

https://doi.org/10.26637/MJM0804/0181

Group mean cordial labeling of some splitting graphs

R.N. Rajalekshmi^{1*} and R. Kala²

Abstract

Let *G* be a (p,q) graph and let *A* be a group. Let $f: V(G) \longrightarrow A$ be a map. For each edge uv assign the label $\left\lfloor \frac{o(f(u))+o(f(v))}{2} \right\rfloor$. Here o(f(u)) denotes the order of f(u) as an element of the group *A*. Let \mathbb{I} be the set of all integers that are labels of the edges of *G*. *f* is called a group mean cordial labeling if the following conditions hold:

(1) For $x, y \in A$, $|v_f(x) - v_f(y)| \le 1$, where $v_f(x)$ is the number of vertices labeled with x.

(2) For $i, j \in \mathbb{I}$, $|e_f(i) - e_f(j)| \le 1$, where $e_f(i)$ denote the number of edges labeled with *i*.

A graph with a group mean cordial labeling is called a group mean cordial graph. In this paper, we take *A* as the group of fourth roots of unity and prove that, the splitting graphs of Path (P_n) , Cycle (C_n) , Comb $(P_n \odot K_1)$ and Complete Bipartite graph $(K_{n,n}$ when *n* is even) are group mean cordial graphs. Also we characterized the group mean cordial labeling of the splitting graph of $K_{1,n}$.

Keywords

Cordial labeling, mean labeling, group mean cordial labeling.

AMS Subject Classification

05C78.

¹ Research Scholar, Reg. No. 18224012092018, Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.

² Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.

*Corresponding author: ¹ rajalekshmimoni@gmail.com; ² karthipyi91@yahoo.co.in

Article History: Received 18 June 2020; Accepted 17 October 2020

©2020 MJM.

	Contents				
1	Introduction				
2	Main Results				
	References				

1. Introduction

Graphs considered here are finite, undirected and simple. Terms not defined here are used in the sense of Harary [4] and Gallian [3]. Somasundaram and Ponraj [6] introduced the concept of mean labeling of graphs.

Definition 1.1. [6] A graph G with p vertices and q edges is a mean graph if there is an injective function f from the vertices of G to 0, 1, 2, ..., q such that when each edge uv is labeled with $\frac{f(u)+f(v)}{2}$ if f(u) + f(v) is even and $\frac{f(u)+f(v)+1}{2}$ if f(u) + f(v) is odd then the resulting edge labels are distinct.

Cahit [2] introduced the concept of cordial labeling.

Definition 1.2. [2] Let $f: V(G) \to \{0,1\}$ be any function. For each edge *xy* assign the label |f(x) - f(y)|. *f* is called a cordial labeling if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most 1. Also the number of edges labeled 0 and the number of edges labeled 1 differ by at most 1.

Ponraj et al. [5] introduced mean cordial labeling of graphs.

Definition 1.3. [5] Let *f* be a function from the vertex set V(G) to $\{0, 1, 2\}$. For each edge *uv* assign the label $\left\lceil \frac{f(u)+f(v)}{2} \right\rceil$. *f* is called a *mean cordial labeling* if $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$, $i, j \in \{0, 1, 2\}$, where $v_f(x)$ and $e_f(x)$ respectively denote the number of vertices and edges labeled with $x \ (x = 0, 1, 2)$. A graph with a mean cordial labeling is called a mean cordial graph.

Athisayanathan et al. [1] introduced the concept of group *A* cordial labeling.

Definition 1.4. [1] Let *A* be a group. We denote the order of an element $a \in A$ by o(a). Let $f: V(G) \to A$ be a function. For each edge *uv* assign the label 1 if (o(f(u)), o(f(v))) =1 or 0 otherwise. *f* is called a group A Cordial labeling if $|v_f(a) - v_f(b)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labelled with an element *x* and number of edges labelled with n(n = 0, 1). A graph which admits a group *A* Cordial labeling is called a group *A* Cordial graph.

Motivated by these , we define group mean cordial labeling of graphs.

