

https://doi.org/10.26637/MJM0804/0179

Common fixed point theorems in \mathscr{L} **-fuzzy metric space**

B. Revathy ¹* and S. Chelliah ²

Abstract

In this paper, we prove some common fixed point theorems for self mappings in complete $\mathscr L$ - fuzzy metric space which is introduced by Saadati, Razani and Adibi.

Keywords

Common fixed point, Complete L - fuzzy metric space.

AMS Subject Classification

54H25, 47H10.

¹*Research Scholar - 19121072092003, The M.D.T. Hindu College, Tirunelveli-627 010.* ²*PG and Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli-627 010.* Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012. ***Corresponding author**: 1 thayammalb1983@gmail.com; ² kscmdt@gmail.com **Article History**: Received **13** October **2020**; Accepted **27** December **2020** ©2020 MJM.

Contents

1. Introduction

In 1965, the concept of fuzzy set was introduced by Zadeh [15]. Kramosil and Michalek [10] introduced the concept of fuzzy metric spaces in terms of *t*- norm. George and Veeramani [6] modified the concept of fuzzy metric spaces introduced by Kramosil and Michalek and defined the Hausdorff topology of fuzzy metric spaces. Using the idea of $\mathscr L$ fuzzy set, Saadati et al [13] introduced the notion of $\mathscr L$ - fuzzy metric spaces with the help of continuous *t*- norm as a generalization of fuzzy metric space due to George and Veeramani. In this paper, we prove some common fixed point theorems for self mappings in complete $\mathscr L$ - fuzzy metric space.

2. Preliminaries

Definition 2.1. Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice and U *be a non empty set called universe. An* $\mathscr L$ *- fuzzy set* $\mathscr A$ *on U is defined as a mapping* $\mathscr{A}: U \to L$. For each *u* in *U*, $\mathscr{A}(u)$ *represents the degree (in L) to which u satisfies* \mathcal{A} *.*

Definition 2.2. A triangular norm(t- norm) on $\mathscr L$ is a map p *ing* $\mathscr{T}: L^2 \to L$ satisfying the following conditions: *(i)* $\mathscr{T}(x,1,\mathscr{L}) = x$, for all $x \in L$ (boundary condition) *(ii)* $\mathscr{T}(x, y) = \mathscr{T}(y, x)$ *, for all* $x, y \in L$ *(commutativity) (iii)* $\mathscr{T}(x, \mathscr{T}(y,z)) = \mathscr{T}(\mathscr{T}(x,y),z)$ *, for all* $x, y, z \in L$ *(associativity)* $f(iv)$ $x \leq_L x'$ and $y \leq_L y'$ implies $\mathscr{T}(x, y) \leq_L \mathscr{T}(x', y')$, for all $(x, x^{'}, y, y^{'} \in L$ (monotonicity)

Definition 2.3. A *t-norm* $\mathcal T$ *on* $\mathcal L$ *is said to be continuous if for any* $x, y \in L$ *and any sequences* $\{x_n\}$ *and* $\{y_n\}$ *in L which converge to x and y respectively, then we have* $\lim_{n\to\infty} \mathscr{T}(x_n, y_n) = \mathscr{T}(x, y).$

Example 2.4. $\mathcal{T}(x, y) = min(x, y)$ and $\mathcal{T}(x, y) = xy$ are two *continuous t-norm on* [0,1]*.*

Definition 2.5. A negation on $\mathscr L$ *is any decreasing mapping* $N : L \to L$ *satisfying* $N(0_{\mathscr{L}}) = 1_{\mathscr{L}}$ and $N(1_{\mathscr{L}}) = 0_{\mathscr{L}}$ *. If* $\mathcal{N}(\mathcal{N}(x)) = x$, for all $x \in L$, then N is called an involutive *negation. The negation* \mathcal{N}_S *on* ([0,1], \leq) *defined as* $\mathcal{N}_S(x)$ = 1 − *x, for all x* ∈ [0,1] *is called the standard negation on* $([0,1], \leq)$.

