

https://doi.org/10.26637/MJM0804/0171

Some results on strong 2 - vertex duplication self switching of some connected graphs

G. Sumathy ¹* and K.S. Shruthi²

Abstract

A vertex $v \in V(G)$ is said to be a self vertex switching of *G* if *G* is isomorphic to G^v , where G^v is the graph obtained from *G* by deleting all edges of *G* incident to v in *G* and adding all edges incident to v which are not in *G*. A vertex v' is the duplication of v if all the vertices which are adjacent to v in *G* are also adjacent to v' in D(vG), which is the duplication graph of *G*. Duplication self vertex switching of various graphs are given in the literature. In this paper we discuss about the 2-vertex duplication self switching graphs.

Keywords

Switching, self vertex switching, duplication, 2- vertex self switching, $dSS_2(G)$, $dss_2(G)$.

AMS Subject Classification

05C02.

^{1,2} Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012.

*Corresponding author: ¹ sumathy.sac@gmail.com; ²shruthiksnair@gmail.com

Article History: Received 10 July 2020; Accepted 22 November 2020

©2020 MJM.

Contents

 1
 Introduction
 2306

 2
 2-vertex duplication self switching graphs:
 2306

 3
 Conclusion
 2308

 References
 2308

1. Introduction

Switching has been defined by Seidel [7] it is referred to as Seidel switching. For a finite undirected simple graph G(V,E) with |V(G)| = p and a set $\sigma \subseteq V$, the switching of G by σ is defined as the graph $G^{\sigma}(V, E)$, which is obtained from G by removing all edges between σ and its complementary $V - \sigma$ and adding all non-edges as edges between σ and $V - \sigma$. Switching is an equivalence relation. When $\sigma = v \in V$, the corresponding switching G^{ν} is called a vertex switching and is denoted by G^{ν} . Switching is an equivalence relation and the associated equivalence classes are called switching classes. A subset σ of V(G) is said to be a self switching of G if $G \cong G^{\sigma}$. The set of all self switchings of G with cardinality k is denoted by $SS_k(G)$ and its cardinality by $ss_k(G)$. If k = 1, then we call the corresponding self switching as self vertex switching. We also call it as $|\sigma|$ -vertex self switching[1]. When $|\sigma| = 2$, we call it as 2-vertex self switching.

C. Jayasekaran and G. Sumathy[1] has done a survey on

self-vertex switching of graphs. The existence of self vertex switching like trees, path, complete graph unicycle, two cyclic, bicyclic but not a two cyclic graph with given number of vertices are analyzed.

The concept of duplication self vertex switching was introduced by C. Jayasekaran and V. Prabavathy [2,3]. The set of all duplication self vertex switching is denoted by $dSS_1(G)$. The number of duplication self vertex switching is denoted by $dss_1(G)$.

2. 2-vertex duplication self switching graphs:

Definition 2.1. 2-vertex duplication of a graph G is the duplication of any two vertices $u, v \in V(G)$ is u', v' such that x', y' are adjacent to all the vertices that are adjacent to u & v. It is denoted as D((u,v)G).

Example 2.2. 2-vertex duplication of the graph $G = P_6$ is given in the fig.1 to fig.4

Definition 2.3. The 2-vertex duplication switching of G by $\sigma = \{x, y\}$ is the graph obtained by duplicating any two vertices u, v then by removing all existing edges between and its complement $V - \sigma$ in D((u, v)G) and also by adding edges between σ and $V - \sigma$ which are not in G, without affecting the adjacency and non-adjacency of vertices in σ . It is denoted by $D((u,v)G)^{\sigma}$ or $D((u,v)G)^{\{x,y\}}$.

Definition 2.5. Let $\sigma = \{x, y\} \in V(G)$ is called a 2-vertex duplication self switching of a graph G if $D((u, v)G) \cong D((u, v)G)^{\sigma}$. If $\sigma = \{u, v\}$, then σ is called the strong 2-vertex duplication self switching of G.

Example 2.6. The graph $G = C_4$ has strong 2-vertex duplication self switching are given in the figures 8 to 9.

Figure. 8 G

Figure.9 D((u,v)G))

Figure.10 $D((u,v)G)^{\{u,v\}}$

Result 2.7. Let G be a (p,q) graph. Then D((u,v)G) is a $(p+2, q+d_G(u)+d_G(v))$ graph.

Theorem 2.8. If $\sigma = \{u, v\} \subseteq V$ is a strong 2-vertex duplication self switching of a graph *G*, then $d_G(u) + d_G(v) = p$ if $uv \in E(G)$.

