

https://doi.org/10.26637/MJM0804/0179

Common fixed point theorems in \mathscr{L} -fuzzy metric space

B. Revathy ¹* and S. Chelliah ²

Abstract

In this paper, we prove some common fixed point theorems for self mappings in complete \mathscr{L} - fuzzy metric space which is introduced by Saadati, Razani and Adibi.

Keywords

Common fixed point, Complete \mathscr{L} - fuzzy metric space.

AMS Subject Classification

54H25, 47H10.

¹ Research Scholar - 19121072092003, The M.D.T. Hindu College, Tirunelveli-627 010.
² PG and Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli-627 010.
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012.
*Corresponding author: ¹ thayammalb1983@gmail.com; ² kscmdt@gmail.com
Article History: Received 13 October 2020; Accepted 27 December 2020

Contents

Introduction	
Preliminaries	
Main Results 2343	
References	
	Introduction2342Preliminaries2342Main Results2343References2344

1. Introduction

In 1965, the concept of fuzzy set was introduced by Zadeh [15]. Kramosil and Michalek [10] introduced the concept of fuzzy metric spaces in terms of *t*- norm. George and Veeramani [6] modified the concept of fuzzy metric spaces introduced by Kramosil and Michalek and defined the Hausdorff topology of fuzzy metric spaces. Using the idea of \mathcal{L} - fuzzy set, Saadati et al [13] introduced the notion of \mathcal{L} - fuzzy metric spaces with the help of continuous *t*- norm as a generalization of fuzzy metric space due to George and Veeramani. In this paper, we prove some common fixed point theorems for self mappings in complete \mathcal{L} - fuzzy metric space.

2. Preliminaries

Definition 2.1. Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice and U be a non empty set called universe. An \mathcal{L} - fuzzy set \mathcal{A} on U is defined as a mapping $\mathcal{A} : U \to L$. For each u in $U, \mathcal{A}(u)$ represents the degree (in L) to which u satisfies \mathcal{A} .

Definition 2.2. A triangular norm(t-norm) on \mathscr{L} is a mapping $\mathscr{T}: L^2 \to L$ satisfying the following conditions: (i) $\mathscr{T}(x, 1_{\mathscr{L}}) = x$, for all $x \in L$ (boundary condition) (ii) $\mathscr{T}(x,y) = \mathscr{T}(y,x)$, for all $x, y \in L$ (commutativity) (iii) $\mathscr{T}(x, \mathscr{T}(y,z)) = \mathscr{T}(\mathscr{T}(x,y),z)$, for all $x,y,z \in L$ (associativity) (iv) $x \leq_L x'$ and $y \leq_L y'$ implies $\mathscr{T}(x,y) \leq_L \mathscr{T}(x',y')$, for all $x, x', y, y' \in L$ (monotonicity)

©2020 MJM.

Definition 2.3. A *t*-norm \mathscr{T} on \mathscr{L} is said to be continuous if for any $x, y \in L$ and any sequences $\{x_n\}$ and $\{y_n\}$ in L which converge to x and y respectively, then we have $\lim_{n\to\infty} \mathscr{T}(x_n, y_n) = \mathscr{T}(x, y)$.

Example 2.4. $\mathcal{T}(x,y) = min(x,y)$ and $\mathcal{T}(x,y) = xy$ are two continuous *t*-norm on [0,1].

Definition 2.5. A negation on \mathscr{L} is any decreasing mapping $\mathscr{N} : L \to L$ satisfying $\mathscr{N}(0_{\mathscr{L}}) = 1_{\mathscr{L}}$ and $\mathscr{N}(1_{\mathscr{L}}) = 0_{\mathscr{L}}$. If $\mathscr{N}(\mathscr{N}(x)) = x$, for all $x \in L$, then \mathscr{N} is called an involutive negation. The negation \mathscr{N}_S on $([0,1], \leq)$ defined as $\mathscr{N}_S(x) = 1 - x$, for all $x \in [0,1]$ is called the standard negation on $([0,1], \leq)$.

