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Some results on strong 2 - vertex duplication self
switching of some connected graphs
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Abstract

A vertex v € V(G) is said to be a self vertex switching of G if G is isomorphic to G, where G” is the graph obtained
from G by deleting all edges of G incident to v in G and adding all edges incident to v which are not in G. A vertex
V' is the duplication of v if all the vertices which are adjacent to v in G are also adjacent to v in D(vG), which is
the duplication graph of G. Duplication self vertex switching of various graphs are given in the literature. In this
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paper we discuss about the 2-vertex duplication self switching graphs.
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1. Introduction

Switching has been defined by Seidel [7] it is referred
to as Seidel switching. For a finite undirected simple graph
G(V,E) with |V(G)| = p and a set o C V the switching of
G by o is defined as the graph G°(V,E), which is obtained
from G by removing all edges between ¢ and its complemen-
tary V — o and adding all non-edges as edges between ¢ and
V — o. Switching is an equivalence relation. Wheno =v eV,
the corresponding switching GV is called a vertex switching
and is denoted by G". Switching is an equivalence relation
and the associated equivalence classes are called switching
classes. A subset 6 of V(G) is said to be a self switching of G
if G = G°.The set of all self switchings of G with cardinality
k is denoted by SSi(G) and its cardinality by ssx(G). If k =1,
then we call the corresponding self switching as self vertex
switching. We also call it as |o|- vertex self switching[1].
When |o| = 2, we call it as 2-vertex self switching.

C. Jayasekaran and G. Sumathy[1] has done a survey on

self-vertex switching of graphs. The existence of self ver-
tex switching like trees, path, complete graph unicycle, two
cyclic, bicyclic but not a two cyclic graph with given number
of vertices are analyzed.

The concept of duplication self vertex switching was intro-
duced by C. Jayasekaran and V. Prabavathy [2,3]. The set of
all duplication self vertex switching is denoted by dSS;(G).
The number of duplication self vertex switching is denoted by
dss1(G).

2. 2-vertex duplication self switching
graphs:

Definition 2.1. 2-vertex duplication of a graph G is the dupli-
cation of any two vertices u,v € V(G) is ul, V' such that x,,yl
are adjacent to all the vertices that are adjacent to u&v. It is
denoted as D((u,v)G).

Example 2.2. 2-vertex duplication of the graph G = Fy is
given in the fig.1 to fig.4
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Figure1. G=F;
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V1 1% V3 V4 V5 Ve
Figure 2. D((v{,v)G)

Figure.7 D((u,v)G) {uv}

Vh vy
i E S z Definition 2.5. Let 6 = {x,y} € V(G) is called a 2-vertex du-
plication self switching of a graph G if D((u,v)G) = D((u,v)G)®°.
V1 V2 V3 V4 Vs V6 If 6 ={u,v}, then o is called the strong 2- vertex duplication
Figure 3. D((v3,v4)G) self switching of G.
Example 2.6. The graph G = Cy has strong 2-vertex duplica-
, tion self switching are given in the figures 8 to 9.
o ,
u V/
vp W2 V3 V4 Ve u v v
u
Figure. 4 D((vs,v6)G)
a
a b b
Figure. 8 G Figure.9 D((u,v)G))

Definition 2.3. The 2-vertex duplication switching of G by

o = {x,y} is the graph obtained by duplicating any two ver-

tices u,v then by removing all existing edges between and its

complement V — & in D((u,v)G) and also by adding edges

between ¢ and V — o which are not in G ,without affecting the u V
adjacency and non-adjacency of vertices in ©. It is denoted

by D((u,)G)° or D((u,v)G) 1, v

Example 2.4. 2-vertex duplication switching of a graph G is
given in the figures fig.5 to fig.6

a b

Figure.10 D((u,v)G) 1"}

Result 2.7. Let G be a (p,q) graph. Then D((u,v)G) is a

\ / (p+2,q+dc(u) +dg(v)) graph.
b o Theorem 2.8. If 0 = {u,v} CV is a strong 2-vertex dupli-

cation self switching of a graph G,then dg(u) +dg(v) = p if

Figure. 5 G Figure.6 D((u,v)G) uv € E(G)

Proof. Let 0 = {u,v} CV be a strong 2-vertex duplication
self switching of a graph G. By the definition, D((u,v)G) =
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D((u,v)G)° and hence |E(D(u,v)G)| = |E(D(u,v)G)°].
That implies g + dg(u) +dg(v) = ¢ +dg(u )+dc(v) +[p+
2—1=dp((uy)6)w) —dp(urc) @) +[P+2 =1 —dp(unc)m)] —

dp((uy)6)(v) +2
0=p+1—[dg(u)+1]—(dg(u)+1)+p+1-[dc(v)+1] -
(de(v)+1)+2

0= 2p+2—2dg(u) — 2 — 2dG(v) — 2 +2

0=2p—2d¢(u) —2dg(v)

dg(u) +dg(v) =p
O

Note 2.9. The converse of the above theorem need not be
true. For example, let us consider the graph G with 5 vertices
given in fig.12. In this graph the vertices a and b are adjacent
with dg(a) +dg(b) = 5 = p. Therefore the graph D((a,b)G)
and D((a,b)G)\*} is given in the fig. 12 and 13. Thus
D((a,b)G) % D(a,b)G)!e*

Figure. 11 G Figure.12 D((a,b)G)

c d

Figure.13 D((a, b)G){avb}

Theorem 2.10. For p > 4,dss»(W,) =0

Proof. Let K| be the central vertex w and let viv, .. V(p-1)V1
be the cycle of C,,_y).
W, is the join of Kj and C,,_1. Then V(W) = w,vi,v2,v3,...v,_1

and E(W,) = {vivig1,vivp—1,wvi,wv,_1 /1 <i < p—2}. Let
o = {u,v} be the subset of V(W,).

Let us consider uv € E(W,).

Then either o = {w,v;} for some i,1 <i< p—1. In this
graph dg(u) +dg(v) # p. Hence by the theorem 2.8 o is not

2308

a 2-vertex duplication self switching of G.

If 6 CV(Cp_1), then dg(u) +dg(v) # p then by the theorem
2.8 o is not a 2-vertex duplication self switching of G.

Thus dss»(W,) = 0. O

3. Conclusion

In this paper we have proved some results of 2-vertex dupli-
cation self switching graphs and also we discussed about the
2-vertex duplication of connected graphs.
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