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Abstract. Let G(V,E) be a graph with vertex set V and edge set E. A radio geometric mean labeling of a connected graph
G is a one to one map from the vertex set V (G) to the set of natural numbers N such that for two distinct vertices u and v

of G, d(u, v) + d
√

f(u)f(v)e ≥ 1 + diam(G), where d(u, v) represents the shortest distance between the vertices u and
v and diam(G) represents the diameter of G . Based on the concept of radio geometric mean labeling, a new graph labeling
called radio antipodal geometric mean labeling is being introduced in this paper. A radio antipodal geometric mean labeling
of a graph G is a mapping from the vertex set V (G) to the set of natural numbers N such that for two distinct vertices u and
v of G, d(u, v) + d

√
f(u)f(v)e ≥ diam(G). If d(u, v) = diam(G), then the vertices u and v can be given the same label

and if d(u, v) 6= diam(G) then the vertices u and v should be assigned different labels. The radio antipodal geometric mean
number of f , ragmn(f) is the maximum number assigned to any vertex of G. The radio antipodal geometric mean number
of G, ragmn(G) is the minimum value taken over all radio antipodal geometric mean labeling f of G. In this paper, the radio
antipodal geometric mean number of certain ladder related graphs have been investigated.
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1. Introduction

In this paper, the graphs considered are simple, finite and undirected graphs. For definitions not given here,
one can refer to [6]. In communication engineering, one of the major problem is channel or frequency assignment
problem where we have to assign frequencies(channels) to different radio transmitters in such a way that the
interference between any two radio transmitter is avoided. That is if the radio transmitters are close to each other,
then the difference between the channel assigned should be large enough [1]. This problem was converted into
a graph coloring problem by William Hale in 1980 [20]. Later graph labeling techniques were also developed to
solve this problem. The process of assigning integers to the vertices, edges or to both based on certain condition
is known as graph labeling [14]. The first paper on graph labeling was presented by A Rosa in 1966 [18] and up
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to till date, there are lot of researches going on graph labeling. The main reason is that it has many applications.
To list a few among them, graph labeling techniques are useful in coding theory, astronomy, circuit design,
communication network addressing, secret sharing [7, 12].

In order to solve the channel assignment problem, the first graph labeling technique was introduced by Jerrold
R. Griggs and Roger K. Yeh [11] in the year 1992, known as L(2, 1) labeling or distance two labeling. The
L(2, 1) labeling was defined as follows. Given a real number d > 0, an Ld(2, 1) - labeling of G is a non-negative
real-valued function f : V (G) → [0,∞) such that, whenever x and y are two adjacent vertices in V , then
| f(x)− f(y) |≥ 2d, and whenever the distance between x and y is 2, then | f(x)− f(y) |≥ d. In the year 2001,
Gary Chartrand et al. [4] modified the definition of L(2, 1) labeling and introduced a new graph labeling technique
called Radio Labeling which was just an extension of the existing L(2, 1) labeling. A radio labeling of a graph
G is a function f : V (G)→ N (set of natural numbers) such that, d(u, v)+ |f(u)−f(v)| ≥ diam(G)+1. It has
been proved that finding the radio number of an arbitrary graph is an NP-complete problem [13]. Gary Chartrand
et al. [5] have also introduced the concept of radio antipodal labeling in the year 2002. A radio antipodal labeling
of a graph G is a function f : V (G)→ N (set of natural numbers) such that, d(u, v)+ |f(u)−f(v)| ≥ diam(G).
The difference between radio labeling and radio antipodal labeling is that the former one is an one to one function
whereas the latter one is not since the vertices which are at diametric distance can receive the same label in the
latter. From this there are few new graph labeling techniques which were defined by modifying the definition of
existing radio and radio antipodal labeling. One can refer to [2, 3, 8, 15, 17, 19] for different types of labeling
techniques which were originated from radio labeling and radio antipodal labeling.

The concept of radio geometric mean labeling of graphs was first introduced by Hemalatha V et al. [8] in the
year 2017. The radio geometric mean labeling of a graph G is a mapping from the vertex set V (G) to the set of
natural numbers N such that for two distinct vertices u and v of G, d(u, v) + d

√
f(u)f(v)e ≥ 1 + diam(G).