Definition 2.6. The 3-tuple $(X, \mathcal{M}, \mathcal{T})$ is said to be an \mathcal{L} -fuzzy metric space if X is an arbitrary non empty set, \mathcal{T} is a continuous t-norm on \mathcal{L} and \mathcal{M} is an \mathcal{L} -fuzzy set on $X^2 \times (0, +\infty)$ satisfying the following conditions for every x, y, z in X and t, s in $(0,\infty)$: (i) $\mathcal{M}(x,y,t) >_L 0_{\mathcal{L}}$, (ii) $\mathcal{M}(x,y,t) = 1_{\mathcal{L}}$, for all t > 0 if and only if x=y, (iii) $\mathcal{M}(x,y,t) = \mathcal{M}(y,x,t)$, (iv) $\mathcal{T}(\mathcal{M}(x,y,t), \mathcal{M}(y,z,s)) \leq_L \mathcal{M}(x,z,t+s)$, (v) $\mathcal{M}(x,y,.) : (0,\infty) \to L$ is continuous.

Example 2.7. Let (X,d) be a metric space. Define $\mathscr{T}(a,b) = ab$, for all $a, b \in L'$ and let \mathscr{M} be an \mathscr{L} - fuzzy set defined as

$$\mathcal{M}(x, y, t) = \frac{ht^n}{ht^n + md(x, y)}$$

for all $t, h, m, n \in \mathbb{R}^+$. Then $(X, \mathcal{M}, \mathcal{T})$ is an \mathcal{L} - fuzzy metric space. If h = m = n = 1, then the above equation gives

$$\mathcal{M}(x, y, t) = \frac{t}{t + d(x, y)}$$

In this case $(X, \mathcal{M}, \mathcal{T})$ is called the standard \mathcal{L} - fuzzy metric space. Hence every metric induces an \mathcal{L} - fuzzy metric.

Definition 2.8. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. For $t \in (0, \infty)$, the open ball B(x, r, t) with center $x \in X$ and radius $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ is defined by

$$B(x,r,t) = \{ y \in X : \mathcal{M}(x,y,t) >_L \mathcal{N}(r) \}$$

A subset $A \subseteq X$ is called open if for each $x \in A$, there exist t > 0 and $r \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ such that $B(x, r, t) \subseteq A$.

Definition 2.9. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space and $\{x_n\}$ be a sequence in X. Then

(i) $\{x_n\}$ is called a Cauchy sequence if for each $\varepsilon \in L \setminus \{0_{\mathscr{L}}\}$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that for all $m \ge n \ge n_0$ $(n \ge m \ge n_0)$, $\mathscr{M}(x_m, x_n, t) >_L \mathscr{N}(\varepsilon)$.

(ii) $\{x_n\}$ is said to be convergent to a point $x \in X$ if $\mathcal{M}(x_n, x, t) = \mathcal{M}(x, x_n, t) \to 1_{\mathscr{L}}$ as $n \to \infty$ for every t > 0.

(iii) A \mathscr{L} -fuzzy metric space is said to be complete if every Cauchy sequence is convergent.

Lemma 2.10. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. Then $\mathcal{M}(x, y, t)$ is nondecreasing with respect to t, for all x, y in X.

Lemma 2.11. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. If we define $E_{\lambda, \mathcal{M}}: X^2 \to \mathbb{R}^+ \cup \{0\}$ by

$$E_{\lambda,\mathcal{M}}(x,y) = \inf\{t > 0 : \mathcal{M}(x,y,t) >_L \mathcal{N}(\lambda)\}$$

for each $\lambda \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ and $x, y \in X$. Then we have (i) For any $\mu \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ there exists $\lambda \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ such that $E_{\mu,\mathscr{M}}(x_1, x_n) \leq E_{\mu,\mathscr{M}}(x_1, x_2) + E_{\mu,\mathscr{M}}(x_2, x_3) + \ldots + E_{\mu,\mathscr{M}}(x_{n-1}, x_n)$ for any $x_1, x_2, \ldots, x_n \in X$.

(ii) The sequence $\{x_n\}$ is convergent to x with respect to \mathcal{L} -fuzzy metric \mathcal{M} if and only if $E_{\lambda,\mathcal{M}}(x_n,x) \to 0$. Also the sequence $\{x_n\}$ is Cauchy with respect to \mathcal{L} -fuzzy metric \mathcal{M} if and only if it is Cauchy with $E_{\lambda,\mathcal{M}}$.

Definition 2.12. An \mathscr{L} -fuzzy metric space $(X, \mathscr{M}, \mathscr{T})$ has the property(*C*) if it satisfies condition $\mathscr{M}(x, y, t) = C$, for all t > 0 implies $C = 1_{\mathscr{L}}$.