Definition 2.6. *The 3-tuple* $(X, \mathcal{M}, \mathcal{T})$ *is said to be an* \mathcal{L} *fuzzy metric space if* X *is an arbitrary non empty set,* $\mathscr T$ *is a continuous t-norm on* L *and* M *is an* L *-fuzzy set on* $X^2\times (0,+\infty)$ *satisfying the following conditions for every x*, *y, z in X and t, s in* (0,∞)*:* (i) $M(x, y, t) >_L 0$ g ,

(ii) $\mathcal{M}(x, y, t) = 1 \mathcal{L}$, for all $t > 0$ if and only if $x=y$, (iii) $M(x, y, t) = M(y, x, t)$, $f(x) \mathcal{T}(\mathcal{M}(x, y, t), \mathcal{M}(y, z, s)) \leq_L \mathcal{M}(x, z, t + s)$ (v) *M* $(x, y, .)$: $(0, \infty) \rightarrow L$ *is continuous.*

Example 2.7. Let (X,d) be a metric space. Define $\mathscr{T}(a,b)$ = ab , for all $a, b \in L'$ and let M be an L' - fuzzy set defined as

$$
\mathcal{M}(x, y, t) = \frac{ht^n}{ht^n + md(x, y)}
$$

 f or all t , h , m , $n \in \mathbb{R}^+$. Then $(X, \mathscr{M}, \mathscr{T})$ *is an* \mathscr{L} *- fuzzy metric space. If* $h = m = n = 1$ *, then the above equation gives*

$$
\mathscr{M}(x, y, t) = \frac{t}{t + d(x, y)}
$$

In this case $(X, \mathcal{M}, \mathcal{T})$ *is called the standard* \mathcal{L} *- fuzzy metric space. Hence every metric induces an* $\mathscr L$ *- fuzzy metric.*

Definition 2.8. *Let* $(X, \mathcal{M}, \mathcal{T})$ *be an* \mathcal{L} *-fuzzy metric space.For t* ∈ $(0, ∞)$ *, the open ball B(x,r,t) with center* $x \in X$ *and radius* $r \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ *is defined by*

$$
B(x,r,t) = \{ y \in X : \mathcal{M}(x,y,t) >_L \mathcal{N}(r) \}
$$

A subset $A \subseteq X$ *is called open if for each* $x \in A$ *, there exist t* > 0 *and* $r ∈ L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ *such that* $B(x, r, t) ⊆ A$.

Definition 2.9. *Let* $(X, \mathcal{M}, \mathcal{T})$ *be an* \mathcal{L} *-fuzzy metric space and* {*xn*} *be a sequence in X. Then*

(i) $\{x_n\}$ *is called a Cauchy sequence if for each* $\varepsilon \in L \setminus \{0_{\mathscr{L}}\}$ *and* $t > 0$ *, there exists* $n_0 \in \mathbb{N}$ *such that for all* $m \ge n \ge n_0$ $(n \geq m \geq n_0)$, $\mathcal{M}(x_m, x_n, t) >_L \mathcal{N}(\varepsilon)$.

(ii) $\{x_n\}$ *is said to be convergent to a point* $x \in X$ *if* $\mathcal{M}(x_n, x, t) =$ $\mathcal{M}(x, x_n, t) \rightarrow 1 \mathcal{L}$ as $n \rightarrow \infty$ for every $t > 0$.