The radio geometric mean number of f , rgmn(f) is the maximum number assigned to any vertex of G. The radio
geometric mean number of G, rgmn(G) is the minimum value taken over all radio geometric mean labeling f of
G. In that work, the authors have studied the radio geometric mean number of some star like graphs [8]. They
have also investigated the radio geometric mean number of splitting of star and bistar [9]. The radio geometric
mean number of some subdivision graphs have been obtained by Hemalatha V and Mohanaselvi V [10]. Based
on the concept of radio geometric mean labeling, a new graph labeling called radio antipodal geometric mean
labeling have been introduced in this paper by modifying the existing radio geometric mean labeling condition.
A radio antipodal geometric mean labeling of a graph G is a mapping from the vertex set V (G) to the set of
natural numbers N such that for two distinct vertices u and v of G, d(u, v) + d

√
f(u)f(v)e ≥ diam(G). If

d(u, v) = diam(G), then the vertices u and v can be given the same label and if d(u, v) 6= diam(G) then
the vertices u and v should be assigned different labels. The radio antipodal geometric mean number of f ,
ragmn(f) is the maximum number assigned to any vertex of G. The radio antipodal geometric mean number of
G, ragmn(G) is the minimum value taken over all radio geometric mean labeling f of G, which will be denoted
as ragmn(G).

We were motivated to study the radio antipodal geometric mean number of ladder related graphs, since ladder
and ladder related graphs have wide range of applications in various fields. To name a few, ladder networks have
been useful in electronics, electrical and wireless communication networks [16].

In this paper, the upper bounds of radio antipodal geometric mean number of ladder related graphs have been
investigated.

2. Radio antipodal geometric mean number of ladder and triangular ladder graphs

In this section, the radio antipodal geometric mean number of ladder and triangular ladder graph have been
obtained.

Definition 2.1. [14] The Ladder graph denoted by LG(n), is a graph obtained by the Cartesian product of two
path graphs P2 and Pn, n ≥ 2. The nth dimension of a ladder graph has 2n vertices and 3n − 2 edges. The
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diameter of LG(n) is n. See Figure 1.

Figure 1: LG(n)

Definition 2.2. [14] A Triangular ladder graph, denoted by TLG(n), is a ladder graph obtained by adding the
edges (vi, vn+i−1), i = 2, 3, ..., n. TLG(n) has 2n vertices and its diameter is n. See Figure 2.

Figure 2: TLG(n)

Remark 2.3. For our convenience, the vertex set of LG(n) and TLG(n) is partitioned into two disjoint sets V1

and V2, where V1 = {vi : 1 ≤ i ≤ n} and V2 = {vi : n+ 1 ≤ i ≤ 2n}.

Theorem 2.4. The radio antipodal geometric mean number of ladder graph, ragmn(LG(n)) ≤ 3n− 6, n ≥ 4.

Proof. Let {v1, v2, ..., vn, vn+1, ..., v2n} be the vertices of LG(n).
In this vertex set, the vertices v1 and v2n are at diametric distance and hence they receive the same labeling.
Therefore, f(v1) = f(v2n).
Similarly, the vertices vn and vn+1 are at diametric distance and hence can be given same label, so that f(vn) =
f(vn+1).
The remaining 2n− 2 vertices of LG(n) are labeled by the mapping,

f(vi) =


n+ i− 3, 1 ≤ i ≤ n− 2

n− 3, i = n− 1

2n− 4, i = n

n+ i− 5, n+ 1 < i < 2n

(2.1)

Claim. The mapping (2.1) is a valid radio antipodal geometric mean labeling.
Let u, v be any two distinct vertices of LG(n).
Case 1. Let u, v ∈ V1.
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Case 1.1. Let u = vi and v = vj , 1 ≤ i, j ≤ n− 2.
In this case, d(u, v) ≥ 1.
By mapping (2.1), we have f(vi) = n+ i− 3 and f(vj) = n+ j − 3.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 3)(n+ j − 3)e ≥ n.