Lemma 2.13. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathscr{L} -fuzzy metric space, which has the property (C). If for all $x, y \in X, t > 0$ and for a number $k \in (0,1)$, $\mathscr{M}(x,y,kt) \geq_L \mathscr{M}(x,y,t)$, then x = y.

3. Main Results

Theorem 3.1. Let $(X, \mathcal{M}, \mathcal{T})$ be a complete \mathcal{L} - fuzzy metric spacespace with property (C). Let A and B be two self mappings of X satisfying

$$\mathscr{M}^{2}(Ax, By, kt) \geq_{L} \mathscr{M}^{2}(x, y, t) + \mathscr{M}(x, Ax, t) \cdot \mathscr{M}(y, By, t)$$

for all $x, y \in X$, t > 0 and $k \in (0, 1)$. Then A and B have a unique common fixed point.

Proof. Let $x_0 \in X$ be an arbitrary point. Define a sequence $\{x_n\}$ in X by $Ax_{2n} = x_{2n+1}$ and $Bx_{2n+1} =$ x_{2n+2} for n = 0, 1, 2, ...Now we prove $\{x_n\}$ is a cauchy sequence in X. For n > 0, we have $\mathscr{M}^{2}(x_{2n+1}, x_{2n+2}, kt) = \mathscr{M}^{2}(Ax_{2n}, Bx_{2n+1}, kt)$ $\geq_L \mathscr{M}^2(x_{2n}, x_{2n+1}, t) + \mathscr{M}(x_{2n}, Ax_{2n}, t) \cdot \mathscr{M}(x_{2n+1}, Bx_{2n+1}, t)$ $= \mathscr{M}^{2}(x_{2n}, x_{2n+1}, t) + \mathscr{M}(x_{2n}, x_{2n+1}, t) \cdot \mathscr{M}(x_{2n+1}, x_{2n+2}, t)$ Therefore, $\mathcal{M}^{2}(x_{2n+1}, x_{2n+2}, kt) \geq_{L} \mathcal{M}^{2}(x_{2n}, x_{2n+1}, t)$ $+ \mathcal{M}(x_{2n}, x_{2n+1}, t) \cdot \mathcal{M}(x_{2n+1}, x_{2n+2}, t)$ Dividing both sides by $\mathcal{M}^2(x_{2n}, x_{2n+1}, t)$ and putting r = $\frac{\mathscr{M}(x_{2n+1}, x_{2n+2}, kt)}{k}$ we get $\mathcal{M}(x_{2n}, x_{2n+1}, t)$ $\frac{\mathscr{M}^{2}(x_{2n+1},x_{2n+2},kt)}{\mathscr{M}^{2}(x_{2n},x_{2n+1},t)} \geq_{L} 1_{\mathscr{L}} + \frac{\mathscr{M}(x_{2n+1},x_{2n+2},t)}{\mathscr{M}(x_{2n},x_{2n+1},t)}$ $\geq_L \mathbf{1}_{\mathscr{L}} + \frac{\mathscr{M}(\mathbf{x}_{2n+1}, \mathbf{x}_{2n+2}, kt)}{\mathscr{M}(\mathbf{x}_{2n}, \mathbf{x}_{2n+1}, t)}$ Therefore, $r^2 \ge_L 1_{\mathscr{L}} + r$ That is, $r^2 - r - 1_{\mathscr{L}} \geq_L 0_{\mathscr{L}}$ Suppose $r <_L 1_{\mathscr{L}}$ Thus $r^2 - r - 1_{\mathscr{L}} <_L 0_{\mathscr{L}}$ (since $r >_L 0_{\mathscr{L}}$) which is contradiction to $r^2 - r - 1_{\mathscr{L}} \ge_L 0_{\mathscr{L}}$ Thus $r \geq_L 1_{\mathscr{L}}$ Therefore, $\mathscr{M}(x_{2n+1}, x_{2n+2}, kt) \ge_L \mathscr{M}(x_{2n}, x_{2n+1}, t)$ Similarly, $\mathcal{M}(x_{2n+2}, x_{2n+3}, kt) \geq_L \mathcal{M}(x_{2n+1}, x_{2n+2}, t)$ Hence $\mathcal{M}(x_{n+1}, x_{n+2}, kt) \geq_L \mathcal{M}(x_n, x_{n+1}, t)$ for all *n* By induction we have, $\mathscr{M}(x_n, x_{n+1}, t) \ge_L \mathscr{M}(x_{n-1}, x_n, \frac{t}{k}) \ge_L \mathscr{M}(x_{n-2}, x_{n-1}, \frac{t}{k^2}) \ge_L$ $\ldots \geq_L \mathscr{M}(x_0, x_1, \frac{t}{k^n})$ For every $\lambda \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ we have, $E_{\lambda,\mathscr{M}}(x_n, x_{n+1}) = \inf\{t > 0 : \mathscr{M}(x_n, x_{n+1}, t) \ge_L \mathscr{N}(\lambda)\}$ $\leq \inf\{t > 0 : \mathcal{M}(x_0, x_1, \frac{t}{k^n}) \geq_L \mathcal{N}(\lambda)\}$ $=k^{n}inf\{t>0: \mathcal{M}(x_{0},x_{1},t)\geq_{L}\mathcal{N}(\lambda)\}$ $=k^{n}E_{\lambda},_{\mathscr{M}}(x_{0},x_{1})$ Therefore, for every $\mu \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ there exists $\gamma \in L \setminus$ $\{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ such that $E_{\mu, \mathscr{M}}(x_n, x_m) \leq E_{\gamma, \mathscr{M}}(x_n, x_{n+1})$ $+E_{\gamma,\mathcal{M}}(x_{n+1},x_{n+2})+\ldots+E_{\gamma,\mathcal{M}}(x_{m-1},x_m)$ $\leq k^{n} E_{\gamma, \mathcal{M}}(x_{0}, x_{1}) + k^{n+1} E_{\gamma, \mathcal{M}}(x_{0}, x_{1}) + \dots +$ $k^{m-1}E_{\gamma,\mathcal{M}}\left(x_{0},x_{1}\right)$

