

https://doi.org/10.26637/MJM0804/0166

2-Dominating sets and 2-domination polynomials of pan graph *Pm*,²

P.C. Priyanka Nair ^{1*} and T. Anitha Baby²

Abstract

Let *G* be a simple graph of order m. Let $D_2(G, x)$ be the family of 2-dominating sets in *G* with size 1. The polynomial $D_2(G,x)=\sum_{i=\gamma_{2(G)}}^m d_2(G,i)x^i$ is called the 2-domination polynomial of $G.$ Let $D_2(P_{m,2},i)$ be the family of 2-dominating sets of the pan graph $P_{m,2}$ with cardinality i and let $d_2(P_{m,2},i)=|D_2(P_{m,2},i)|.$ Then, the 2-domination polynomial $D_2(P_{m,2},x)$ of $P_{m,2}$ is defined as, $D_2(P_{m,2},x)=\sum_{i=\gamma_2(P_{m,2})}^{m+2}d_2(P_{m,2},i)x^i,$ where $\gamma_2(P_{m,2})$ is the 2 - domination number of $P_{m,2}$. In this paper we obtain a recursive formula for $d_2(P_{m,2},i)$. Using this recursive formula we construct the 2-domination polynomial, $D_2(P_{m,2},x) = \sum_{n=1}^{m+2} p_n$ $\lim_{i=1}$ $\frac{m+2}{2}$ $\left\{\frac{+2}{2}\right\}$ ^{d₂(*P_{m,2},<i>i*) \vec{x} ^{*i*}, where d_2 (*P_{m,2},<i>i*) is the number of}

2-dominating sets of *Pm*,² of cardinality *i* and some properties of this polynomial have been studied.

Keywords

Pan, 2-dominating set, 2-domination number, 2-domination polynomial.

AMS Subject Classification

97K30, 05C69, 05C31.

1,2*Department of Mathematics, Womens Christian College, Nagercoil, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti-Tirunelveli-627012.*

***Corresponding author**: ¹ priyanka86nair@gmail.com; ²

Article History: Received 10 July 2020; Accepted 22 November 2020 **COVID 100 COVID 100 ACCED** C2020 MJM.

Contents

- **1 [Introduction](#page-0-0) . 2288**
- **2 [2-DOMINATING SETS OF PAN GRAPH](#page-0-1)** *Pm*,² **. 2288**
- **3 [2-DOMINATION POLYNOMIALS OF PAN GRAPH](#page-2-0)** *Pm*,2. **2290**
	- **[References](#page-2-1) . 2290**

1. Introduction

A Subset *D* of *V* is a dominating set of *G* if $N[D] = V$ or equivalently, every vertex in $V - D$ is adjacent to at least one vertex in *D*. The domination number of the graph *G* is defined as the minimum size taken over all dominating sets D of vertices in G and is denoted by (G). Let $P_{m,2}$ be a pan graph with m + 2 vertices. Let $D_2(P_{m,2}, i)$ be the family of 2-dominating sets of a pan graph $P_{m,2}$ with cardinality i, let $d_2(P_{m,2}, i) = |D_2(P_{m,2}, i)|$. We call the polynomial $D_2(P_{m,2},x) = \sum_{r=1}^{m+2}$ $i=\left[\frac{m+2}{2}\right]$ $\left[\frac{4}{2}a^{2}(P_{m,2},i)x^{i}\right]$, as a 2-domination poly-

nomial of a pan graph $P_{m,2}$. We use $\lceil m \rceil$, for the smallest inte-

ger greater than or equal to *m*. In this paper [*m*] denotes the set {1,2,...,*m*}

2. 2-DOMINATING SETS OF PAN GRAPH P_m ₂

Definition 2.1. *A set* $D \subseteq V$ *is a 2-dominating set if every vertex in V* −*D is adjacent to at least two vertices in D*. *The 2-domination number of a graph G is defined as the minimum size taken over all 2-dominating sets of vertices in G and is denoted by* $\gamma_2(G)$.