Case 1.2. Let u = vi, 1 ≤ i ≤ n− 2, v = vn−1.
By (2.1), we have f(vi) = n+ i− 3 and f(vn−1) = n− 3.
Also, d(u, v) ≥ 1.
This makes, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 3)(n− 3)e ≥ n.

Case 1.3. Suppose u = vi, 1 ≤ i ≤ n− 2 and v = vn.
Here, f(vi) = n+ i− 3 and f(vn) = 2n− 4. Also d(u, v) ≥ 2.
Hence, 2 + d

√
(n+ i− 3)(2n− 4)e ≥ n.

Case 1.4. If u = vn−1 and v = vn.
In this case, the distance between the vertices u and v will be 1.
Also, f(vn−1) = n− 3 and f(vn) = 2n− 4.
Hence, d(u, v) + d

√
f(u)f(v)e ≥ n.

Case 2. Let u, v ∈ V2.
Case 2.1. Suppose u = vi and v = vj , n+ 2 ≤ i, j ≤ 2n− 1.
In this case, d(u, v) ≥ 1.
By mapping (2.1), we have f(vi) = n+ i− 5 and f(vj) = n+ j − 5.
Consequently, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 5)(n+ j − 5)e ≥ n.

Case 2.2. Let u = vn+1 and v = v2n.
Here, the distance between the vertices u and v will be n− 1.
By mapping (2.1), we have f(vn+1) = 2n− 4 and f(v2n) = n− 2.
Therefore, d(u, v) + d

√
f(u)f(v)e > n.

Case 3. Let u ∈ V1 and v ∈ V2.
Case 3.1. If u = vi, 1 ≤ i ≤ n− 2 and v = vj , n+ 1 < j < 2n.
In this case, d(u, v) ≥ 1.
Here by (2.1), we have f(vi) = n+ i− 3 and f(vj) = n+ j − 5.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 3)(n+ j − 5)e ≥ n.

Case 3.2. If u = vn and v = vn+1.
Here d(u, v) = n. Also, f(u) = f(v) = 2n− 4.
Hence, d(u, v) + d

√
f(u)f(v)e ≥ n+ d

√
(2n− 4)2e > n.

Case 3.3. Suppose u = v1 and v = v2n.
In this case, the distance between the vertices u and v will be n. As these two vertices are at diametric distance,
f(u) = f(v) = n− 2.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥ n+ d

√
(n− 2)2e > n.

Hence, in all the cases it can be seen that the mapping (2.1) satisfies the radio antipodal geometric mean labeling
condition, d(u, v) + d

√
f(u)f(v)e ≥ n.

Therefore, (2.1) is a valid radio antipodal geometric mean labeling.
By the mapping (2.1) the vertex v2n−1 receives the maximum label which is given by,
f(v2n−1) = 3n− 6.
Hence, ragmn(LG(n)) ≤ 3n− 6, n ≥ 4 �

Theorem 2.5. The radio antipodal geometric mean number of triangular ladder graph, ragmn(TLG(n)) ≤
3n− 5, n ≥ 5.
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Proof. Let {v1, v2, ..., vn, vn+1, ..., v2n} be the vertices of TLG(n).
In these vertices v1 and v2n are at diametric distance and hence they receive the same labeling. Therefore,
f(v1) = f(v2n).
The remaining 2n− 1 vertices of TLG(n) are labeled by the mapping,

f(vi) =


n+ i− 3, 1 ≤ i ≤ n− 2

n− 3, i = n− 1

2n− 4, i = n

n+ i− 4, n+ 1 ≤ i < 2n

(2.2)

Claim. The mapping (2.2) is a valid radio antipodal geometric mean labeling.
Let u, v be any two vertices of TLG(n).
Case 1. Let u, v ∈ V1.
Case 1.1. Suppose u = vi and v = vj , 1 ≤ i, j ≤ n− 2.
In this case, by (2.2), we have f(vi) = n+ i− 3 and f(vj) = n+ j − 3.
Also, d(u, v) ≥ 1.
This assures, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 3)(n+ j − 3)e ≥ n.

