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Relatively prime geodetic number of graphs
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Abstract
In this paper we introduce relatively prime geodetic number of a graph G. Let G be a connected graph. A set
S ⊆ V is said to be a relatively prime geodetic set if it is a geodetic set with at least three elements and the
shortest distance between any two pairs of vertices in S is relatively prime. The relatively prime geodetic set
of G is denoted by grp(G)-set. The cardinality of a minimum relatively prime geodetic set is the relatively prime
geodetic number and it is denoted grp(G).
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1. Introduction
By a graph G = (V,E) we mean a finite, connected, undi-

rected graph with neither loops nor multiple edges. The order
|V | and size |E| of G are denoted by p and q respectively. For
graph theoretic terminology we refer to West [6]. The open
neighborhood of any vertex v in G is N(v) = {x/xv ∈ E(G)}
and closed neighborhood of a vertex v in G is N[v] = N(v)

⋃
v.

The degree of a vertex in the graph G is denoted by deg(v)
and the maximum degree(minimum degree) in the graph G
is denoted by 4(G) (δ (G)). For a set S ⊆ V (G), the open
(closed) neighborhood N(S)(N[S]) in G is defined as N(S) =⋃

v∈S N(v)(N[S] =
⋃

v∈S N[v]).
In a connected graph G, the distance between two vertices

x and y is denoted by d(x,y) and is defined as the length of a
shortest x− y path in G. The diameter of a graph G is defined
by diam(G) = maxx,y∈V (G)d(x,y). Two vertices u and v are
said to be antipodal vertices if d(u,v) = diam(G). If e= {u,v}
is an edge of a graph G with deg(u) = 1 and deg(v)1, then

we call e a pendant edge, u a pendent vertex and v a support
vertex. A set of vertices is said to be independent if no two
vertices in it are adjacent. A vertex v of G is said to be an
extreme vertex if the subgraph induced by its neighborhood is
complete. A vertex v is said to be full vertex if v is adjacent
to all other vertices in G, that is, if deg(v)= p–1. An acyclic
connected graph is called a tree. An x–y path of length d(x,y)
is called geodesic. A vertex v is said to lie on a geodesic P if v
is an internal vertex of P. The closed interval I[x,y], consists
of x,y and all vertices lying on some x–y geodesic of G and
for a non empty set S⊆V (G), I[S] =∪x,y∈SI[x,y].

A set S⊆V (G) in a connected graph is a geodetic set of G
if I[S] =V (G). The geodetic number of G denoted by g(G), is
the minimum cardinality of a geodetic set of G. The geodetic
number of a disconnected graph is the sum of the geodetic
number of its component. A geodetic set of cardinality g(G)
is called g(G) – set. Various concepts inspired by geodetic set
are introduced in [1,2].

2. Definitions and Known results
Definition 2.1. [4] The line graph L(G) of a graph G is the
graph whose vertices are the edges of G and two vertices
of L(G) are adjacent if the corresponding edges of S are
adjacent.

Theorem 2.2. [3] Every geodetic set of a graph contains its
extreme vertices.
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Theorem 2.3. [3] Every end vertices of a graph G belongs
to geodetic set of G.

Theorem 2.4. [3] For the complete graph Kn, g(Kn) = n.

Theorem 2.5. [3] For the wheel graph W1,n, g(W1,n)={
4 f or n = 3
d n

2e f or n≥ 4.

Observation 2.6. [5] For the complenent of path graph P̄n of
n vertices has g(P̄n) = 3, n > 5.

3. Relatively Prime Geodetic Number of
graphs

Definition 3.1. Let G be a connected graph. A set S ⊆V is
said to be a relatively prime geodetic set if it is a geodetic set
with atleast three elements and the shortest distance between
any two pairs of vertices in S is relatively prime. The rela-
tively prime geodetic set of G is denoted by grp(G)-set. The
cardinality of a minimum relatively prime geodetic set is the
relatively prime geodetic number and it is denoted grp(G).