Definition 2.2. *The pan graph is the graph obtained by joining a cycle graph to a Singleton graph with a bridge. The pan graph is therefore isomorphic with the tadpole graph.*

Definition 2.3. *Let* $P_{m,2}$ *be the pan graph with* $m+2$ *vertices. Label the vertices of* $P_{m,2}$ *as* v_1 , v_2 , v_3 , ..., v_m , v_{m+1} , v_{m+2} where *v^m is the vertex of degree 3, vm*+¹ *is the vertex of degree 2 and vm*+² *is the vertex of degree 1.*

Lemma 2.4. *Let* $P_{m,2}$ *be the pan graph with* $m+2$ *vertices, then its 2-domination number is* $\gamma_2(P_{m,2}) = \left[\frac{m+2}{2}\right]$ 2 *.*

Lemma 2.5. *Let* $P_{m,2}, m \ge 5$ *be the pan graph with* $|V(P_{m,2})|$ = *m*+2. *Then,* $d_2(P_{m,2}, i) = 0$ *if* $i < \left\lceil \frac{m+2}{2} \right\rceil$ 2 \int *or* $i > m+2$ *and* $d_2(P_{m,2}, i) > 0$ if $\left\lceil \frac{m+2}{2} \right\rceil$ 2 $\left[\right] \leq i \leq m+2.$ *Proof.* If $i < \left[\frac{m+2}{2}\right]$ 2 or $i > m+2$, then there is no 2-dominating set of size *i*. Therefore, $D_2(P_{m,2}, i) = \phi$, if $i < \left\lceil \frac{m+2}{2} \right\rceil$ 2 1 and $i > m + 2$. By Lemma 2.4, the minimum size of the 2dominating set of $P_{m,2}$ is $\left\lceil \frac{m+2}{2} \right\rceil$ 2 Therefore, $d_2(P_{m,2}, i) > 0$, if $i \geq \left\lceil \frac{m+2}{2} \right\rceil$ 2 and $i \leq m+2$. Thus, we get, $d_2(P_{m,2}, i) = 0$ if $i<\left[\frac{m+2}{2}\right]$ 2 $\int \text{or } i > m+2 \text{ and } d_2(P_{m,2}, i) > 0 \text{ if } \left[\frac{m+2}{2}\right]$ 2 ≤ $i \leq m+2$

Lemma 2.6. *If* $D_2(P_{m,2}, i) \neq \emptyset$, *then for every* $m \geq 6$, *we have*

- *1.* $D_2(P_{m-1,2}, i-1) = \phi$, $D_2(P_{m-2,2}, i-1) \neq \phi$, $D_2(P_{m-3,2}, i-1) \neq \emptyset$ *iff* $m = 2k$ *and* $i = k+1$ *for some* $k > 3$.
- 2. $D_2(P_{m-2,2}, i-1) = \phi$, $D_2(P_{m-3,2}, i-1) = \phi$ and $D_2(P_{m-1}, i-1) \neq \emptyset$ *if f i* = *m* + 2.
- 3. $D_2(P_{m-1,2}, i-1) \neq \emptyset, D_2(P_{m-2,2}, i-1) \neq \emptyset$ *and* $D_2(P_{m-3}, i-1) = \phi$ *iff* $i = m+1$