 $\leq E_{\gamma,\mathscr{M}}(x_0,x_1)\sum_{j=n}^{m-1}k^j \to 0 \text{ as } m,n \to \infty$ Therefore by Lemma 2.11(ii), $\{x_n\}$ is a Cauchy sequence in \mathscr{L} - fuzzy metric space.

Since X is complete, $\{x_n\}$ converges to a point $x \in X$. Now we prove x is a common fixed point of A and B. Now consider

$$\mathcal{M}^{2}(Ax, x, kt) = \lim_{n \to \infty} \mathcal{M}^{2}(Ax, x_{2n+2}, kt)$$
$$= \lim_{n \to \infty} \mathcal{M}^{2}(Ax, Bx_{2n+1}, kt)$$

$$\geq_L \lim_{n\to\infty} \{ \mathscr{M}^2(x, x_{2n+1}, t) \\ + \mathscr{M}(x, Ax, t) \cdot \mathscr{M}(x_{2n+1}, Bx_{2n+1}, t) \} \\ = \lim_{n\to\infty} \{ \mathscr{M}^2(x, x_{2n+1}, t) \\ + \mathscr{M}(x, Ax, t) \cdot \mathscr{M}(x_{2n+1}, x_{2n+2}, t) \} \\ = \mathscr{M}^2(x, x, t) + \mathscr{M}(x, Ax, t) \cdot \mathscr{M}(x, x, t) = \mathbb{1}_{\mathscr{L}} + \mathscr{M}(Ax, x, t) \\ \text{Hence } \mathscr{M}(Ax, x, kt) \geq_L \mathbb{1}_{\mathscr{L}} \text{ for all } t > 0 \\ \text{That is, } \mathscr{M}(Ax, x, t) \geq_L \mathbb{1}_{\mathscr{L}} \text{ for all } t > 0 \\ \text{Therefore, } Ax = x \\ \text{Similarly, } Bx = x \end{cases}$$

Hence *x* is a common fixed point of *A* and *B*. Uniqueness: Let $y \neq x$ be another common fixed point of *A*

and B. $\mathcal{M}^{2}(x, y, kt) = \mathcal{M}^{2}(Ax, By, kt)$ $\geq_{L} \mathcal{M}^{2}(x, y, t) + \mathcal{M}(x, Ax, t) . \mathcal{M}(y, By, t)$ $= \mathcal{M}^{2}(x, y, t) + \mathcal{M}(x, x, t) . \mathcal{M}(y, y, t)$ $= \mathcal{M}^{2}(x, y, t) + 1_{\mathscr{L}}$ $\geq_{L} \mathcal{M}^{2}(x, y, t)$ Hence $\mathcal{M}(x, y, kt) \geq_{L} \mathcal{M}(x, y, t)$, for all t > 0