Proof. Let $\sigma = \{u, v\} \subseteq V$ be a strong 2-vertex duplication self switching of a graph *G*. By the definition, D((u, v)G) =

$$\begin{split} D((u,v)G)^{\sigma} & \text{and hence } |E(D(u,v)G)| = |E(D(u,v)G)^{\sigma}|.\\ \text{That implies } q + d_G(u) + d_G(v) = q + d_G(u) + d_G(v) + [p + 2 - 1 - d_{D((u,v)G)}(u)] - d_{D((u,v)G)}(v) + 2\\ d_{D((u,v)G)}(v) + 2\\ 0 = p + 1 - [d_G(u) + 1] - (d_G(u) + 1) + p + 1 - [d_G(v) + 1] - (d_G(v) + 1) + 2\\ 0 = 2p + 2 - 2d_G(u) - 2 - 2d_G(v) - 2 + 2\\ 0 = 2p - 2d_G(u) - 2d_G(v)\\ d_G(u) + d_G(v) = p \end{split}$$

Note 2.9. The converse of the above theorem need not be true. For example, let us consider the graph G with 5 vertices given in fig.12. In this graph the vertices a and b are adjacent with $d_G(a) + d_G(b) = 5 = p$. Therefore the graph D((a,b)G) and $D((a,b)G)^{\{a,b\}}$ is given in the fig. 12 and 13. Thus $D((a,b)G) \cong D(a,b)G)^{\{a,b\}}$.

Figure. 11 G

Figure.12 D((a,b)G)

Figure.13 $D((a,b)G)^{\{a,b\}}$

Theorem 2.10. *For* $p \ge 4$, $dss_2(W_p) = 0$

Proof. Let K_1 be the central vertex w and let $v_1v_2...v_{(p-1)}v_1$ be the cycle of $C_{(p-1)}$. W_p is the join of K_1 and C_{p-1} . Then $V(W_p) = w, v_1, v_2, v_3, ...v_{p-1}$ and $E(W_p) = \{v_iv_{i+1}, v_1v_{p-1}, wv_i, wv_{p-1}/1 \le i \le p-2\}$. Let $\sigma = \{u, v\}$ be the subset of $V(W_p)$. Let us consider $uv \in E(W_p)$. Then either $\sigma = \{w, v_i\}$ for some $i, 1 \le i \le p-1$. In this graph $d_G(u) + d_G(v) \ne p$. Hence by the theorem 2.8 σ is not

a 2-vertex duplication self switching of *G*. If $\sigma \subseteq V(C_{p-1})$, then $d_G(u) + d_G(v) \neq p$ then by the theorem

2.8 σ is not a 2-vertex duplication self switching of *G*. Thus $dss_2(W_p) = 0$.

3. Conclusion

In this paper we have proved some results of 2-vertex duplication self switching graphs and also we discussed about the 2-vertex duplication of connected graphs.

References

- [1] C. Jayasekaran, and G. Sumathy, Self vertex switchings of connected two-Cyclic graphs, accepted for publication in Journal of Discrete Mathematical Sciences and Cryptography.
- [2] C. Jayasekaran and V. Prabavathy, Some results on Duplication self vertex switchings, *International Journal of Pure and Applied Mathematics*, 116(2)(2019), 427-435.
- C. Jayasekaran and V. Prabavathy, A characterization of duplication self vertex switching in graphs, *International Journal of Pure and Applied Mathematics*, 118(2)(2018), 149-156.
- [4] C. Jayasekaran, J. Christabel Sudha and M. Ashwin Shijo, 2- vertex self switchings of some special graphs, *International Journal of Scientific Research and Review*, 7(12), (2018), 408 - 415.
- [5] C. Jayasekaran and J. Christabel Sudha, Some results on 2vertex self switching in joints, *Italian Journal of Pure and Applied Mathematics*, Communicated.
- [6] G. Sumathy: Self vertex switching of two-cyclic and bicyclic graphs, Manonmaniam Sundaranar University, Tirunelveli, India, 2014.
- J.J. Seidal, A survey of two graphs, Proceedings of the international Coll. Theorie Combinatorie (Rome 1973). Tomo I, Acca, Naz. Lincei. 1221 (1976), 481-511.
- [8] Selvam Avdayppan and M. Bhuvaneshwari, More results on self vertex switching, *International Journal of Modern Sciences and Engineering Technology*, 1(3)(2014), 10-17.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******