Example 3.2. Consider the graph G given in figure 3.1. Here
{1,5} is a minimum geodetic set of G and hence g(G) = 2.
Now {1,5,6} is a geodetic set of G with d(1,5) = 4, d(1,6)
= 3 and d(5,6) = 1. Also (1,3) = 1, (1,4) = 1 and (3,4)
= 1. Hence {1,5,6} is a relatively prime geodetic set of G.
Moreover it has the minimum cardinality with this property
and hence grp(G) = 3.

Figure 3.1
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Theorem 3.3. Let G be a connected graph of order n. Then
(i) Each relatively prime geodetic set of G contains its

extreme vertices.
(ii) Each end vertex of G belongs to relatively prime geode-

tic set of G.

Proof. Let G be a connected graph of order n. By definition,
each relatively prime geodetic set is a geodetic set.

(i) Hence by Theorem 2.1, each relatively prime geodetic
set of G contains its extreme vertices.

(ii) Further by Theorem 2.2, each end vertex of G belongs
to relatively prime geodetic set of G.

Theorem 3.4. For the complete graph Kn (n > 3), grp(Kn) =
n .

Proof. In a complete graph Kn every vertex is an extreme
vertex. Therefore, the vertex set V (Kn) is the unique relatively
prime geodetic set of Kn and hence grp(Kn) = n .

Theorem 3.5. Let G be connected graph of order n. If grp(G)
exists, then g(G)≤ grp(G)≤ n.

Proof. Let G be a connected graph of order n such that grp(G)
exists. Since every relatively prime geodetic set is a geodetic
set, it follows that g(G)≤ grp(G). Also any relatively prime
geodetic set can have atmost n vertices and hence grp(G)≤ n.
Thus, g(G)≤ grp(G)≤ n.

Remark 3.6. For the complete graph Kn (n ≥ 3), g(Kn) =
grp(Kn) = n. Hence all the inequalities in Theorem 3.5 be-
come sharp. Now consider the graph G given in Figure 3.1.
Here S= {1,5} is a minimum geodetic set of G and so g(G) =
2. The set S1 = {1,5,6} is a minimum relatively prime geode-
tic set of G and so grp(G) = 3. Thus g(G)< grp(G)< n, and
hence all the inequalities in Theorem 3.5 become strict.

Theorem 3.7. For the path Pn of order n, grp(Pn) = 3,n > 3.

Proof. Let v1v2...vn be the path Pn. By Theorem 3.3, the end
vertices v1 and vn must be in any relatively prime geodetic
set of Pn. By definition, any relatively prime geodetic set of
Pn, contains at least three vertices. Consider S = {v1,v2,vn}.
Clearly S is a geodetic set of Pn. Now d(v1,vn) = n− 1,
d(v1,v2) = 1 and d(v2,vn) = n−2. Also, (1,n−1) = (1,n−
2) = (n− 2,n− 1) = 1. Hence S is a minimum relatively
prime geodetic set of Pn. Similarly, S∗ = {v1,vn−1,vn} is a
minimum relatively prime geodetic set of Pn. Hence grp(Pn)=
|S|= |S∗|= 3.

Theorem 3.8. If G = P̄n, then grp(P̄n) =

{
3 i f n = 4
0 otherwise

.

Proof. Let v1v2...vn be the path Pn. In P̄n, v1 is adjacent
to v3,v4, ...,vn; vn is adjacent to v1,v2, ...,vn−2; v2 is adja-
cent to v4,v5, ...,vn; vn−1 is adjacent to v1,v2, ...,vn−3 and vi
is adjacent to v1,v2, ...,vi−2,vi+2, ...,vn, 3 ≤ i ≤ n− 2. By
definition of P̄n, |V (P̄n)| = n and |E(P̄n)| = ( n

2 )− (n− 1) =
n(n−1)