For any real number *x*, we denoted by $\lfloor x \rfloor$, the greatest integer smaller than or equal to *x* and by $\lceil x \rceil$, we mean the smallest integer greater than or equal to *x*.

Definition 1.5. The Splitting graph of G,S'(G) is obtained from G by adding for each vertex v of G a new vertex v' so that v' is adjacent of every vertex that is adjacent to v.

2. Main Results

Definition 2.1. Let G be a (p,q) graph and let A be a group. Let f be a map from V(G) to A. For each edge uv assign the label $\left\lfloor \frac{o(f(u))+o(f(v))}{2} \right\rfloor$. Let \mathbb{I} be the set of all integers that are labels of the edges of G. f is called group mean cordial labeling if the following conditions hold:

(1) For $x, y \in A$, $|v_f(x) - v_f(y)| \le 1$, where $v_f(x)$ is the number of vertices labeled with x.

(2) For $i, j \in \mathbb{I}$, $|e_f(i) - e_f(j)| \leq 1$, where $e_f(i)$ denote the number of edges labeled with *i*.

A graph with a group mean cordial labeling is called a group mean cordial graph.

In this paper, we take the group *A* as the group $\{1, -1, i, -i\}$ which is the group of fourth roots of unity, that is cyclic with generators *i* and -i.

Example 2.2. *The following is a simple example of a group mean cordial graph.*

Theorem 2.3. The splitting graph of the path, $S'(P_n)$ is a group mean cordial graph for every n.

Proof. Let $P_n : u_1u_2...u_n$ be a path. Let $v_1, v_2, ..., v_n$ be the newly added vertices. Then $E(S'(P_n)) = E(P_n) \cup \{u_jv_{j+1} :$

 $1 \le j \le n$ \cup { $u_j v_{j-1} : 2 \le j \le n$ }. Note that $S'(P_n)$ has 2n vertices and 3n - 3 edges. Define $f : V(S'(P_n)) \longrightarrow \{1, -1, i, -i\}$ as follows:

$$\begin{split} f(u_j) &= 1 \; ; \; f(v_j) = i \quad for \; j \equiv 1 \; (mod4) \\ f(u_j) &= -1 ; f(v_j) = -i \; for \; j \equiv 2 \; (mod4) \\ f(u_j) &= i \; ; \; f(v_j) = 1 \quad for \; j \equiv 3 \; (mod4) \\ f(u_j) &= -i ; f(v_j) = -1 \; for \; j \equiv 0 \; (mod4) \end{split}$$

The following tables 1 & 2 prove that the function f is a group mean cordial labeling.

Nature of n	$v_f(1)$	$v_f(-1)$	$v_f(i)$	$v_f(-i)$	
n is odd	$\frac{n+1}{2}$	$\frac{n-1}{2}$	$\frac{n+1}{2}$	$\frac{n-1}{2}$	
n is even	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2}$	
Table 1					

Nature of n	$e_f(1)$	$e_f(2)$	$e_f(3)$	$e_f(4)$
$n \equiv 0 (mod 4)$	$\frac{3n}{4} - 1$	$\frac{3n}{4} - 1$	$\frac{3n}{4}$	$\frac{3n}{4} - 1$
$n \equiv 1 (mod 4)$	$\frac{3n-3}{4}$	$\frac{3n-3}{4}$	$\frac{3n-3}{4}$	$\frac{3n-3}{4}$
$n \equiv 2 (mod 4)$	$\frac{3n-2}{4}$	$\frac{3n-2}{4}$	$\frac{3n-2}{4}$	$\frac{3n-6}{4}$
$n \equiv 3 \pmod{4}$	$\frac{3n-1}{4}$	$\frac{3n-5}{4}$	$\frac{3n-1}{4}$	$\frac{3n-5}{4}$
Table 2				

Example 2.4. Group mean cordial labeling of $S'(P_7)$ is given in Figure 2

Theorem 2.5. The splitting graph of cycle, $S'(C_n)$ is a group mean cordial graph for every n.