Therefore by Lemma 2.13, x = y

Hence x is a unique common fixed point of A and B. \Box

Theorem 3.2. Let $(X, \mathcal{M}, \mathcal{T})$ be a complete \mathcal{L} - fuzzy metric space with property (C). Let A and B be two self mappings of X satisfying

$$\mathscr{M}^{2}(Ax, By, kt) \geq_{L} \mathscr{M}^{2}(x, y, t) + \frac{\mathscr{M}(x, Ax, t) \cdot \mathscr{M}(y, By, t)}{\mathscr{M}(x, y, t)}$$

for all $x, y \in X$, t > 0 and $k \in (0, 1)$. Then A and B have a unique common fixed point.

Proof. Let $x_0 \in X$ be an arbitrary point. Define a sequence $\{x_n\}$ in X by $Ax_{2n} = x_{2n+1}$ and $Bx_{2n+1} =$ x_{2n+2} for n = 0, 1, 2, ...Now we prove $\{x_n\}$ is a cauchy sequence in X. For n > 0, we have For n > 0, we have $\mathcal{M}^{2}(x_{2n+1}, x_{2n+2}, kt) = \mathcal{M}^{2}(Ax_{2n}, Bx_{2n+1}, kt)$ $\geq_{L} \mathcal{M}^{2}(x_{2n}, x_{2n+1}, t) + \frac{\mathcal{M}(x_{2n}, Ax_{2n+1}, t) \mathcal{M}(x_{2n+1}, Bx_{2n+1}, t)}{\mathcal{M}(x_{2n}, x_{2n+1}, t)}$ $= \mathcal{M}^{2}(x_{2n}, x_{2n+1}, t) + \frac{\mathcal{M}(x_{2n}, x_{2n+1}, t) \mathcal{M}(x_{2n}, x_{2n+1}, t)}{\mathcal{M}(x_{2n}, x_{2n+1}, t)}$ $= \mathscr{M}^{2}(x_{2n}, x_{2n+1}, t) + \mathscr{M}(x_{2n+1}, x_{2n+2}, t)$ Therefore, $\mathscr{M}^{2}(x_{2n+1}, x_{2n+2}, kt) \geq_{L} \mathscr{M}^{2}(x_{2n}, x_{2n+1}, t)$ $+ \mathcal{M}(x_{2n+1}, x_{2n+2}, t)$ Dividing both sides by $\mathcal{M}^2(x_{2n}, x_{2n+1}, t)$ and putting r = $\frac{\mathscr{M}(x_{2n+1}, x_{2n+2}, kt)}{N}$ we get $\mathcal{M}(x_{2n}, x_{2n+1}, t)$ $\frac{\mathscr{M}^{2}(x_{2n+1},x_{2n+2},kt)}{\mathscr{M}^{2}(x_{2n},x_{2n+1},t)} \geq_{L} 1_{\mathscr{L}} + \frac{\mathscr{M}(x_{2n+1},x_{2n+2},t)}{\mathscr{M}^{2}(x_{2n},x_{2n+1},t)}$ $\begin{array}{l} \underset{(x_{2n} \times z_{n+1}, r)}{\overset{\mathcal{M}}{\longrightarrow}} \\ \geq_L 1_{\mathscr{L}} + \frac{\mathscr{M}(x_{2n}, x_{2n+2}, t)}{\mathscr{M}(x_{2n}, x_{2n+1}, t)} \\ \geq_L 1_{\mathscr{L}} + \frac{\mathscr{M}(x_{2n}, x_{2n+1}, t)}{\mathscr{M}(x_{2n}, x_{2n+1}, t)} \end{array}$ Therefore, $r^2 \ge_L 1_{\mathscr{L}} + r$ That is, $r^2 - r - 1_{\mathscr{L}} \geq_L 0_{\mathscr{L}}$ Suppose $r <_L 1_{\mathscr{L}}$ Thus $r^2 - r - 1_{\mathscr{L}} <_L 0_{\mathscr{L}}$ (since $r >_L 0_{\mathscr{L}}$) which is contradiction to $r^2 - r - 1 \varphi \ge_L 0 \varphi$ Thus $r \geq_L 1_{\mathscr{L}}$ Therefore, $\mathscr{M}(x_{2n+1}, x_{2n+2}, kt) \ge_L \mathscr{M}(x_{2n}, x_{2n+1}, t)$ Similarly, $\mathscr{M}(x_{2n+2}, x_{2n+3}, kt) \ge_L \mathscr{M}(x_{2n+1}, x_{2n+2}, t)$