2
− (n−1) =

(n−1)(n−2)
2

. We consider the follow-
ing three cases.
Case 1. n = 3

Clearly P̄3 =K2
⋃

K1 which contains an isolated vertex.
Therefore, there doesnot exist geodetic set. Hence grp(P̄3) =
0.
Case 2. n = 4

Clearly P̄4=P4. By Theorem 3.7, grp(P̄4) = 3.
Case 3. n > 5

By Observation 2.5,grp(P̄n) = 3. Then a minimum geode-
tic set for P̄n is S = {vi,v j,vk} where 1 ≤ i 6= j 6= k ≤ n. We
consider the following three subcases.
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Subcase 3.1. No two of vi,v j and vk are consecutive
Then I[vi,v j] = {vi,v j}, I[v j,vk] = {v j,vk}, I[vi,vk] = {vi,vk}

in P̄n. Clearly I[S] = {vi,v j,vk} 6= V (P̄n). Hence, S is not a
minimum geodetic set.
Subcase 3.2. Any two of vi,v j and vk are consecutive

Then S = {vi,vi+1,vk} for 1≤ i≤ n−1.
If i = 1, then S = {v1,v2,vk}, where I[v1,v2] = V (P̄n) -

{v3}, I[v1,vk] = {v1,vk}, I[v2,vk] ={v2,vk} in P̄n . Clearly,
I[S] 6=V (P̄n).

If i = n− 1, then S = {vn−1,vn,vk}, where I[vn−1,vn] =
V (P̄n)−{vn−2}, I[vn−1,vk] = {vn−1,vk}, I[vn,vk] = {vn,vk} in
P̄n. Clearly, I[S] 6=V (P̄n).

If 2≤ i≤ n−2, then S = {vi,vi+1,vk}, where I[vi,vi+1] =
V (P̄n) - {vi−1,vi+2}, I[vi,vk] = {vi,vk}, I[vi+1,vk] = {vi+1,vk}
in P̄n . Clearly, I[S] 6= V (P̄n). Clearly I[S] = {vi,vi+1,vk}
6=V (P̄n). Hence, S is not a minimum geodetic set.
Subcase 3.3. vi,v j and vk are consecutive

Then S = {vi,vi+1,vi+2} for 1≤ i≤ n−2.
If i = 1, then S = {v1,v2,v3}, where I[v1,v2] = V (P̄n) -

{v3}, I[v1,v3] ={v1,v3}, I[v2,v3] = V (P̄n) -{v1,v4} in P̄n. Clearly,
I[S] = V (P̄n) . Hence, S is a minimum geodetic set. Here,
d(v1,v2) = 2, d(v1,v3) = 1, d(v2,v3) = 2. Also, (d(v1,v2),
d(v2,v3)) = (2,2) = 2 6= 1. Hence, S cannot be a relatively
prime geodetic set of P̄n.

If i = n−2, then S = {vn−2,vn−1,vn}, where I[vn−2,vn−1]
= V (P̄n) - {vn−3,vn}, I[vn−2,vn] = {vn−2,vn}, I[vn−1,vn] =
V (P̄n) - {vn−2} in P̄n . Clearly, I[S] = V (P̄n). Hence, S is a
minimum geodetic set. Here, d(vn−2,vn−1) = 2, d(vn−2,vn) =
1, d(vn−1,vn) = 2. Also, (d(vn−2,vn−1),d(vn−1,vn)) = (2,2)
= 2 6= 1. Hence, S cannot be a relatively prime geodetic set of
P̄n.

If 2≤ i≤ n−3, then S = {vi,vi+1,vi+2}, where I[vi,vi+1]
= V (P̄n)−{vi−1,vi+2}, I[vi,vi+2] = {vi,vi+2}, I[vi+1,vi+2] =
V (P̄n) -{vi,vi+3} in P̄n. Clearly, I[S] = V (P̄n). Hence, S is
a minimum geodetic set. Here d(vi,vi+1) = 2, d(vi,vi+2) =
1, and d(vi+1,vi+2) = 2. Also, (d(vi,vi+1), d(vi+1,vi+2) =
(2,2) = 2 6= 1. Hence, S cannot be a relatively prime geodetic
set of P̄n.