Case 1.2. Let u = vi, 1 ≤ i ≤ n− 2, v = vn−1.
In this case, d(u, v) ≥ 1.
Also by (2.2), we have f(vi) = n+ i− 3 and f(vn−1) = n− 3.
Consequently, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 3)(n− 3)e ≥ n.

Case 1.3. If u = vi, 1 ≤ i ≤ n− 2 and v = vn.
Here, f(vi) = n+ i− 3 and f(vn) = 2n− 4. Also d(u, v) ≥ 2.
Therefore, 2 + d

√
(n+ i− 3)(2n− 4)e ≥ n.

Case 1.4. Let u = vn−1 and v = vn.
In this case, d(u, v) = 1.
Also, f(vn−1) = n− 3 and f(vn) = 2n− 4.
Hence, d(u, v) + d

√
f(u)f(v)e ≥ n.

Case 2. Let u, v ∈ V2.
Case 2.1. Suppose u = vi and v = vj , n+ 1 ≤ i, j ≤ 2n− 1.
Here, d(u, v) ≥ 1.
By mapping (2.2), we have f(vi) = n+ i− 4 and f(vj) = n+ j − 4.
This gives, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 4)(n+ j − 4)e ≥ n.

Case 2.2. Let u = vi, n+ 1 ≤ i, j ≤ 2n− 1 and v = v2n.
By (2.2), we have f(vi) = n+ i− 4 and f(v2n) = n− 2.
Also d(u, v) ≥ 1.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 4)(n− 2)e ≥ n.

Case 3. Let u ∈ V1 and v ∈ V2.
Case 3.1. If u = vi, 1 ≤ i ≤ n− 2 and v = vj , n+ 1 ≤ j < 2n.
In this case, the distance between the vertices u and v will be at least 1.
Here by (2.2), we have f(vi) = n+ i− 3 and f(vj) = n+ j − 4.
This assures, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 3)(n+ j − 4)e ≥ n.

Case 3.2. If u = vn and v = vn+1.
Here d(u, v) = n− 1. Also, f(u) = 2n− 4 and f(v) = n+ i− 4.
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Hence, d(u, v) + d
√

f(u)f(v)e ≥
(n− 1) + d

√
(n+ i− 4)(2n− 4)e > n.

Case 3.3. Suppose u = v1 and v = v2n.
As these two vertices are at diametric distance,
f(u) = f(v) = n− 2.
Here the distance between the vertices u and v will be n.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥ n+ d

√
(n− 2)2e > n.

Hence, in all the cases it can be seen that the mapping (2.2) satisfies the radio antipodal geometric mean labeling
condition.
Therefore, (2.2) is a valid radio antipodal geometric mean labeling.
By the mapping (2.2), the vertex v2n−1 receive the maximum label and it is given by, 3n− 5.
Hence, ragmn(TLG(n)) ≤ 3n− 5, n ≥ 5 �

3. Radio antipodal geometric mean number of circular ladder and pagoda graphs

In this section, the radio antipodal geometric mean number of circular ladder and pagoda graphs have been
investigated.

Definition 3.1. [21] The circular ladder graph is a graph obtained from the Cartesian product Cn ×K2, where
K2 is the complete graph on two vertices and Cn represents the cycle on n vertices. It is denoted by CLG(n).
The nth dimension of CLG(n) is shown in Figure 3.

Figure 3: CLG(n)

Definition 3.2. [14] A pagoda graph is a ladder graph formed by adding a vertex va in such a way that it is
adjacent to the vertices v1 and v2. PG(n) has 2n+ 1 vertices and it’s diameter is n. See Figure 4.

Remark 3.3. For our convenience, the vertices in the internal cycle {v1, v2, ..., vn} of CLG(n) will be denoted
as C1 and the vertices in the outer cycle {vn+1, vn+2, ..., v2n} as C2.

Remark 3.4. The vertex set of PG(n) is partitioned into two disjoint sets V1 and V2, where V1 = {v2i−1 : 1 ≤
i ≤ n} and V2 = {v2i : 1 ≤ i ≤ n}.

