceil \le i-1 \le m+1$. Conversely, suppose i = m+1. Then, $D_2(P_{m-1,2}, i-1) = m$

 $D_2(P_{m-1,2},m) \neq \phi, D_2(P_{m-2,2},i-1) = D_2(P_{m-2,2},m) \neq \phi \text{ and } D_2(P_{m-3,2},i-1) = D_2(P_{m-3,2},m) = \phi.$

Theorem 2.7. *For every* $m \ge 2$ *and* $i \ge \left\lceil \frac{m+2}{2} \right\rceil$

1.
$$D_2(P_{2m,2}, m+1) = \{2, 4, 6, 8 \dots 2m+2\}.$$

- 2. $IfD_2(P_{m-2,2}, i-1) = \phi, D_2(P_{m-3,2}, i-1) = \phi$ and $D_2(P_{m-1,2}, i-1) \neq \phi$, then $D_2(P_{m,2}, i) = D_2(P_{m,2}, m+2) = [m+2]$
- 3. If $D_2(P_{m-1,2}, i-1) \neq \phi$, $D_2(P_{m-2,2}, i-1) \neq \phi$ and $D_2(P_{m-3,2}, i-1) = \phi$, then $D_2(P_{m,2}, i) = D_2(P_{m,2}, m+1) = \{[m+2] - \{x\}/x \in [m+2] \text{ and } x \neq m+2\}$
- 4. If $D_2(P_{m-1,2}, i-1) = \phi, D_2(P_{m-2,2}, i-1) \neq \phi$, then $D_2(P_{m,2}, i) = \{X \cup \{m+2\} \mid X \in D_2(P_{m-2,2}, i-1)\}$

- 5. If $D_2(P_{m-1,2}, i-1) \neq \phi$, $D_2(P_{m-2,2}, i-1) = \phi$, then $D_2(P_{m,2}, i) = \{Y \cup \{m+2\} \mid Y \in D_2(P_{m-1,2}, i-1)\}$
- 6. If $D_2(P_{m-1,2}, i-1) \neq \phi$ and $D_2(P_{m-2,2}, i-1) \neq \phi$, then $D_2(P_{m,2}, i) = \{X \cup \{m+2\} \cup Y \cup \{m+2\} \ if Y \text{ starts with } 1 \cup Y - \{m+1\} \cup \{m, m+2\} \ if Y \text{ starts with } 2 \text{ and } \{m-3\} \in Y \cup Y - \{m-1\} \cup \{m, m+2\} \ if Y \text{ starts with } 2 \text{ and } \{m-2\} \in Y\}$ where $X \in D_2(P_{m-2,2}, i-1)$ and $Y \in D_2(P_{m-1,2}, i-1)$

Proof. (i) For every $m \ge 2, D_2(P_{2m,2}, m+1)$ has only one 2 - dominating set as, 2, 4, 6, ..., 2m + 2. Therefore, $D_2(P_{2m,2}, m+1) = 2, 4, 6, ..., 2m + 2$.

(ii) Since $D_2(P_{m-2,2}, i-1) = \phi$, $D_2(P_{m-3,2}, i-1) = \phi$ and $D_2(P_{m-1,2}, i-1) \neq \phi$, by Lemma 2.6 (ii), we have i = m+2. Therefore, $D_2(P_{m,2}, i) = D_2(P_{m,2}, m+2) = [m+2]$.

(iii) Since, $D_2(P_{m-1,2}, i-1) \neq \phi$, $D_2(P_{m-2,2}, i-1) \neq \phi$ and $D_2(P_{m-3,2}, i-1) = \phi$, by Lemma 2.6(*iii*), we have i = m+1. Therefore, $D_2(P_{m,2}, i) = D_2(P_{m,2}, m+1) = = [m+2] - x/x \in [m+2]$ and $x \neq m+2$.

(iv) Let X be a 2 - dominating set of P_{m-2} with size i-1. All the elements of $D_2(P_{m-2,2}, i-1)$ end with *m*. Therefore, $m \in X$, adjoin m+2 with X. Hence, every X of $D_2(P_{m-2,2}, i-1)$ belongs to $D_2(P_{m,2}, i)$ by adjoining m+2 only.

(v) Let *Y* be a 2 - dominating set of $P_{m-1,2}$ with size i-1. All the elements of $D_2(P_{m-1,2}, i-1)$ end with m+1. Therefore, $m+1 \in Y$, adjoin m+2 with *Y*. Hence, every *Y* of $D_2(P_{m-1,2}, i-1)$ belongs to $D_2(P_{m,2}, i)$ by adjoining m+2 only.

(vi) Construction of $D_2(P_{m,2},i)$ from $D_2(P_{m-1,2},i-1)$ and $D_2(P_{m-2,2},i-1)$. Let *X* be a 2 - dominating set of P_{m-2} with size i-1. All the elements of $D_2(P_{m-2,2},i-1)$ ends with *m*. Therefore, $m \in X$, adjoin m+2 with *X*. Hence, every *X* of $D_2(P_{m-2,2},i-1)$ belongs to $D_2(P_{m,2},i)$ by adjoining m+2 only. Let *Y* be a 2 - dominating set of $P_{m-1,2}$ with size i-1. All the elements of $D_2(P_{m-1,2},i-1)$ starts with 1 or 2 and end with m+1. Adjoin m and m+2 with *Y* and remove m+1 from *Y* if *Y* starts with 2 and $\{m-3\} \in Y$. Adjoin *m* and m+2 with *Y* and remove $\{m-1\}$ from *Y* if *Y* starts with 2 and $\{m-2\} \in Y$. Hence, every *Y* of $D_2(P_{m-1,2},i-1)$ belongs to $D_2(P_{m,2},i)$ by adjoining m+2, adjoining $\{m,m+2\}$ and removing m+1 and adjoining $\{m,m+2\}$ and removing $\{m-1\}$.