(iii) A \mathcal{L} *-fuzzy metric space is said to be complete if every Cauchy sequence is convergent.*

Lemma 2.10. *Let* $(X, \mathcal{M}, \mathcal{T})$ *be an* \mathcal{L} *-fuzzy metric space. Then* $\mathcal{M}(x, y, t)$ *is nondecreasing with respect to t, for all x, y in X.*

Lemma 2.11. *Let* $(X, \mathcal{M}, \mathcal{T})$ *be an* \mathcal{L} *-fuzzy metric space. If* we define E_{λ} , $\mathscr{M}: X^2 \to \mathbb{R}^+ \cup \{0\}$ by

$$
E_{\lambda}, \mathcal{M}(x, y) = \inf\{t > 0 : \mathcal{M}(x, y, t) >_L \mathcal{N}(\lambda)\}
$$

for each $\lambda \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ *and* $x, y \in X$ *. Then we have (i) For any* $\mu \in L \setminus \{0_{\mathscr{L}},1_{\mathscr{L}}\}$ *there exists* $\lambda \in L \setminus \{0_{\mathscr{L}},1_{\mathscr{L}}\}$ *such that* E_{μ} , $M(x_1, x_n) \le E_{\mu}$, $M(x_1, x_2) + E_{\mu}$, $M(x_2, x_3) + ...$ E_{μ} , $\mathscr{M}(x_{n-1}, x_n)$ *for any* $x_1, x_2, ..., x_n \in X$.

(ii) The sequence $\{x_n\}$ *is convergent to x with respect to* \mathcal{L} *fuzzy metric M if and only if* $E_{\lambda,\mathcal{M}}(x_n,x) \to 0$ *. Also the sequence* $\{x_n\}$ *is Cauchy with respect to* \mathcal{L} *-fuzzy metric* \mathcal{M} *if and only if it is Cauchy with* $E_{\lambda,\mathcal{M}}$ *.*

Definition 2.12. An \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ has *the property(C) if it satisfies condition* $\mathcal{M}(x, y, t) = C$, for all $t > 0$ *implies* $C = 1$ φ .

Lemma 2.13. *Let* $(X, \mathcal{M}, \mathcal{T})$ *be an* \mathcal{L} *-fuzzy metric space, which has the property (C). If for all* $x, y \in X, t > 0$ *and for a number k* \in (0, 1), *M*(*x*, *y*,*kt*) \geq *L M*(*x*, *y*,*t*)*, then x* = *y*.

3. Main Results

Theorem 3.1. Let $(X, \mathcal{M}, \mathcal{T})$ be a complete \mathcal{L} - fuzzy met*ric spacespace with property (C). Let A and B be two self mappings of X satisfying*

$$
\mathcal{M}^{2}(Ax, By, kt) \geq_{L} \mathcal{M}^{2}(x, y, t) + \mathcal{M}(x, Ax, t) \mathcal{M}(y, By, t)
$$

for all $x, y \in X$, $t > 0$ *and* $k \in (0,1)$ *. Then A and B have a unique common fixed point.*