Proof. (i) Assume that, $D_2(P_{m-1,2}, i-1) = \phi$, $D_2(P_{m-2,2}, i-1)$ $1) \neq \phi$ and $D_2(P_{m-3,2}, i-1) \neq \emptyset$. Since, $D_2(P_{m-1,2}, i-1) = \emptyset$, by Lemma 2.5, $i - 1 > m + 1$ or $i - 1 < \left\lceil \frac{m+1}{2} \right\rceil$ 2 . If $i - 1 > m + 1$, then $i > m + 2$, which implies $D_2(P_{m,2}, i) = \phi$, which is a contradiction. Therefore, $i - 1 < \left\lceil \frac{m+1}{2} \right\rceil$ 2 $\Big]$. That is, $i \leq$ $\lceil m+1 \rceil$ 2(1). Since, $D_2(P_{m-2,2}, i-1) \neq \emptyset$ and $D_2(P_{m-3,2}, i-1) \neq \emptyset$, we have, $\left\lceil \frac{m}{2} \right\rceil$ $\left[\frac{m-1}{2}\right] \leq i-1 \leq m-2$ and $\left[\frac{(m-1)}{2}\right]$ 2 $\Big] ≤ i-1 ≤ m-3.$ Therefore, $\left\lceil \frac{m}{2} \right\rceil$ $\left[\frac{m+2}{2}\right] \leq i-1 \leq m-3$. This implies that, $\left[\frac{m+2}{2}\right]$ 2 ≤ *ⁱ*.................(2). From (1) and (2) we get *m*+2 2 $\Big] \leq i \leq$ $\lceil m+1 \rceil$ 2 . This inequality is true only when $m = 2k$ and $i = k+1$ for some $k \geq 3$. Conversely, assume that $m = 2k$ and $i = k + 1$. Therefore, $k = \frac{m}{2}$ $\frac{m}{2}$ and *i*−1 = *k*. *i*−1 = *k* implies *i*−1 = $\frac{m}{2}$ $\frac{n}{2}$ < $\lceil m+1 \rceil$ 2 . Therefore, $D_2(P_{m-1,2}, i-1) = \phi$. Also, $D_2(P_{m-2,2}, i-1)$

1) =
$$
D_2(P_{2k-2,2}, k) \neq \phi
$$
,
\nsince $\left[\frac{(2k-2+2)}{2}\right] = [2k/2] = k$.
\n $D_2(P_{m-3,2}, i-1) = D_2(P_{2k-3,2}, k) \neq \phi$, Since $[(2k-3+2)/2] =$
\n $\left[\frac{(2k-1)}{2}\right] = k$.

(ii) Assume that $D_2(P_{m-2,2}, i-1) = \phi$, $D_2(P_{m-3,2}, i-1) =$ ϕ and $D_2(P_{m-1,2}, i-1) \neq \phi$. Since, $D_2(P_{m-2,2}, i-1) = \phi$ and $D_2(P_{m-3,2}, i-1) = \phi$, by Lemma 2.5, we have, $i-1 > m$ or $i-1 < \left\lceil \frac{m}{2} \right\rceil$ 2 and $i-1 > m-1$ or $i-1 < \left[\frac{(m-1)}{2}\right]$ 2 $\big]$. Therefore, $i-1 > m$ or $i-1 < \left\lceil \frac{(m-1)}{2} \right\rceil$ 2 $\left[\cdot \text{If } i-1 \leq \left[\frac{(m-1)}{2} \right] \right]$ 2 , then $i-1 < \left\lceil \frac{m+2}{2} \right\rceil$ 2 holds. Therefore, by Lemma 2.5, $D_2(P_{m,2}, i) \neq \emptyset$, which is a contradiction. So, we have, $i-1$ > *m*. Therefore, $i > m+1$. Therefore, $i > m+2$(1). Also, since $D_2(P_{m-1,2}, i-1) \neq \emptyset$, we have $\left\lceil \frac{m+1}{2} \right\rceil$ 2 $\Big] \leq i - 1 \leq$ *m* + 1. Therefore, *i* ≤ *m* + 2..................(2). From (1) and (2) we get, $i = m + 2$.