Thus, grp(P̄n) = 0 for n≥ 5. Hence the theorem.

Theorem 3.9. For cycle Cn of even order n, grp(Cn) = 3.

Proof. Let v1v2...vnv1 be the cycle Cn of order n. Clearly
S = {vi,vi+ n

2
} where the suffices modulo n, is a minimum

geodetic set of Cn and hence g(Cn) = 2. By the definition
of relatively prime geodetic set of Cn, any relatively prime
geodetic of Cn must contain at least 3 vertices of Cn. Let
S
′

= {vi,vi+1,vi+ n
2
} where the suffices modulo n. Then S

′

is a geodetic set. Now d(vi,vi+1) = 1, d(vi,vi+ n
2
) = n

2 and
d(vi+1,vi+ n

2
) = n

2 − 1. Clearly (1, n
2 ) = (1, n

2 − 1) = ( n
2 ,

n
2 −

1) = 1. Therefore S
′

is a minimum relatively prime geodetic
set of Cn and hence, grp(Cn) = 3.

Theorem 3.10. For a star graph K1,n ,

grp(K1,n) =

{
3 f or n = 2
0 f or n > 3

.

Proof. Let v,v1,v2, ...,vn be the vertices of a star graph K1,n
in which v is the central vertex.
Case 1. n = 2

Clearly S= {v,v1,v2} is the only relatively prime geodetic
set, since d(v,v1) = 1, d(v,v2) = 1, d(v1,v2) = 2 and (1,1) =
(1,2) = 1. Hence grp(K1,2) = 3.
Case 2. n > 3

Suppose there exists a relatively prime geodetic set S
of K1,n. By Theorem 3.3(ii), the end vertices v1,v2, ...,vn ∈
S. Since d(v1,v2) = 2 and d(v1,v3) = 2 we have (d(v1,v2),
d(v1,v3)) = 2. This implies that S cannot be a relatively prime
geodetic set of K1,n. Thus grp(K1,n) = 0 for n≥ 3. Hence the
theorem.

Theorem 3.11. For a wheel W1,n = K1+Cn−1(n> 3), grp(W1,n)

=

{
4 i f n = 3
0 otherwise

.

Proof. Let v1v2...vn−1v1 be the outer cycle Cn−1 and v be the
central vertex of W1,n. Then d(v,vi) = 1 and d(vi,v j) = 2 for
i, j ∈ {1,2, ...,n−1} and i 6= j.
Case 1. n = 3

Clearly, W1,3 = K4. By Theorem 3.4, grp(W1,3) = 4.
Case 2. n = 4

Clearly S = {v1,v3} is a minimum geodetic set. By def-
inition any relatively prime geodetic set must contains at
least three vertices. Let S

′
= {v1,v3,v} is a geodetic set and

d(v1,v) = 1,d(v1,v3) = 2,d(v,v3) = 1 and (2,1) = (1,1) = 1,
hence S

′
is a minimum relatively prime geodetic set. Then

grp(W1,n) = 3.
Case 3. n > 5

In W1,n, a minimum geodetic set is S = {vi,vi+2,vi+4, ...,
vi+(d n

2 e−1)2}. Let S
′
= {vi,vi+2,vi+4, ...,vi+(d n

2 e−1)2,v} is a geode-
tic set. Since d(vi,v) = 1, d(v j,vk) = 2, where v j,vk ∈ S.
Therefore the shortest distance between any two vertices in
S is 2. Clearly any two of these shortest distances are not
relatively prime. Hence it follows that grp(W1,n) = 0 for
n > 5.

Theorem 3.12. For a bistar graph Bm,n, grp(Bm,n) ={
3 i f m = n = 1
0 otherwise

.

