

https://doi.org/10.26637/MJM0804/0167

Relatively prime inverse domination of a graph

C. Jayasekaran ^{1*} and L. Roshini²

Abstract

Let G be non-trivial graph. A subset D of the vertex set V(G) of a graph G is called a dominating set of G if every vertex in V - D is adjacent to a vertex in D. The minimum cardinality of a dominating set is called the domination number and is denoted by $\gamma(G)$. If V - D contains a dominating set S of G, then S is called an inverse dominating set with respect to D. In an inverse dominating set S, every pair of vertices u and v in S such that (deg u, deg v) = 1, then S is called relatively prime inverse dominating set. The minimum cardinality of a relatively prime inverse dominating number and is denoted by γ_{rp}^{-1} (G). In this paper we find relatively prime inverse dominating number of some graphs.

Keywords

Domination, Inverse domination, Relatively prime domination.

AMS Subject Classification 05C15, 05C69.

^{1,2} Department of Mathematics, Pioneer Kumaraswamy College Nagercoil-629003, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti-Tirunelveli-627012.

Corresponding author: ¹ jayacpkc@gmail.com; ²jerryroshini92@gmail.com

Article History: Received 10 July 2020; Accepted 22 November 2020

©2020 MJM.

Contents

1. Introduction

By a graph, we mean a finite undirected graph with neither loops nor multiple edges. For graph theoretic terminology, we refer to the book by Chartrand and Lesniak [1]. All graphs in this paper are assumed to be non-trivial. In a graph G =(V, E), the degree of a vertex v is defined to be the number of edges incident with v and is denoted by deg v. The subgraph induced by a set S of vertices of a graph G is denoted by $\langle S \rangle$ with $V(\langle S \rangle) = S$ and $E(\langle S \rangle) = \{uv \in (G)/u, v \in S\}$. The study of domination and related subset problems is one of the fastest growing areas in graph theory. For a detailed survey of domination one can see [3, 4]. A set D of vertices of graph G is said to be a dominating set if every vertex in V-D is adjacent to a vertex in D. A dominating set D is said to be a minimal dominating set if no proper subset of D is a dominating set. The minimum cardinality of a dominating set of a graph G is called the domination number of G and is denoted by $\gamma(G)$.

Kulli V. R. et al introduced the concept of inverse domination in graphs [6]. Let D be a minimum dominating set of G. If V–D contains a dominating set S, then S is called the inverse dominating set of G with respect to D. The inverse dominating number $\gamma^{-1}(G)$ is the minimum cardinality taken over all the minimal inverse dominating set of G. Bistar $B_{m,n}$ is the graph obtained by joining the center(apex) vertex of $K_{1,m}$ and $K_{1,n}$ by an edge [2]. The n – barbell graph $BB_{n,n}$ is the simple graph obtained by connecting two copies of a complete graph K_n by a path P_2 [7]. C. Jayasekaran et.a introduced the concept of relatively prime domination. A set $S \subseteq V$ is said to be relatively prime dominating set if it is a dominating set with at least two elements and for every pair of vertices u and vin S such that (degu, degv) = 1. The minimum cardinality of a relatively prime dominating set of a graph G is called the relatively prime domination number of G and is denoted by $\gamma_{rpd}(G)$ [5]. The purpose of this paper is to introduce the concept of relatively prime inverse domination of graphs.

2. Relatively prime inverse domination of some graphs

Definition 2.1. Let *D* be a minimum dominating set of a graph *G*. If *V*–*D* contains a dominating set *S* of *G*, then *S* is called an inverse dominating set with respect to *D*. In an inverse dominating set *S*, every pair of vertices *u* and *v* in *S*

such that (degu, degv) = 1, then S is called relatively prime inverse dominating set. The minimum cardinality of relatively prime inverse dominating set is called relatively prime inverse dominating number and is denoted by $\gamma_{rp}^{-1}(G)$.

Example 2.2. Consider the graph G given figure 2. 1. Clearly $D = \{3\}$ is a minimum dominating set and $S = \{2,4,5,6\}$ is minimum relatively prime inverse dominating set of G and hence $\gamma_{rp}^{-1}(G)=4$.

Theorem 2.3. For a path P_n , $\gamma_{rp}^{-1}(P_n) = \begin{cases} 2 \ if \ 3 \le n \le 5 \\ 3 \ if \ n = 6,7 \\ 0 \ otherwise \end{cases}$.