Conversely, if $i = m+2$, $D_2(P_{m-1,2}, i-1) = D_2(P_{m-1,2}, m+1)$ $1) \neq \phi \cdot D_2(P_{m-2,2}, i-1) = D_2(P_{m-2,2}, m+1) = \phi \cdot D_2(P_{m-3,2}, i-1)$ $1) = D_2(P_{m-3,2}, m+1) = \phi$. (iii) Assume that, $D_2(P_{m-1,2}, i-1)$ 1) \neq ϕ , *D*₂(*P*_{*m*−2,2},*i*−1) \neq ϕ and *D*₂(*P*_{*m*−3,2},*i*−1) = ϕ . Since, $D_2(P_{m-3,2}, i-1) = \phi$, by Lemma 2.5, we have, $i-1 > m-1$ or $i-1 < \left[\frac{(m-1)}{2}\right]$ 2 $\left| \right.$. If $i-1 < \left\lceil \frac{(m-1)}{2} \right\rceil$ 2 , then $i < \left\lceil \frac{m+2}{2} \right\rceil$ 2 1 holds. Therefore, $D_2(P_{m,2}, i) = \phi$, which is a contradiction. Therefore, *i*−1 > *m*−1. ,*i* > *m*. Therefore, *i* ≥ *m*+1..............(1). Since, $D_2(P_{m-1,2}, i-1) \neq \emptyset$ and $D_2(P_{m-2,2}, i-1) \neq \emptyset$, we have | *m*+1 2 $\left| \leq i-1 \leq m+1 \text{ and } \left\lceil \frac{m}{2} \right\rceil$ $\left| \leq i-1 \leq m$. Therefore, $\left\lceil \frac{m+1}{2} \right\rceil$ 2 ≤ *i*−1 ≤m. Therefore, *i* ≤ *m*+1................(2). From (1) and (2) we get, $i = m + 1$. Conversely, suppose $i = m + 1$. Then, $D_2(P_{m-1,2}, i - 1) =$

 $D_2(P_{m-1,2}, m) \neq \emptyset$, $D_2(P_{m-2,2}, i-1) = D_2(P_{m-2,2}, m) \neq \emptyset$ and $D_2(P_{m-3,2}, i-1) = D_2(P_{m-3,2}, m) = \emptyset.$ \Box

Theorem 2.7. *For every* $m \geq 2$ *and* $i \geq \left\lceil \frac{m+2}{2} \right\rceil$ 2 1

$$
1. D_2(P_{2m,2},m+1) = \{2,4,6,8\ldots 2m+2\}.
$$

- 2. $I f D_2(P_{m-2,2}, i-1) = \phi$, $D_2(P_{m-3,2}, i-1) = \phi$ *and* $D_2(P_{m-1,2}, i-1) \neq \emptyset$, *then* $D_2(P_{m,2}, i) = D_2(P_{m,2}, m+2) = [m+2]$
- *3. If* $D_2(P_{m-1,2}, i-1) \neq \emptyset$, $D_2(P_{m-2,2}, i-1) \neq \emptyset$ and $D_2(P_{m-3,2}, i-1) = \emptyset$, *then* $D_2(P_{m,2}, i) = D_2(P_{m,2}, m+1)$ $1) = \{ [m+2] {x} \times {x \in [m+2] \text{ and } x \neq m+2}$
- *4. If* $D_2(P_{m-1,2}, i-1) = \phi$, $D_2(P_{m-2,2}, i-1) \neq \phi$, then $D_2(P_{m,2}, i) = \{X \cup \{m+2\} \mid X \in D_2(P_{m-2,2}, i-1)\}$
- *5. If* $D_2(P_{m-1,2}, i-1) \neq \emptyset$, $D_2(P_{m-2,2}, i-1) = \emptyset$, then $D_2(P_{m,2}, i) = \{ Y \cup \{m+2\} \mid Y \in D_2(P_{m-1,2}, i-1) \}$
- *6. If* $D_2(P_{m-1,2}, i-1) \neq \emptyset$ $and D_2(P_{m-2,2}, i-1) \neq \emptyset$, *then* $D_2(P_{m,2}, i) = \{X \cup \{m+\}$ 2} ∪*Y* ∪ {*m*+2} *if Y starts with* $1 ∪ Y - {m+1} ∪ {m,m+2}$ *if Y starts with* 2 *and* $\{m-3\} \in Y \cup Y - \{m-1\} \cup$ {*m*,*m*+2} *if Y starts with*2 *and* $\{m-2\} \in Y$ *where X* ∈ *D*₂($P_{m-2,2}$, *i* − 1) *and* $Y \in D_2(P_{m-1,2}, i-1)$

Proof. (i) For every $m \geq 2$, $D_2(P_{2m,2}, m+1)$ has only one 2 dominating set as, 2, 4, 6, ..., $2m + 2$. Therefore, $D_2(P_{2m,2}, m +$ $1) = 2, 4, 6, \ldots 2m + 2.$