103



M. Giridaran, T. Arputha Jose and E. Anto Jeony

Figure 4: PG(n)

Theorem 3.5. The radio antipodal geometric mean number of circular ladder graph, ragmn(CLG(n)) ≤
2n− 3, n ≡ (1mod2), n ≥ 5.

Proof. The graph CLG(n) has 2n vertices and 3n edges. In this 2n vertices there exists dn2 e vertices which are
at diametric distance and hence these vertices can receive the same label. These vertices are given by,
f(vi) = f(vn+dn2 e+i−1), 1 ≤ i ≤ dn2 e.
The vertices of CLG(n) are labeled by the mapping,

f(vi) = b
n

2
c+ i− 2, 1 ≤ i ≤ n+ bn

2
c (3.1)

Claim. The mapping (3.1) is a valid radio antipodal geometric mean labeling.
Let u, v be any two distinct vertices of CLG(n).
Case 1. Let u, v ∈ C1.
In this case, d(u, v) ≥ 1.
By mapping (3.1), we have f(vi) = bn2 c+ i− 2 and f(vj) = bn2 c+ j − 2.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(bn2 c+ i− 2)(bn2 c+ j − 2)e ≥ d.

Case 2. If the vertices u, v ∈ C2.
Case 2.1. Let u = vi and v = vj , n+ 1 ≤ i, j ≤ n+ bn2 c.
Then, f(vi) = bn2 c+ i− 2 and f(vj) = bn2 c+ j − 2 by (3.1).
Also, d(u, v) ≥ 1.
Hence, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 2.2. Suppose u = vi and v = vj , n+ bn2 c ≤ i, j ≤ 2n.
This case will be similar to Case 1.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 2.3. If u = vi, n+ 1 ≤ n+ bn2 c and v = vj ,≤ n+ bn2 c+ 1 ≤ j ≤ 2n.
In this case, the distance between the vertices u and v will be at least 1.
By (3.1), we have f(vi) = bn2 c+ i− 2 and f(vj) = bn2 c+ j − 2.
This guarantees, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 3. If u ∈ C1 and v ∈ C2.
Case 3.1. Suppose u = vi, 1 ≤ i ≤ n and v = vj , n+ 1 ≤ j ≤ n+ bn2 c.
In this case, d(u, v) ≥ 1.
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Also, f(u) = bn2 c+ i− 2 and f(vi) = bn2 c+ j − 2.
This assures, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 3.2. Let u = vi, 1 ≤ i ≤ n and v = vi, n+ bn2 c+ 1 ≤ i ≤ 2n.
In this case, the vertices u and v will receive same labels as they are at diametric distance and hence
f(ui) = f(vi) = bn2 c+ i− 2 .
This guarantees d(u, v) + d

√
f(u)f(v)e ≥ d.

Accordingly, in all the cases it can be seen that the mapping (3.1) satisfies the radio antipodal geometric mean
labeling condition, d(u, v) + d

√
f(u)f(v)e ≥ d.

Therefore, (3.1) is a valid radio antipodal geometric mean labeling.
By the mapping (3.1) the vertex vn+bn2 c receives the maximum label which is given by,
f(vn+bn2 c) = 2n− 3.
Hence, ragmn(CLG(n)) ≤ 2n− 3, n ≡ (1mod2), n ≥ 5 �

Remark 3.6. It is easy to verify that ragmn(CLG(4)) = 4 and ragmn(CLG(6)) = 6.

Theorem 3.7. The radio antipodal geometric mean number of circular ladder graph, ragmn(CLG(n)) ≤
2n− 3, n ≡ (0mod2), n ≥ 8.