Proof. Let $C_n : u_1u_2...u_nu_1$ be a cycle. Let $v_1, v_2, ..., v_n$ be the newly added vertices. $E(S'(C_n)) = E(C_n) \cup \{u_{j-1}v_j, u_jv_{j-1} : 2 \le j \le n\} \cup \{u_1v_n, u_nv_1\}$. The number of vertices and edges in $S'(C_n)$ are 2n and 3n respectively. Define $f : V(S'(C_n)) \longrightarrow \{1, -1, i, -i\}$ as follows. **Case 1:** $n \equiv 0, 3 \pmod{4}$ Label the vertices of $S'(C_n)$ as in Theorem 2.3. **Case 2:** $n \equiv 1 \pmod{4}$

Assign the labels to the vertices $u_i, v_i (1 \le j \le n-1)$ as in

Theorem 2.3. Then assign the labels i, 1 to the vertices u_n , v_n respectively.

Case 3: $n \equiv 2 \pmod{4}$

Here also assign the labels to the vertices $u_j, v_j (1 \le j \le n-2)$ as in Theorem 2.3. Then assign the labels *i*, 1 respectively to the vertices u_{n-1}, u_n and -i, -1 to the vertices v_{n-1}, v_n respectively.

Table 1 in Theorem 2.3 and Table 3 estatablish that f	is a
group mean cordial labeling.	

Nature of n	$e_f(1)$	$e_f(2)$	$e_f(3)$	$e_f(4)$	
$n \equiv 0 (mod 4)$	$\frac{3n}{4}$	$\frac{3n}{4}$	$\frac{3n}{4}$	$\frac{3n}{4}$	
$n \equiv 1 (mod 4)$	$\frac{3n-3}{4}$	$\frac{3n+1}{4}$	$\frac{3n+1}{4}$	$\frac{3n+1}{4}$	
$n \equiv 2 \pmod{4}$	$\frac{3n-2}{4}$	$\frac{3n+2}{4}$	$\frac{3n+2}{4}$	$\frac{3n-2}{4}$	
$n \equiv 3 \pmod{4}$	$\frac{3n+3}{4}$	$\frac{3n-1}{4}$	$\frac{3n-1}{4}$	$\frac{3n-1}{4}$	
Table 3					

Theorem 2.6. The splitting graph of star, $S'(K_{1,n})$ is a group mean cordial graph iff $n \le 4$ and n = 6.

Proof. Let $V(K_{1,n}) = \{u, u_j : 1 \le j \le n\}$. Let $v, v_j (1 \le j \le n)$ be the newly added vertices. Then $E(S'(K_{1,n})) = \{uu_j, uv_j, vu_j : 1 \le j \le n\}$. Clearly this graph has 2n + 2 vertices and 3n edges.

For $n \le 4$, assign the labels *i*, 1 to the vertices *u*, *v* respectively. Next assign -1, 1, -i, 1 to the vertices u_1, u_2, u_3, u_4 respectively. Then assign -i, -1, i, -1 to the vertices v_1, v_2, v_3, v_4 respectively. By this labeling, we get $S'(K_{1,n})$ is a group mean corial graph when $n \le 4$.

The group mean cordial labeling of $S'(K_{1,6})$ is given in Figure 3

Now, assume $n \ge 5$ and $n \ne 6$. Let *f* be a group mean cordial labeling. First we consider the following cases.

(a) If f(u) = f(v) = 1 or -1. Then $e_f(4) = 0$.

(b) If f(u) = f(v) = i or -i. Then $e_f(1) = 0$.

It is clear that *u* and *v* doesn't get the same labels.

Without loss of generality, the following cases may arise.

(1) f(u) = 1 and f(v) = i.

(2) f(u) = -1 and f(v) = i.

(3) f(u) = i and f(v) = 1 or -1.

Case 1: $n \equiv 0 \pmod{4}$

Let n = 4s, s > 1. Here the splitting graph of $K_{1,n}$ has 8s + 2 vertices and 12s edges.