Proof. Let P_n be the path $v_1v_2v_3...v_n$. Let D be a minimum domination set of P_n . If $n \equiv 0 \pmod{3}$, then $D = \{v_2, v_5, v_8, ..., v_{n-1}\}$ and if $n \not\cong 0 \pmod{3}$, then $D = \{v_2, v_5, v_8, ..., v_n\}$ and hence $\gamma = \lceil \frac{n}{3} \rceil$. Now, we consider the following three cases. Case 1. n = 3

Clearly, $D = \{v_2\}$. Now $S = \{v_1, v_3\}$ is the inverse dominating set which is minimal and $(deg v_1, deg v_3) = (1, 1) = 1$. Therefore, *S* is the minimum relatively prime inverse dominating set of P_3 and hence $\gamma_{rp}^{-1}(P_3) = 2$. Case 2. n = 4 or 5

Clearly, $D = \{v_2, v_n\}$. Now $S = \{v_1, v_{n-1}\}$ is an inverse dominating set which is minimal and $(deg v_1, deg v_{n-1}) = (1, 2) = 1$. Therefore *S* is a minimum relatively prime inverse dominating set of P_n and hence $\gamma_{rp}^{-1}(P_n) = 2$.

Case 3. n = 6

In this case $D = \{v_2, v_5\}$ is a minimum dominating set. Clearly, $S = \{v_1, v_3, v_6\}$ is a minimum inverse dominating set. Since $(degv_1, degv_3) = (1, 2) = 1$, $(deg v_1, deg v_6) = (1, 1) = 1$ and $(d(v_3), d(v_6)) = (2, 1) = 1$, *S* is a minimum relatively prime inverse dominating set of P_6 . Therefore, $\gamma_{rp}^{-1}(P_6) = 3$. Case 4. n = 7

In this case $D = \{v_2, v_5, v_6\}$ is a minimum dominating set. Clearly, $S = \{v_1, v_3, v_7\}$ is a minimum inverse dominating set. Since $(deg v_1, deg v_3) = (1, 2) = 1$, $(deg v_1, deg v_7) = (1, 1) = 1$ and $(d(v_3), d(v_7)) = (2, 1) = 1$, *S* is a minimum relatively prime inverse dominating set of P_7 . Therefore $\gamma_{rp}^{-1}(P_7) = 3$. Case 5. $n \ge 8$

Let S be an inverse dominating set of P_n with respect to the dominating set D. Then S contains at least two vertices of degree 2. This implies that *S* is not a relatively prime dominating set of P_n . Hence, $\gamma_{rp}^{-1}(P_n) = 0$.

The theorem follows from cases 1, 2, 3, 4 and 5.

Theorem 2.4. For a path
$$P_n$$
,
 $\gamma_{rp}^{-1}(\bar{P}_n) = \begin{cases} 2 \ ifn > 3 \\ 0 \ otherwise \end{cases}$.

Proof. Let \bar{P}_n be the complement of path P_n . If n = 2, then $\bar{P}_2 = \bar{K}_2$ which is a regular graph of degree 0. This implies that $\gamma(P_n) = 2$ and hence $\gamma_{rp}^{-1}(\bar{P}_2) = 0$. If n = 3, then $\bar{P}_3 = K_2 \cup K_1$. Clearly D contains the isolated vertex K_1 and a vertex of K_2 . This implies that \bar{P}_3 has no inverse dominating set and hence $\gamma_{rp}^{-1}(\bar{P}_3) = 0$. Let n > 3. Now v_1 is adjacent to each vertex except v_2 in \bar{P}_n . Hence $D = \{v_1, v_2\}$ is a minimum dominating set of \bar{P}_n . Now v_3 is adjacent to all vertices except v_2 and v_4 and v_n is adjacent to all vertices except v_{n-1} in \bar{P}_n . Hence $\{v_3, v_n\}$ is a minimum dominating set in V - D. Now $(deg v_3, deg v_4) = (n - 3, n - 2) = 1$. Hence $\{v_3, v_4\}$ is a minimum relatively prime dominating set in V - D. This implies that $\gamma_{rp}^{-1}(\bar{P}_n) = 2$. Thus the theorem is proved.

Theorem 2.5. For a complete bipartite graph $K_{n,m}$, $\gamma_{rp}^{-1}(K_{n,m})$ $\begin{cases} 2 \text{ if } (n,m) = 1 \end{cases}$

$$=\begin{cases} 2 \ if \ (n,m) = 1\\ 0 \ if \ (n,m) \neq 1 \end{cases}$$

Proof. Let $K_{n,m}$ be the complete bipartite graph and U, V be the bipartition of the vertex set of $K_{n,m}$ with |U| = n, |V| = m. Clearly $D = \{u, v/u \in U, v \in V\}$ is a minimum dominating set of $K_{n,m}$. Now $S = \{u', v'\}$ where $u'(\neq u) \in U, v'(\neq v) \in W$, is a minimum inverse dominating of $K_{n,m}$. Also (d(u'), d(v')) = (m, n). If (m, n) = 1, then *S* is a relatively prime dominating set, otherwise *S* is not a relatively prime dominating set. Therefore

$$\gamma_{rp}^{-1}(K_{n,m}) = \begin{cases} 2 \ if \ (n,m) = 1\\ 0 \ otherwise \end{cases} \qquad \Box$$