Proof. Let $x_0 \in X$ be an arbitrary point. Define a sequence $\{x_n\}$ in *X* by $Ax_{2n} = x_{2n+1}$ and $Bx_{2n+1} =$ x_{2n+2} for $n = 0, 1, 2, ...$ Now we prove $\{x_n\}$ is a cauchy sequence in X. For $n > 0$, we have $\mathcal{M}^2(x_{2n+1}, x_{2n+2}, kt) = \mathcal{M}^2(Ax_{2n}, Bx_{2n+1}, kt)$ \geq *L* $\mathcal{M}^2(x_{2n}, x_{2n+1}, t) + \mathcal{M}(x_{2n}, Ax_{2n}, t) \cdot \mathcal{M}(x_{2n+1}, Bx_{2n+1}, t)$ $=\mathcal{M}^2(x_{2n}, x_{2n+1}, t) + \mathcal{M}(x_{2n}, x_{2n+1}, t) \cdot \mathcal{M}(x_{2n+1}, x_{2n+2}, t)$ Therefore, $\mathcal{M}^2(x_{2n+1}, x_{2n+2}, k t) \geq_L \mathcal{M}^2(x_{2n}, x_{2n+1}, t)$ $+\mathcal{M}(x_{2n}, x_{2n+1}, t) \cdot \mathcal{M}(x_{2n+1}, x_{2n+2}, t)$ Dividing both sides by $\mathcal{M}^2(x_{2n}, x_{2n+1}, t)$ and putting $r =$ $\frac{\mathcal{M}(x_{2n+1}, x_{2n+2}, k t)}{\mathcal{M}(x_{2n+1}, x_{2n+1})}$ we get $\mathcal{M}(x_{2n}, x_{2n+1}, t)$ $\mathcal{M}^2(x_{2n+1}, x_{2n+2}, k t)$ $\frac{\mathscr{M}^2(x_{2n+1},x_{2n+2},kt)}{\mathscr{M}^2(x_{2n},x_{2n+1},t)} \geq_L 1_{\mathscr{L}} + \frac{\mathscr{M}(x_{2n+1},x_{2n+2},t)}{\mathscr{M}(x_{2n},x_{2n+1},t)}$ $\mathcal{M}(x_{2n}, x_{2n+1}, t)$ $\geq L \ 1_{\mathscr{L}} + \frac{\mathscr{M}(x_{2n+1},x_{2n+2},kt)}{\mathscr{M}(x_{2n},x_{2n+1},t)}$ $\mathcal{M}(x_{2n}, x_{2n+1}, t)$ Therefore, $r^2 \geq L 1 \mathcal{L} + r$ That is, $r^2 - r - 1_{\mathscr{L}} \geq_L 0_{\mathscr{L}}$ Suppose $r \le L 1$ Thus $r^2 - r - 1_{\mathscr{L}} < L \mathbf{0}_{\mathscr{L}}$ (since $r > L \mathbf{0}_{\mathscr{L}}$) which is contradiction to $r^2 - r - 1_{\mathscr{L}} \geq_L 0_{\mathscr{L}}$ Thus $r > L$ 1 φ Therefore, $\mathcal{M}(x_{2n+1}, x_{2n+2}, k t) \geq L \mathcal{M}(x_{2n}, x_{2n+1}, t)$ Similarly, $\mathcal{M}(x_{2n+2}, x_{2n+3}, kt) \geq_L \mathcal{M}(x_{2n+1}, x_{2n+2}, t)$ Hence $\mathcal{M}(x_{n+1}, x_{n+2}, k t) \geq L \mathcal{M}(x_n, x_{n+1}, t)$ for all *n* By induction we have, $\mathcal{M}(x_n, x_{n+1}, t) \geq L \mathcal{M}(x_{n-1}, x_n, \frac{t}{k}) \geq L \mathcal{M}(x_{n-2}, x_{n-1}, \frac{t}{k})$ $\frac{t}{k^2}$) \geq_L ... $\geq_L M(x_0, x_1, \frac{t}{k^n})$ For every $\lambda \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ we have, E_{λ} , $M(x_n, x_{n+1}) = \inf\{t > 0 : M(x_n, x_{n+1}, t) \geq L \mathcal{N}(\lambda)\}$ $\leq \inf\{t > 0 : \mathcal{M}(x_0, x_1, \frac{t}{k^n}) \geq_L \mathcal{N}(\lambda)\}$ $= k^n inf\{t > 0 : \mathcal{M}(x_0, x_1, t) \geq_L \mathcal{N}(\lambda)\}$ $= k^n E_\lambda, \mathcal{M}(x_0, x_1)$ Therefore, for every $\mu \in L \setminus \{0_{\mathscr{L}},1_{\mathscr{L}}\}$ there exists $\gamma \in L \setminus$ $\{0_{\mathscr{L}},1_{\mathscr{L}}\}\$ such that $E_{\mu,\mathscr{M}}(x_n,x_m)\leq E_{\gamma,\mathscr{M}}(x_n,x_{n+1})$ $+ E_{\gamma}, \mathcal{M}(x_{n+1}, x_{n+2}) + ... + E_{\gamma}, \mathcal{M}(x_{m-1}, x_m)$ $\leq k^{n}E_{\gamma,\mathcal{M}}(x_0,x_1)+k^{n+1}E_{\gamma,\mathcal{M}}(x_0,x_1)+...+$ $k^{m-1}E_{\gamma,\mathcal{M}}(x_0,x_1)$