Hence $\mathscr{M}(x_{n+1}, x_{n+2}, kt) \ge_L \mathscr{M}(x_n, x_{n+1}, t)$ for all nBy induction we have, $\mathscr{M}(x_n, x_{n+1}, t) \ge_L \mathscr{M}(x_{n-1}, x_n, \frac{t}{k}) \ge_L \mathscr{M}(x_{n-2}, x_{n-1}, \frac{t}{k^2}) \ge_L$ $\dots \ge_L \mathscr{M}(x_0, x_1, \frac{t}{k^n})$ For every $\lambda \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ we have, $E_{\lambda,\mathscr{M}}(x_n, x_{n+1}) = \inf\{t > 0 : \mathscr{M}(x_n, x_{n+1}, t) \ge_L \mathscr{N}(\lambda)\}$ $\le \inf\{t > 0 : \mathscr{M}(x_0, x_1, \frac{t}{k^n}) \ge_L \mathscr{N}(\lambda)\}$ $= k^n \inf\{t > 0 : \mathscr{M}(x_0, x_1, t) \ge_L \mathscr{N}(\lambda)\}$ $= k^n E_{\lambda,\mathscr{M}}(x_0, x_1)$ Therefore, for every $\mu \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ there exists $\gamma \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ such that $E_{\mu,\mathscr{M}}(x_n, x_m) \le E_{\gamma,\mathscr{M}}(x_n, x_{n+1})$ $+ E_{\gamma,\mathscr{M}}(x_{n+1}, x_{n+2}) + \dots + E_{\gamma,\mathscr{M}}(x_{m-1}, x_m)$

$$\leq k^{n} E_{\gamma, \mathscr{M}}(x_{0}, x_{1}) + k^{n+1} E_{\gamma, \mathscr{M}}(x_{0}, x_{1}) + \dots + k^{m-1} E_{\gamma, \mathscr{M}}(x_{0}, x_{1}) + \dots + k^{m-1}$$

 $\leq E_{\gamma,\mathscr{M}}(x_0,x_1)\sum_{j=n}^{m-1}k^j \to 0 \text{ as } m,n \to \infty$ Therefore by Lemma 2.11(ii), $\{x_n\}$ is a Cauchy sequence in \mathscr{L} - fuzzy metric space.

Since X is complete, $\{x_n\}$ converges to a point $x \in X$. Now we prove x is a common fixed point of A and B. Now consider

$$\begin{aligned} \mathscr{M}^{2}(Ax, x, kt) &= \lim_{n \to \infty} \mathscr{M}^{2}(Ax, x_{2n+2}, kt) \\ &= \lim_{n \to \infty} \mathscr{M}^{2}(Ax, Bx_{2n+1}, kt) \\ &\geq_{L} \lim_{n \to \infty} \{\mathscr{M}^{2}(x, x_{2n+1}, t) + \frac{\mathscr{M}(x, Ax, t) \cdot \mathscr{M}(x_{2n+1}, Bx_{2n+1}, t)}{\mathscr{M}(x, x_{2n+1}, t)}\} \\ &= \lim_{n \to \infty} \{\mathscr{M}^{2}(x, x_{2n+1}, t) + \frac{\mathscr{M}(x, Ax, t) \cdot \mathscr{M}(x_{2n+1}, x_{2n+2}, t)}{\mathscr{M}(x, x_{2n+1}, t)}\} \\ &= \mathscr{M}^{2}(x, x, t) + \frac{\mathscr{M}(x, Ax, t) \cdot \mathscr{M}(x, x, t)}{\mathscr{M}(x, x, t)} \\ &= 1_{\mathscr{L}} + \mathscr{M}(Ax, x, t) \\ \text{Hence } \mathscr{M}^{2}(Ax, x, kt) \geq_{L} 1_{\mathscr{L}} \text{ for all } t > 0 \\ \text{That is, } \mathscr{M}(Ax, x, t) \geq_{L} 1_{\mathscr{L}} \text{ for all } t > 0 \\ \text{Therefore, } Ax = x \\ \text{Similarly, } Bx = x \\ \text{Hence } x \text{ is a common fixed point of } A \text{ and } B. \\ \text{Uniqueness: Let } y \neq x \text{ be another common fixed point of } A \\ \text{and } B. \\ \text{Now consider} \\ \mathscr{M}^{2}(x, y, kt) = \mathscr{M}^{2}(Ax, By, kt) \\ &\geq_{L} \mathscr{M}^{2}(x, y, t) + \frac{\mathscr{M}(x, Ax, t) \cdot \mathscr{M}(y, y, t)}{\mathscr{M}(x, y, t)} \\ &= \mathscr{M}^{2}(x, y, t) + \frac{\mathscr{M}(x, x, t) \cdot \mathscr{M}(y, y, t)}{\mathscr{M}(x, y, t)} \\ &= \mathscr{M}^{2}(x, y, t) + \frac{\mathscr{M}(x, x, t) \cdot \mathscr{M}(y, y, t)}{\mathscr{M}(x, y, t)} \\ &= \mathscr{M}^{2}(x, y, t) + \frac{\mathscr{M}(x, y, t)}{\mathscr{M}(x, y, t)} \end{aligned}$$