Theorem 2.6. For a fan graph F_n , $\gamma_{rp}^{-1}(F_n) = \begin{cases} 2 \text{ if } n = 3, 4, 5 \\ 0 \text{ otherwise} \end{cases}$

Proof. Let F_n be a fan graph which is obtained by joining all the vertices of P_n to the vertex in K_1 i.e., $F_n = P_n + K_1$. Let, $V(F_n) = \{v_i/0 \le i \le n\}$ and $E(F_n) = \{v_0v_i, v_iv_{i+1}, v_0v_n/0 \le i \le n-1\}$. In F_n , $D = v_0$ is the minimum dominating set. Now we consider the following cases. Case 1. n = 2

Then, $F_2 = C_3$. In C_3 , all vertices have degree 2 and hence there is no relatively prime dominating set and hence $\gamma_{rp}^{-1}(F_2)=0$.

Case 2. n = 3

Cleary either $\{v_1, v_2\}$ or $\{v_2, v_3\}$ is a minimum inverse dominating set with respect to *D*. Now, $(d(v_1), d(v_2)) = (2,3) = 1$ and $(d(v_2), d(v_3)) = (3,2)=1$. Hence either $\{v_1, v_2\}$ or $\{v_2, v_3\}$ is a minimum relatively prime inverse dominating set. Therefore, $\gamma_{rp}^{-1}(F_3) = 2$.

Case 3. n = 4

In this case a minimum inverse dominating set $S = \{v_2, v_4\}$ in F_4 with respect to D. Also, $(d(v_2), d(v_4)) = (3, 2) = 1$. Hence S is a minimum relatively prime inverse dominating set and $\gamma_{rp}^{-1}(F_4) = 2$

Case 4. n = 5

Here $S = \{v_2, v_5\}$ is a minimum inverse dominating set in F_5 with respect to D. Also, $(d(v_2), d(v_5)) = (3,2) = 1$. Therfore, S is a minimum relatively prime inverse dominating set. Hence $\gamma_{rp}^{-1}(F_5) = 2$

Case 5. $n \ge 6$

Let S be an inverse dominating set of F_n with respect to the dominating set D. Then S contains at least two vertices of degree three. This implies that S is not a relatively prime dominating set of F_n . Hence, $\gamma_{rp}^{-1}(F_2) = 0$

The theorem follows from cases 1 to 5.

Theorem 2.7. For a For a bistar tree $B_{m,n}$, $\gamma_{rp}^{-1}(B_{m,n}) = m +$ n.

Proof. Let $B_{m,n}$ be a bistar tree of order m + n + 2 with vertex set $V(B_{m,n}) = u_i, v_j/0 \le i \le m, 0 \le j \le n$ and edge set $E(B_{m,n}) = \{u_0v_0, u_0u_i, v_0v_j/1 \le i \le m, 0 \le j \le n\}$. The minimum dominating set of $B_{m,n}$ is $D = \{u_0, v_0\}$. Since V - D contains all end vertices, V - D itself is a minimum inverse dominating set of $B_{m,n}$. Clearly $(d(u_i), d(u_j)) = (d(u_i), d(v_j)) =$ $(d(v_i), d(u_j)) = 1$. Hence V - D is the minimum relatively prime inverse dominating set and so $\gamma_{rp}^{-1}(B_{m,n}) = m + n$. \Box

Theorem 2.8. If $G_1 \cong G_2$, then $\gamma_{rp}^{-1}(G_1) = \gamma_{rp}^{-1}(G_2)$.

Proof. Let $G_1 \cong G_2$. Let f be an isomorphism between graphs G_1 and G_2 . Let $\{v_1, v_2, ..., v_m\}$ be a minimum relatively prime inverse dominating set of G_1 . Since f is an isomorphism $\{f(v_1), f(v_2), ..., f(v_m)\}$ is a minimum inverse dominating set of G₂. Since isomorphism, preserves degree of the vertices $(d(v_i), d(v_j)) = (d(f(v_i), d(f(v_j))) = 1$ for $i \neq j, 1 \le i \le j \le m$, Therefore, $\{f(v_1), f(v_2), ..., f(v_n)\}$ is

Theorem 2.9. For
$$K_m \cup K_n$$
,

$$\gamma_{rp}^{-1}(K_m \cup K_n) = \begin{cases} 2 \ iff \ (m-1,n-1) = 1 \\ 0 \ otherwise \end{cases}$$