Proof. The graph CLG(n) has 2n vertices out of which n
2 vertices are at diametric distance. Hence, these

vertices can receive same label. These vertices are given as follows,
f(vi) = f(vn+n

2 +i), 1 ≤ i ≤ n
2 . The remaining vertices of CLG(n) are labeled by the mapping:

f(vi) =


n
2 + i− 2, 1 ≤ i ≤ n− 2
n
2 − 2, i = n− 1

n+ n
2 − 3, i = n

n
2 + i− 3, n+ 1 ≤ i ≤ n+ n

2

(3.2)

We now claim that the mapping (3.2) is an valid radio antipodal geometric mean labeling.
Let u, v be any two distinct vertices of CLG(n).
Case 1. If u, v ∈ C1.
Case 1.1. Let u = vi, v = vj , 1 ≤ i, j ≤ n− 2.
In this context, by (3.2) we have f(u) = n

2 + i− 2 and f(v) = n
2 + j − 2. Also, d(u, v) ≥ 1.

This makes, d(u, v) + d
√

f(u)f(v)e ≥ d.
Case 1.2. If u = vi, 1 ≤ i ≤ n− 2 and v = vn−1.
In this instance, by mapping (3.2) f(u) = n

2 + i− 2 and f(vn−1) =
n
2 − 2.

Further, d(u, v) ≥ 1.
As a result, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 1.3. Let u = vn−1 and v = vn.
In this case, d(u, v) = 1.
Also by (3.2), we have f(u) = n

2 − 2 and f(v) = n+ n
2 − 3.

Hence, d(u, v) + d
√
f(u)f(v)e ≥ d.

Case 1.4. If u = vi, 1 ≤ i ≤ n− 2 and v = vn.
In the considered case, d(u, v) ≥ 2.
By (3.2), f(u) = n

2 + i− 2 and f(v) = n+ n
2 − 3.

As a consequence of this, we have d(u, v) + d
√
f(u)f(v)e ≥ d.

Case 2. Let u, v ∈ C2.
Case 2.1. Suppose u = vi, v = vj , n+ 1 ≤ i, j ≤ n+ n

2 .
By (3.2) we have f(u) = n

2 + i− 3 and f(v) = n
2 + j − 3.
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Further more, d(u, v) ≥ 1.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 2.2. If u = vi, v = vj , n+ n
2 + 1 ≤ i, j ≤ 2n.

This case will be similar to Case 1.1. and hence d(u, v) + d
√
f(u)f(v)e ≥ d.

Case 2.3. If u = vi, n+ 1 ≤ i ≤ n+ n
2 and v = vj , n+ n

2 + 1 ≤ j ≤ 2n.
In this case, the distance between the vertices u and v will be at least 1.
Also by (3.2), we have f(u) = n

2 + i− 3 and f(v) = n
2 + j − 2.

This assures d(u, v) + d
√

f(u)f(v)e ≥ d.
Case 3. Let u ∈ C1 and v ∈ C2.
Case 3.1. Suppose u = vi, 1 ≤ i ≤ n− 2 and v = vj , n+ 1 ≤ j ≤ n+ n

2 .
In the situation under consideration, the distance between the vertices u and v will be at least 1.
By (3.2), f(u) = n

2 + i− 2 and f(v) = n
2 + j − 3.

Therefore, d(u, v) + d
√

f(u)f(v)e ≥ d.
Case 3.2. If u = vi, 1 ≤ i ≤ n− 2 and v = vj , n+ n

2 + 1 ≤ j ≤ 2n.
This case will be similar to Case 1.1.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 3.3. Let u = vn−1 and v = vj , n+ 1 ≤ i ≤ n+ n
2 .

In this case, f(vn−1) = n
2 − 2 and f(v) = n

2 + i− 3.
It can be seen that d(u, v) ≥ 3.
Consequently, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 3.4. Let u = vn−1 and v = vj , n+ n
2 + 1 ≤ i ≤ 2n.

This case will be similar to Case 1.2. which guarantees d(u, v) + d
√
f(u)f(v)e ≥ d.

Case 3.5. If u = vn and v = vj , n+ 1 ≤ i ≤ n+ n
2 .

By (3.2), f(vn) = n+ n
2 − 3 and f(v) = n

2 + i− 3.
The distance between the vertices u and v will be at least 2.
Consequently, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 3.6. Suppose u = vn and v = vj , n+ n
2 + 1 ≤ i ≤ 2n.