(ii) Since $D_2(P_{m-2,2}, i-1) = \phi$, $D_2(P_{m-3,2}, i-1) = \phi$ and $D_2(P_{m-1,2}, i-1) \neq \emptyset$, by Lemma 2.6 (ii), *wehavei* = *m* + 2. Therefore, $D_2(P_{m,2}, i) = D_2(P_{m,2}, m+2) = [m+2].$

(iii) Since, $D_2(P_{m-1,2}, i-1) \neq \emptyset$, $D_2(P_{m-2,2}, i-1) \neq \emptyset$ and $D_2(P_{m-3,2}, i-1) = \phi$, by Lemma 2.6(*iii*), we have *i* = $m+1$. Therefore, $D_2(P_{m,2}, i) = D_2(P_{m,2}, m+1) =$ $=[m+2]-x/x \in [m+2]$ *andx* $\neq m+2$.

(iv) Let *X* be a 2 - dominating set of P_{m-2} with size $i-1$. All the elements of $D_2(P_{m-2,2}, i-1)$ end with *m*. Therefore, *m* ∈ *X*, adjoin *m* + 2 with *X*. Hence, every *X* of $D_2(P_{m-2,2}, i−$ 1) belongs to $D_2(P_{m,2}, i)$ by adjoining $m + 2$ only.

(v) Let *Y* be a 2 - dominating set of $P_{m-1,2}$ with size *i* − 1. All the elements of $D_2(P_{m-1,2}, i - 1)$ end with $m + 1$. Therefore, $m + 1 \in Y$, adjoin $m + 2$ with *Y*. Hence, every *Y* of $D_2(P_{m-1,2}, i-1)$ belongs to $D_2(P_{m,2}, i)$ by adjoining m+2 only.

(vi) Construction of $D_2(P_{m,2}, i)$ from $D_2(P_{m-1,2}, i-1)$ and $D_2(P_{m-2,2}, i-1)$. Let *X* be a 2 - dominating set of P_{m-2} with size *i* − 1. All the elements of $D_2(P_{m-2,2}, i-1)$ ends with *m*. Therefore, $m \in X$, adjoin $m + 2$ with *X*. Hence, every *X* of $D_2(P_{m-2,2}, i-1)$ belongs to $D_2(P_{m,2}, i)$ by adjoining $m+2$ only. Let *Y* be a 2 - dominating set of $P_{m-1,2}$ with size *i* − 1. All the elements of $D_2(P_{m-1,2}, i-1)$ starts with 1 or 2 and end with $m+1$. Adjoin $m+2$ with *Y* if *Y* starts with 1 and end with $m+1$. Adjoin *m* and $m+2$ with *Y* and remove $m+1$ from *Y* if *Y* starts with 2 and {*m*−3} ∈*Y*. Adjoin *m* and *m*+2 with *Y* and remove $\{m-1\}$ from *Y* if *Y* starts with 2 and $\{m-2\} \in Y$. Hence, every *Y* of $D_2(P_{m-1,2}, i-1)$ belongs to $D_2(P_{m,2}, i)$ by adjoining $m+2$, adjoining $\{m,m+2\}$ and removing $m+1$ and adjoining $\{m, m+2\}$ and removing $\{m-1\}$. \Box

Theorem 2.8. *If* $D_2(P_{m,2}, i)$ *be the family of the 2-dominating sets of* $P_{m,2}$ *with size i, where* $i \geq \left\lceil \frac{m+2}{2} \right\rceil$ 2 *then,* $d_2(P_{m,2}, i) =$ $d_2(P_{m-1,2}, i-1) + d_2(P_{m-2,2}, i-1)$

3. 2-DOMINATION POLYNOMIALS OF PAN GRAPH *Pm*,2.