 $\leq E_{\gamma,\mathscr{M}}(x_0,x_1)\sum_{j=n}^{m-1}k^j\to 0$ as $m,n\to\infty$ Therefore by Lemma 2.11(ii), $\{x_n\}$ is a Cauchy sequence in $\mathscr L$ - fuzzy metric space.

Since *X* is complete, $\{x_n\}$ converges to a point $x \in X$. Now we prove *x* is a common fixed point of *A* and *B*. Now consider

$$
\mathcal{M}^2(Ax,x,kt) = \lim_{n\to\infty} \mathcal{M}^2(Ax,x_{2n+2},kt)
$$

= $\lim_{n\to\infty} \mathcal{M}^2(Ax,Bx_{2n+1},kt)$

$$
\geq_L \lim_{n\to\infty} \{\mathcal{M}^2(x, x_{2n+1}, t) + \mathcal{M}(x, Ax, t) \dots \mathcal{M}(x_{2n+1}, Bx_{2n+1}, t)\}= \lim_{n\to\infty} \{\mathcal{M}^2(x, x_{2n+1}, t) + \mathcal{M}(x, Ax, t) \dots \mathcal{M}(x_{2n+1}, x_{2n+2}, t)\}= \mathcal{M}^2(x, x, t) + \mathcal{M}(x, Ax, t) \dots \mathcal{M}(x, x, t) = 1_{\mathcal{L}} + \mathcal{M}(Ax, x, t)\nHence \mathcal{M}(Ax, x, kt) \geq_L 1_{\mathcal{L}} \text{ for all } t > 0\nThat is, \mathcal{M}(Ax, x, t) \geq_L 1_{\mathcal{L}} \text{ for all } t > 0\nTherefore, Ax = x\nSimilarly, Bx = x
$$

Hence *x* is a common fixed point of *A* and *B*. Uniqueness: Let $y \neq x$ be another common fixed point of *A*

and *B*.
\n
$$
\mathcal{M}^2(x, y, kt) = \mathcal{M}^2(Ax, By, kt)
$$
\n
$$
\geq_L \mathcal{M}^2(x, y, t) + \mathcal{M}(x, Ax, t) \cdot \mathcal{M}(y, By, t)
$$
\n
$$
= \mathcal{M}^2(x, y, t) + \mathcal{M}(x, x, t) \cdot \mathcal{M}(y, y, t)
$$
\n
$$
= \mathcal{M}^2(x, y, t) + 1 \mathcal{L}
$$
\n
$$
\geq_L \mathcal{M}^2(x, y, t)
$$
\nHence $\mathcal{M}(x, y, kt) \geq_L \mathcal{M}(x, y, t)$, for all $t > 0$

Therefore by Lemma 2.13, $x = y$

Hence *x* is a unique common fixed point of *A* and *B*.

Theorem 3.2. Let $(X, \mathcal{M}, \mathcal{T})$ be a complete \mathcal{L} - fuzzy metric *space with property (C). Let A and B be two self mappings of X satisfying*

$$
\mathcal{M}^{2}(Ax, By, kt) \geq_{L} \mathcal{M}^{2}(x, y, t) + \frac{\mathcal{M}(x, Ax, t) \mathcal{M}(y, By, t)}{\mathcal{M}(x, y, t)}
$$

for all $x, y \in X$, $t > 0$ *and* $k \in (0,1)$ *. Then A and B have a unique common fixed point.*