This case will be similar to Case 1.4. which assures that d(u, v) + d
√

f(u)f(v)e ≥ d.
Hence the mapping (3.2) is an valid radio antipodal geometric mean labeling.
By (3.2), the vertex vn+n

2
receives the maximum label which is given by 2n− 3.

Therefore, ragmn(CLG(n)) ≤ 2n− 3, n ≡ (0mod2), n ≥ 8 �

Theorem 3.8. The radio antipodal geometric mean number of pagoda graph, ragmn(PG(n)) ≤ 3n−3, n ≥ 3.

Proof. Let {va, v1, v2, ..., vn, vn+1, ..., v2n} be the vertices of PG(n).
Let f(va) = n− 2.
In these 2n+1 vertices va and v2n are at diametric distance and hence they receive the same labeling. Therefore,
f(va) = f(v2n).
The remaining 2n− 1 vertices of PG(n) are labeled by the mapping,

f(vi) = n+ i− 2, 1 ≤ i < 2n. (3.3)

Claim. The mapping (3.3) is a valid radio antipodal geometric mean labeling.
Let u, v be any two distinct vertices of TLG(n).
Case 1. Let u, v ∈ V1.
Case 1.1. If u = vi and v = vj , 1 ≤ i, j ≤ n.
In this case, d(u, v) ≥ 1.
By mapping (3.3), we have f(vi) = n+ i− 2 and f(vj) = n+ j − 2.
Thus, d(u, v) + d

√
f(u)f(v)e ≥ n.

Case 2. Let u, v ∈ V2.
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Case 2.1. Suppose u = vi and v = vj , 1 ≤ i, j ≤ n− 1.
In this case, d(u, v) ≥ 1.
By mapping (3.3), we have f(vi) = n+ i− 2 and f(vj) = n+ j − 2.
Thus, d(u, v) + d

√
f(u)f(v)e ≥ n.

Case 2.2. Let u = vi, 1 ≤ i ≤ n− 1 and v = v2n.
In this case, by (3.3), we have f(vi) = n+ i− 2 and f(v2n) = n− 2.
Also, d(u, v) ≥ 1.
Hence, d(u, v) + d

√
f(u)f(v)e > n.

Case 3. Let vi ∈ V1 and vj ∈ V2.
Case 3.1. If u = vi, 1 ≤ i ≤ n and v = vj , 1 ≤ j < n.
In this case, d(u, v) ≥ 1.
Here by (3.3), we have f(vi) = n+ i− 2 and f(vj) = n+ j − 2.
Thus, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 2)(n+ j − 2)e ≥ n.

Case 3.2. If u = va and v = v2n.
Here d(u, v) = n.
Also, f(u) = f(v) = n− 2.
Hence, d(u, v) + d

√
f(u)f(v)e ≥ n.

Case 4. Suppose u = va and v ∈ V1 or v ∈ V2.
We will have the following two sub cases:
Case 4.1 If u = va and v ∈ V1

By (3.3), f(u) = n− 2 and f(v) = n+ i− 2.
Also, d(u, v) ≥ 1.
This assures d(u, v) + d

√
f(u)f(v)e ≥ n.

Case 4.2. Suppose u = va and v ∈ V2

Here, d(u, v) ≥ 1.
By (3.3), f(u) = n− 2 and f(v) = n+ i− 2.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n− 2)(n+ i− 2)e ≥ d.

Hence, in all the cases it can be seen that the mapping (3.3) satisfies the radio antipodal geometric mean labeling
condition.
Consequently, (3.3) is a valid radio antipodal geometric mean labeling.
By the mapping (3.3), the vertex v2n−1 receive the maximum label and the label is given by, f(v2n−1) = 3n− 3.
Hence, ragmn(PG(n)) ≤ 3n− 3, n ≥ 3 �

4. Conclusion

In this paper, a new graph labeling technique called radio antipodal geometric mean labeling have been
introduced. By this technique the span of the given network can be minimized as the diametric opposite vertices
can receive same labels. The upper bounds of ladder, triangular ladder, circular ladder and pagoda graphs have
been investigated in this paper. This work can be extended further to other communication networks like
honeycomb, butterfly, mesh.
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