Theorem 2.8. If $D_2(P_{m,2},i)$ be the family of the 2-dominating sets of $P_{m,2}$ with size i, where $i \ge \left\lceil \frac{m+2}{2} \right\rceil$ then, $d_2(P_{m,2},i) = d_2(P_{m-1,2},i-1) + d_2(P_{m-2,2},i-1)$.

3. 2-DOMINATION POLYNOMIALS OF PAN GRAPH $P_{m,2}$.

Definition 3.1. Let $P_{m,2}$ be the pan graph with m+2 vertices. Then, the 2 - domination polynomial $D_2(P_{m,2},x)$ of $P_{m,2}$ is defined as, $D_2(P_{m,2},x) = \sum_{i=\gamma_2(P_{m,2})}^{m+2} d_2(P_{m,2},i)x^i$, where $\gamma_2(P_{m,2})$ is the 2 - domination number of $P_{m,2}$.

Theorem 3.2. For every $m \ge 5$, $D_2(P_{m,2},x) = x[D_2(P_{m-1,2},x) + D_2(P_{m-2,2},x)]$ with initial values $D_2(P_3,2,x) = 2x^3 + x^4 + x^5D_2(P_4,2,x) = x^3 + 5x^4 + 5x^5 + x^6$

Proof. We have
$$d_2(P_{m,2},i) = d_2(P_{m-1,2},i-1) + d_2(P_{m-2,2},i-1)$$
. Therefore, $d_2(P_{m,2},i)x^i = d_2(P_{m-1,2},i-1)x^i + d_2(P_{m-2,2},i-1)x^i$
 $\sum d_2(P_{m,2},i)x^i = \sum d_2(P_{m-1,2},i-1)x^i + \sum d_2(P_{m-2,2},i-1)x^i$
 $\sum d_2(P_{m,2},i)x^i = x \sum d_2(P_{m-1,2},i-1)x^i - 1 + x \sum d_2(P_{m-2,2},i-1)x^{i-1}$
 $D_2(P_{m,2},x) = xD_2(P_{m-1,2},x) + xD_2(P_{m-2,2},x)$
 $D_2(P_{m,2},x) = x[D_2(P_{m-1,2},x) + D_2(P_{m-2,2},x)]$
with the initial values $D_2(P_3,2,x) = 2x^3 + x^4 + x^5, D_2(P_4,2,x) = x^3 + 5x^4 + 5x^5 + x^6$

i	3	4	5	6	7	8	9	10	11	12	13
P _{3,2}	2	4	1								
P _{4,2}	1	5	5	1							
P _{5,2}	0	3	9	6	1						
P _{6,2}	0	1	8	14	7	1					
P _{7,2}	0	0	4	17	20	8	1				
P _{8,2}	0	0	1	12	31	27	9	1			
P _{9,2}	0	0	0	5	29	51	35	10	1		
P _{10,2}	0	0	0	1	17	60	78	44	11	1	
P _{11,2}	0	0	0	0	6	46	111	113	54	12	1

Theorem 3.3. The following properties hold for the coefficients of $D_2(P_{m,2},x)$ for all m:

- 1. $d_2(P_{m,2}, m+2) = 1$, for every $m \ge 3$.
- 2. $d_2(P_{m,2}, m+1) = m+1$, for every $m \ge 3$.

3.
$$d_2(P_{m,2},m) = \frac{1}{2}[m^2 - m - 2], \text{ for every } m \ge 3.$$

- 4. $d_2(P_{m,2}, m-1) = \frac{1}{6}[m^3 6m^2 + 5m + 18]$, for every $m \ge 4$.
- 5. $d_2(P_{m,2}, m-2 = \frac{1}{24}[m^4 14m^3 + 59m^2 22m 240],$ for every $m \ge 6$.
- 6. $d_2(P_{2m}, 2, m+1) = 1$, for every $m \ge 2$.
- 7. $d_2(P_{2m-3}, 2, m) = m 1$, for every $m \ge 3$.

References

- [1] Adriana Hansberg, Lutz Volkmann, On graphs with equal domination and 2- domination numbers, *Discrete Mathematics*, 308(2008), 2277 - 2281.
- [2] S. Alikhani and Y.H. Peng, Dominating sets and Domination Polynomials of paths, *International Journal of Mathematics and Mathematical Science*, 1(2)(2009), 1-10.
- [3] A. Vijayan and Lal Gipson, Dominating sets and Domination Polynomials of square of paths, *Open Journal of Discrete Mathematics*, 3(1)(2013), 60-69.
- [4] A. Vijayan and T. Anitha Baby, Connect Total Dominating sets and connected Total Domination Polynomials of square of paths, *International Journal of Mathematics Trends and Technology*, 11 (1)(2014), 56-63.
- ^[5] P.C. Priyanka Nair, T. Anitha Baby, V.M. Arul Flower Mary, 2-Dominating sets and 2-Domination Polynomials of Paths, *Journal of Shanghai Jiaotong University* 16(2020), 42-51.
- [6] P.C. Priyanka Nair, T. Anitha Baby, 2-Dominating sets and 2-Domination Polynomials of Cycles, *Adalya Journal*, 9(11)(2020), 182-194.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