Proof. Let $x_0 \in X$ be an arbitrary point. Define a sequence $\{x_n\}$ in *X* by $Ax_{2n} = x_{2n+1}$ and $Bx_{2n+1} =$ x_{2n+2} for $n = 0, 1, 2, ...$ Now we prove $\{x_n\}$ is a cauchy sequence in *X*. For $n > 0$, we have $\mathcal{M}^2(x_{2n+1}, x_{2n+2}, kt) = \mathcal{M}^2(Ax_{2n}, Bx_{2n+1}, kt)$ \geq_L M²(x_{2n}, x_{2n+1}, t) + $\frac{\mathcal{M}(x_{2n}, Ax_{2n},t) \dots \mathcal{M}(x_{2n+1}, Bx_{2n+1},t)}{\mathcal{M}(x_{2n}, x_{2n+1},t)}$ $=\mathscr{M}^2(x_{2n}, x_{2n+1}, t) + \frac{\mathscr{M}(x_{2n}, x_{2n+1}, t) \mathscr{M}(x_{2n+1}, x_{2n+2}, t)}{\mathscr{M}(x_{2n}, x_{2n+1}, t)}$ $= \mathcal{M}^2(x_{2n}, x_{2n+1}, t) + \mathcal{M}(x_{2n+1}, x_{2n+2}, t)$ Therefore, $\mathcal{M}^2(x_{2n+1}, x_{2n+2}, k t) \geq_L \mathcal{M}^2(x_{2n}, x_{2n+1}, t)$ $+\mathcal{M}(x_{2n+1}, x_{2n+2}, t)$ Dividing both sides by $\mathcal{M}^2(x_{2n}, x_{2n+1}, t)$ and putting $r =$ $\frac{\mathcal{M}(x_{2n+1}, x_{2n+2}, k t)}{\mathcal{M}(x_{2n+1}, x_{2n+1})}$ we get $\mathcal{M}(x_{2n}, x_{2n+1}, t)$ $\mathcal{M}^2(x_{2n+1}, x_{2n+2}, k t)$ $\frac{\mathscr{M}^2(x_{2n+1},x_{2n+2},kt)}{\mathscr{M}^2(x_{2n},x_{2n+1},t)} \geq_L 1_{\mathscr{L}} + \frac{\mathscr{M}(x_{2n+1},x_{2n+2},t)}{\mathscr{M}^2(x_{2n},x_{2n+1},t)}$ $\mathcal{M}^2(x_{2n}, x_{2n+1}, t)$ $\geq L \ 1_{\mathscr{L}} + \frac{\mathscr{M}(x_{2n+1}, x_{2n+2}, t)}{\mathscr{M}(x_{2n}, x_{2n+1}, t)}$ $\mathcal{M}(x_{2n}, x_{2n+1}, t)$ $\geq L \ 1_{\mathscr{L}} + \frac{\mathscr{M}(x_{2n+1},x_{2n+2},kt)}{\mathscr{M}(x_{2n},x_{2n+1},t)}$ $\mathcal{M}(x_{2n}, x_{2n+1}, t)$ Therefore, $r^2 \geq L 1 \mathcal{L} + r$ That is, $r^2 - r - 1_{\mathscr{L}} \geq_L 0_{\mathscr{L}}$ Suppose $r \le L 1$ Thus $r^2 - r - 1_{\mathscr{L}} < L \mathbf{0}_{\mathscr{L}}$ (since $r >_L \mathbf{0}_{\mathscr{L}}$) which is contradiction to $r^2 - r - 1_{\mathscr{L}} \geq_L 0_{\mathscr{L}}$ Thus $r > L_1$ 1 Therefore, $\mathcal{M}(x_{2n+1}, x_{2n+2}, k t) \geq_L \mathcal{M}(x_{2n}, x_{2n+1}, t)$

Similarly, $\mathcal{M}(x_{2n+2}, x_{2n+3}, kt) \geq_L \mathcal{M}(x_{2n+1}, x_{2n+2}, t)$