Proof. Let u0 and v0 be the vertices of P2. Let u1,u2, ...,um
be the vertices attached with u0 and let v1,v2, ...,vn be the
vertices attached with v0. The resultant graph is a bistar graph
Bm,n with V (Bm,n) = {u0,v0,ui,vi,1≤ i≤ m,1≤ j ≤ n} and
E(Bm,n) = {u0v0,u0ui,v0v j,1 ≤ i ≤ m,1 ≤ j ≤ n}. We con-
sider the following three cases.
Case 1. m = n = 1

Then Bm,n = B1,1‘ = P4. By Theorem 3.7, grp(Bm,n) = 3.
Case 2. m = 1,n > 2 or n = 1,m > 2

When m = 1,n > 2, let S be a relatively prime geodetic set
of Bm,n. Then By Theorem 3.3(ii), u1,v1,v2, ...,vn ∈ S. Since
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d(u1,v j)= 3, for 1≤ i 6= j≤ n, we have (d(u1,v1),d(u2,v2))=
(3,3) = 3 6= 1. This implies that S cannot be a relatively prime
geodetic set of Bm,n. Similarly we can prove that there is
no relatively prime geodetic set when n = 1,m > 2. Hence
grp(Bm,n) = 0.
Case 3. m,n > 2

Suppose there exists a relatively prime geodetic set S.
Then By Theorem 3.3(ii), u1,u2, ...,um,v1,v2, ...,vn ∈ S. Since
d(ui,v j) = 3, for 1 ≤ i ≤ m,1 ≤ j ≤ n, we have (d(u1,v1),
d(u2,v2)) = (3,3) = 3 6= 1. This implies that S cannot be
a relatively prime geodetic set of Bm,n. Hence grp(Bm,n) =
0.

Theorem 3.13. Let L(Pn) be the line graph of Pn. Then
grp(L(Pn)) = 3 for n≥ 4.

Proof. Let the path Pn have vertex set {vi/1 ≤ i ≤ n} and
the edge set {vivi+1/1≤ i≤ n−1}. By the definition of line
graph, the edges {vivi+1/1≤ i≤ n−1} in Pn are considered
as the vertices {ui/1 ≤ i ≤ n−1} in L(Pn) and two vertices
of L(G) are joined by an edge if and only if the corresponding
edges of G are adjacent in G. Hence L(Pn) is a path with n−1
vertices. By Theorem 3.7, grp(L(Pn)) = grp(Pn−1) = 3 for
n−1 > 3 and hence n > 4.

Theorem 3.14. Let L(K1,n) be the line graph of K1,n. Then
grp(L(K1,n)) = n.

Proof. Let v,v1, ...,vn, be the vertices of K1,n with v as the
central vertex. By definition of line graph, clearly L(K1,n)) =
Kn. By Theorem 3.4, grp(L(K1,n)) = grp(Kn) = n for n >
3.

Theorem 3.15. Let L(Cn) be the line graph of Cn of even
order n, grp(L(Cn)) = 3 for n > 4.

Proof. Let the cycle Cn have a vertex set {vi/1≤ i≤ n} and
the edge set {vivi+1 ≤ i≤ n−1}

⋃
{v1vn}. By the definition

of line graph the edges {vivi+1 ≤ i ≤ n−1}
⋃
{v1vn} in Cn

are considered as the vertices {ui/1 ≤ i ≤ n} in L(Cn) and
two vertices of L(G) are joined by an edge if and only if the
corresponding edges of G are adjacent in G. Hence L(Cn) is
an even cycle with n vertices and n edges. By Theorem 3.9,
grp(L(Cn)) = grp(Cn) = 3 for n > 4.

4. Conclusion
In this paper, we have found the relatively prime geodetic
number of some standard graphs like cycle graph, path graph,
wheel graph, bistar fish graph, star graph and complete graph.
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