Proof. Let $V(K_m) = \{v_1, v_2, ..., v_m\}$ and $V(K_n) = \{u_1, u_2, ..., u_n\}$. Clearly $D = \{v_i, u_i\}$ is a minimum dominating set of $K_m \cup K_n$ where $1 \le i \le m$ and $1 \le j \le n$. Now $S = \{v_x, u_y\}$ where $1 \le x \le m, x \ne i$ and $1 \le y \le n, y \ne j$ is a minimum inverse dominating set of $K_m \cup K_n$ with respect to D and $(d(v_x), d(u_y))$ = (m-1, n-1). If (m-1, n-1) = 1, then S is a minimum relatively prime inverse dominating set. Otherwise S is not a relatively prime inverse dominating set. Therefore, $\gamma_{rp}^{-1}(K_m \cup K_n)$

$$= \begin{cases} 2 \ iff \ (m-1,n-1) = 1 \\ 0 \ otherwise \end{cases} \qquad \Box$$

Theorem 2.10. For For a barbell graph $BB_{n,n}$,

$$\gamma_{rp}^{-1}(BB_{n,n}) = \begin{cases} 2 \ if \ n \ge 2\\ 0 \ otherwise \end{cases} .$$

Proof. Let $\{v_1, v_2, ..., v_n\}$ and $\{u_1, u_2, ..., u_n\}$ be the vertex sets of two copies of K_n . Join v_1u_1 . The resultant graph is a barbell graph. If n = 1, then $BB_{1,1} = K_2 = P_2$. By Theorem 2.3, $\gamma_{rp}^{-1}(B_1) = 0$. Let $n \ge 2$. A minimum dominating set $D = \{v_1, u_i\}, 2 \le i \le n$. A minimum inverse dominating with respect to D is $S = \{v_i, u_1\}, 2 \le i \le n$. Clearly $(d(v_i), d(u_1)) =$ (n-1,n) = 1. Hence S is a minimum relatively prime inverse dominating set. Therefore, $\gamma_{rp}^{-1}(BB_{n,n}) = 2$.

Example 2.11. Consider the graph $G = BB_{4,4}$, given in figure 2.2. Clearly $D = \{v_1, u_2\}$ is a minimum dominating set and S $= \{v_2, u_0\}$ is a minimum relatively prime inverse dominating set of G. Therefore, $\gamma_{rp}^{-1}(BB_{4,4}) = 2$.

Figure 2.2

Theorem 2.12. Let G be a connected graph of order n. If $\gamma_{rp}^{-1}(G)$ exists, then $\gamma^{-1}(G) \leq \gamma_{rp}^{-1}(G)$.

Proof. Let *G* be a connected graph of order *n* such that $\gamma_{rp}^{-1}(G)$. exists. Since every relatively prime inverse dominating set is an inverse dominating set, it follows that $\gamma^{-1}(G) \leq \gamma^{-1}_{rp}(G)$.

Theorem 2.13. For the path graph $P_n(n \ge 3), \gamma^{-1}(P_n) =$ $\gamma_{rp}^{-1}(P_n)$. Hence the inequality in Theorem 2.11. becomes sharp. Now consider the graph G given in figure.2.3. Here $S = \{v_3\}$ is a minimum inverse dominating set of G and so $\gamma^{-1}(G) = 1$. The set $S_1 = \{v_2, v_3\}$ is a minimum relatively prime inverse dominating set of G and so $\gamma_{rp}^{-1}(G) = 2$. Thus $\gamma^{-1}(G) < \gamma_{rp}^{-1}(G)$ and hence the inequality in Theorem 2.11, becomes strict.

3. Conclusion

In this paper, we introduced the concept of relatively prime inverse domination of a graphs and found relatively prime inverse domination of a graph of some standed graphs like path graph, complement of path graph, complete bipatite graph, fan graph, bistar graph and barbell graph.

References

- ^[1] G. Chartrand, Lesniak: Graphs and Digraphs, fourth ed.,CRC press, BoCa Raton, 2005.
- ^[2] J. A. Gullian: A dynamic survey of graph labeling, *The electronics Journal of Combinatories*, 17(2014).
- ^[3] W. Haynes, S. T. Hedetniemi, P. J. Slater: Domination in Graphs, Advanced Topices, Marcel Dekker, New York, 1998.
- [4] S. T. Hedetniemi, R. Laskar (Eds.): Topics in domination in graphs, *Discrete Math.* 86(1990).
- [5] C. Jayasekaran and A. Jancy vini: Results on relatively prime dominating sets in graphs, *Annals of pure and Applied Mathematics*, 14, (3), (2017), 359 – 369.
- [6] V. R. Kulli and S. C. Sigarkant: Inverse domination in graphs, *Nat. Acad Sci. Letters*, 14, (1991), 473-475.
- ^[7] Weisstein, Eric W: Barbell Graph, from Mathworld.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