Hence $\mathcal{M}(x_{n+1}, x_{n+2}, k t) \geq L \mathcal{M}(x_n, x_{n+1}, t)$ for all *n* By induction we have, $M(x_n, x_{n+1}, t) \geq L M(x_{n-1}, x_n, \frac{t}{k}) \geq L M(x_{n-2}, x_{n-1}, \frac{t}{k})$ $\frac{t}{k^2}$) \geq_L ... $\geq_L M(x_0, x_1, \frac{t}{k^n})$ For every $\lambda \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ we have, E_{λ} , $M(x_n, x_{n+1}) = \inf\{t > 0 : M(x_n, x_{n+1}, t) \geq L \mathcal{N}(\lambda)\}$ $\leq \inf\left\{t>0: \mathcal{M}(x_0, x_1, \frac{t}{k^n}) \geq_L \mathcal{N}(\lambda)\right\}$ $= k^ninf\{t > 0 : \mathcal{M}(x_0, x_1, t) \geq_L \mathcal{N}(\lambda)\}$ $= k^n E_\lambda, \mathcal{M}(x_0, x_1)$ Therefore, for every $\mu \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ there exists $\gamma \in L \setminus$ $\{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ such that $E_{\mu}, \mathscr{M}(x_n, x_m) \leq E_{\gamma}, \mathscr{M}(x_n, x_{n+1})$

+
$$
E_{\gamma,\mathcal{M}}(x_{n+1},x_{n+2}) + ... + E_{\gamma,\mathcal{M}}(x_{m-1},x_m)
$$

\n $\leq k^n E_{\gamma,\mathcal{M}}(x_0,x_1) + k^{n+1} E_{\gamma,\mathcal{M}}(x_0,x_1) + ... + k^{m-1} E_{\gamma,\mathcal{M}}(x_0,x_1)$

 $\leq E_{\gamma,\mathscr{M}}(x_0,x_1)\sum_{j=n}^{m-1}k^j\to 0$ as $m,n\to\infty$ Therefore by Lemma 2.11(ii), $\{x_n\}$ is a Cauchy sequence in $\mathscr L$ - fuzzy metric space.

Since *X* is complete, $\{x_n\}$ converges to a point $x \in X$. Now we prove *x* is a common fixed point of *A* and *B*. Now consider

$$
\mathcal{M}^{2}(Ax, x, kt) = lim_{n\to\infty}\mathcal{M}^{2}(Ax, x_{2n+2}, kt)
$$
\n
$$
= lim_{n\to\infty}\mathcal{M}^{2}(Ax, Bx_{2n+1}, kt)
$$
\n
$$
\geq_L lim_{n\to\infty}\{\mathcal{M}^{2}(x, x_{2n+1}, t) + \frac{\mathcal{M}(x, Ax, t) \cdot \mathcal{M}(x_{2n+1}, Bx_{2n+1}, t)}{\mathcal{M}(x, x_{2n+1}, t)}\}
$$
\n
$$
= lim_{n\to\infty}\{\mathcal{M}^{2}(x, x_{2n+1}, t) + \frac{\mathcal{M}(x, Ax, t) \cdot \mathcal{M}(x_{2n+1}, x_{2n+2}, t)}{\mathcal{M}(x, x_{2n+1}, t)}\}
$$
\n
$$
= \mathcal{M}^{2}(x, x, t) + \frac{\mathcal{M}(x, Ax, t) \cdot \mathcal{M}(x, x, t)}{\mathcal{M}(x, x, t)}
$$
\n
$$
= 1_{\mathcal{L}} + \mathcal{M}(Ax, x, t) \times L
$$
\nHence $\mathcal{M}^{2}(Ax, x, kt) \geq_L 1_{\mathcal{L}}$ for all $t > 0$
\nThat is, $\mathcal{M}(Ax, x, t) \geq_L 1_{\mathcal{L}}$ for all $t > 0$
\nTherefore, $Ax = x$
\nSimilarly, $Bx = x$
\nHence x is a common fixed point of A and B .
\n**Uniqueness:** Let $y \neq x$ be another common fixed point of A and B .