Definition 3.1. *Let* $P_{m,2}$ *be the pan graph with* $m+2$ *vertices. Then, the 2 - domination polynomial* $D_2(P_{m,2},x)$ *of* $P_{m,2}$ *is de-*

fined as, $D_2(P_{m,2},x) = \sum_{i=\gamma_2(P_{m,2})}^{m+2} d_2(P_{m,2},i)x^i$, where $\gamma_2(P_{m,2})$ *is the 2 - domination number of* P_m *?.*

Theorem 3.2. *For every* $m \ge 5$, $D_2(P_{m,2},x) = x[D_2(P_{m-1,2},x) +$ $D_2(P_{m-2,2}, x)$] *with initial values* $D_2(P_3, 2, x) = 2x^3 + x^4 +$ $x^5D_2(P_4, 2, x) = x^3 + 5x^4 + 5x^5 + x^6$

Proof. We have
$$
d_2(P_{m,2}, i) = d_2(P_{m-1,2}, i-1) + d_2(P_{m-2,2}, i-1)
$$
. Therefore, $d_2(P_{m,2}, i)x^i = d_2(P_{m-1,2}, i-1)x^i + d_2(P_{m-2,2}, i-1)x^i$
\n $\sum d_2(P_{m,2}, i)x^i = \sum d_2(P_{m-1,2}, i-1)x^i + \sum d_2(P_{m-2,2}, i-1)x^i$
\n $\sum d_2(P_{m,2}, i)x^i = x\sum d_2(P_{m-1,2}, i-1)x^i - 1 + x\sum d_2(P_{m-2,2}, i-1)x^{i-1}$
\n $D_2(P_{m,2}, x) = xD_2(P_{m-1,2}, x) + xD_2(P_{m-2,2}, x)$
\n $D_2(P_{m,2}, x) = x[D_2(P_{m-1,2}, x) + D_2(P_{m-2,2}, x)]$
\nwith the initial values $D_2(P_3, 2, x) = 2x^3 + x^4 + x^5$, $D_2(P_4, 2, x) = x^3 + 5x^4 + 5x^5 + x^6$

 \Box

Theorem 3.3. *The following properties hold for the coefficients of D*₂($P_{m,2}$, *x*) *for all m*:

- *1.* $d_2(P_m, n+2) = 1$, *for every m* > 3 .
- 2. $d_2(P_{m,2}, m+1) = m+1$, *for every m* ≥ 3 .

3.
$$
d_2(P_{m,2}, m) = \frac{1}{2}[m^2 - m - 2]
$$
, for every $m \ge 3$.

- *4.* $d_2(P_{m,2}, m-1) = \frac{1}{6}[m^3 6m^2 + 5m + 18]$, for every $m > 4$.
- 5. $d_2(P_{m,2}, m-2) = \frac{1}{2}$ $\frac{1}{24}$ [$m^4 - 14m^3 + 59m^2 - 22m - 240$], *for every* $m \geq 6$.
- *6.* $d_2(P_{2m}, 2, m+1) = 1$, *for every m* ≥ 2 .
- *7.* $d_2(P_{2m-3}, 2, m) = m − 1$, *for every* $m ≥ 3$.

——————-

References

- [1] Adriana Hansberg, Lutz Volkmann, On graphs with equal domination and 2- domination numbers, *Discrete Mathematics,* 308(2008), 2277 - 2281.
- [2] S. Alikhani and Y.H. Peng, Dominating sets and Domination Polynomials of paths, *International Journal of Mathematics and Mathematical Science,* 1(2)(2009), 1-10.
- [3] A. Vijayan and Lal Gipson, Dominating sets and Domination Polynomials of square of paths, *Open Journal of Discrete Mathematics*, 3(1)(2013), 60-69.
- [4] A. Vijayan and T. Anitha Baby, Connect Total Dominating sets and connected Total Domination Polynomials of square of paths, *International Journal of Mathematics Trends and Technology*, 11 (1)(2014), 56-63.
- [5] P.C. Priyanka Nair, T. Anitha Baby, V.M. Arul Flower Mary, 2-Dominating sets and 2-Domination Polynomials of Paths, *Journal of Shanghai Jiaotong University* 16(2020), 42-51.
- [6] P.C. Priyanka Nair, T. Anitha Baby, 2-Dominating sets and 2-Domination Polynomials of Cycles, *Adalya Journal,* 9(11)(2020), 182-194.

? ? ? ? ? ? ? ? ? ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $**********$