 $\geq_L \mathscr{M}^2(x, y, t)$ Hence $\mathscr{M}(x, y, kt) \geq_L \mathscr{M}(x, y, t)$ for all t > 0Therefore by Lemma 2.13, x = yHence *x* is a unique common fixed point of *A* and *B*.

References

- [1] Adibi, H., Cho, Y.J., O'Regan, D. and Saadati, R.: Common fixed point theorems in *L*-fuzzy metric spaces, *Applied Mathematics and computation* 182, (2006) 820-828.
- [2] Balasubramaniam, P., Muralisankar, S. and Pant, R.P.: Common fixed points of four mappings in a fuzzy metric spaces, *J. Fuzzy Math.* 10(2), (2002) 379-384.

- [3] Cho, S.H: On common fixed points in fuzzy metric spaces, *Int. Math. Forum* 1(10), (2006) 471-479.
- [4] Deschrijver, G., Cornelis, C. and Kerre, E.E.: On the representation of intuitionistic fuzzy *t*-norms and *t*-conorms, *IEEE Transactions on Fuzzy Sys.* 12, (2004) 45-61.
- [5] Deschrijver, G. and Kerre, E.E.: On the relationship between some extensions of fuzzy set theory, *Fuzzy sets* and Systems 33, (2003) 227-235.
- ^[6] George, A. and Veeramani, P.: On Some results in fuzzy metric spaces, *Fuzzy Sets and Systems* 64, (1994) 395-399.
- [7] Goguen, J.: *L*-fuzzy sets, J. Math. Anal. Appl. 18, (1967) 145-174.
- [8] Hakan Efe: Some results in *L*-Fuzzy Metric Spaces, *Carpathian J. Math.* 24, (2008) No.2(37-44).
- [9] Fang, J.X.: On fixed point theorems in fuzzy metric spaces, *Fuzzy sets Sys.* 46, (1992) 107–113.
- ^[10] Kramosil, I. and Michalek, J. : Fuzzy metric and statistical metric spaces, *Kybernetica* 11, (1975) 326-334.
- [11] Saadati, R.: On the *L*-fuzzy topological spaces, *Chaos Solitons and Fractals* 37, (2008) 1419-1426.
- [12] Saadati, R. and Park, J.H.: On the intuitionistic fuzzy topological spaces, *Chaos Solitons Fractals* 27(2), (2006) 331-344.
- [13] Saadati, R., Razani, A. and Adibi, H.: A common fixed point theorem in *L*-fuzzy metric spaces, *Chaos Solitons* and Fractals doi:10.1016/j.chacos.2006.01.023.
- [14] Saadati, R., Sedghi, S., Shobe, N. and Vaespour, S.M.: Some common fixed point theorems in complete *L*-fuzzy metric spaces, *Bull. Malays. Math. Sci. Soc.* 31(1), (2008) 77-84.
- [15] Zadeh, L.A.: Fuzzy sets, Information and Control 8, (1965) 338-353.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