Now consider

 \Box

$$
\mathcal{M}^2(x, y, kt) = \mathcal{M}^2(Ax, By, kt)
$$
\n
$$
\geq L \mathcal{M}^2(x, y, t) + \frac{\mathcal{M}(x, Ax, t) \mathcal{M}(y, By, t)}{\mathcal{M}(x, y, t)}
$$
\n
$$
= \mathcal{M}^2(x, y, t) + \frac{\mathcal{M}(x, x, t) \mathcal{M}(y, y, t)}{\mathcal{M}(x, y, t)}
$$
\n
$$
= \mathcal{M}^2(x, y, t) + \frac{1}{\mathcal{M}(x, y, t)}
$$
\n
$$
\geq L \mathcal{M}^2(x, y, t)
$$
\nHence $\mathcal{M}(x, y, kt) \geq L \mathcal{M}(x, y, t)$ for all $t > 0$
\nTherefore by Lemma 2.13, $x = y$
\nHence x is a unique common fixed point of A and B.

References

- [1] Adibi, H., Cho, Y.J., O'Regan, D. and Saadati, R.: Common fixed point theorems in \mathscr{L} -fuzzy metric spaces, *Applied Mathematics and computation* 182, (2006) 820-828.
- [2] Balasubramaniam, P., Muralisankar, S. and Pant, R.P.: Common fixed points of four mappings in a fuzzy metric spaces, *J. Fuzzy Math.* 10(2), (2002) 379-384.

 \Box

- $[3]$ Cho, S.H: On common fixed points in fuzzy metric spaces, *Int. Math. Forum* 1(10), (2006) 471-479.
- [4] Deschrijver, G., Cornelis, C. and Kerre, E.E.: On the representation of intuitionistic fuzzy *t*-norms and *t*-conorms, *IEEE Transactions on Fuzzy Sys.* 12, (2004) 45-61.
- [5] Deschrijver, G. and Kerre, E.E.: On the relationship between some extensions of fuzzy set theory, *Fuzzy sets and Systems* 33, (2003) 227-235.
- [6] George, A. and Veeramani, P.: On Some results in fuzzy metric spaces, *Fuzzy Sets and Systems* 64, (1994) 395-399.
- [7] Goguen, J.: \mathcal{L} -fuzzy sets, *J. Math. Anal. Appl.* 18, (1967) 145-174.
- [8] Hakan Efe: Some results in \mathcal{L} -Fuzzy Metric Spaces, *Carpathian J. Math.* 24, (2008) No.2(37-44).
- [9] Fang, J.X. : On fixed point theorems in fuzzy metric spaces, *Fuzzy sets Sys.* 46, (1992) 107–113.
- [10] Kramosil, I. and Michalek, J. : Fuzzy metric and statistical metric spaces,, *Kybernetica* 11, (1975) 326-334.
- [11] Saadati, R.: On the L -fuzzy topological spaces, *Chaos Solitons and Fractals* 37, (2008) 1419-1426.
- [12] Saadati, R. and Park, J.H.: On the intuitionistic fuzzy topological spaces, *Chaos Solitons Fractals* 27(2), (2006) 331-344.
- [13] Saadati, R., Razani, A. and Adibi, H.: A common fixed point theorem in L -fuzzy metric spaces, *Chaos Solitons and Fractals* doi:10.1016/j.chacos.2006.01.023.
- [14] Saadati, R., Sedghi, S., Shobe, N. and Vaespour, S.M.: Some common fixed point theorems in complete $\mathscr L$ -fuzzy metric spaces, *Bull. Malays. Math. Sci. Soc.* 31(1), (2008) 77-84.
- [15] Zadeh, L.A.: Fuzzy sets, *Information and Control* 8, (1965) 338-353.

 $*********$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