Clearly,
$$v_f(x) = 2s$$
 or $2s+1$, $x \in \{1, -1, i, -i\}$ and $e_f(j) = 3s$,
 $j \in \{1, 2, 3, 4\}$

Subcase 1.1: f(u) = 1 and f(v) = i.

In $S'(K_{1,n})$, at least 2*s* vertices are labeled with 1 and atleast 2*s* vertices are labeled with -1. Then there is at least 4s - 1 edges get the label 1. This implies, $e_f(1) \ge 4s - 1 > 3s$, for s > 1.

Subcase 1.2: f(u) = -1 and f(v) = i.

Here, at least 2*s* vertices are labeled with *i* and at least 2*s* vertices are labeled with -i. This implies, $e_f(3) \ge 4s - 1 > 3s$, for s > 1.

Subcase 1.3: f(u) = i and f(v) = 1 or -1.

Here, at least 2*s* vertices are labeled with *i* and at least 2*s* vertices are labeled with -i. This implies, $e_f(4) \ge 4s - 1 > 3s$, for s > 1.

Case 2: $n \equiv 1 \pmod{4}$

Let $n = 4s + 1, s \ge 1$. Then the splitting graph of $K_{1,n}$ has 8s + 4 vertices and 12s + 3 edges.

Clearly, $v_f(x) = 2s + 1$, for all $x \in \{1, -1, i, -i\}$ and $e_f(j) = 3s$ or 3s + 1, $j \in \{1, 2, 3, 4\}$.

Subcase 2.1: f(u) = 1 and f(v) = i.

In this subcase, 2s + 1 vertices are labeled with 1 and 2s + 1 vertices are labeled with -1. This implies, $e_f(1) = 4s + 1 > 3s + 1$, for $s \ge 1$.

Subcase 2.2: f(u) = -1 and f(v) = i.

Here, 2s + 1 vertices are labeled with *i* and 2s + 1 vertices are labeled with -i. This implies, $e_f(3) = 4s + 1 > 3s + 1$, for $s \ge 1$.

Subcase 2.3: f(u) = i and f(v) = 1 or -1.

Here, 2s + 1 vertices are labeled with *i* and 2s + 1 vertices are labeled with -i. This implies, $e_f(4) = 4s + 1 > 3s + 1$, for $s \ge 1$.

Case 3: $n \equiv 2 \pmod{4}$

Let n = 4s + 2, s > 1. Clearly, the order and size of the splitting graph of $K_{1,n}$ are 8s + 6 and 12s + 6 respectively.

Here, $v_f(x) = 2s + 1$ or 2s + 2, $x \in \{1, -1, i, -i\}$ and $e_f(j) = 3s + 1$ or 3s + 2, $j \in \{1, 2, 3, 4\}$

Subcase 3.1: f(u) = 1 and f(v) = i.

In $S'(K_{1,n})$, at least 2s + 1 vertices are labeled with 1 and at least 2s + 1 vertices are labeled with -1. This implies, $e_f(1) \ge 4s + 1 > 3s + 2$, for s > 1.

Subcase 3.2: f(u) = -1 and f(v) = i.

Here, at least 2s + 1 vertices are labeled with *i* and at least 2s + 1 vertices are labeled with -i. This implies, $e_f(3) \ge 1$

4s + 1 > 3s + 2, for s > 1.

Subcase 3.3: f(u) = i and f(v) = 1 or -1.

Here, at least 2s + 1 vertices are labeled with *i* and at least 2s + 1 vertices are labeled with -i. Then, $e_f(4) \ge 4s + 1 > 3s + 2$, for s > 1.

Case 4: $n \equiv 3 \pmod{4}$

Let n = 4s + 3, $s \ge 1$. Then the splitting graph of $K_{1,n}$ has 8s + 8 vertices and 12s + 9 edges.

Clearly, $v_f(x) = 2s + 2$, for all $x \in \{1, -1, i, -i\}$ and $e_f(j) = 3s + 2$ or 3s + 1, $j \in \{1, 2, 3, 4\}$.

Subcase 4.1: f(u) = 1 and f(v) = i.

In this subcase, 2s + 2 vertices are labeled with 1 and 2s + 2 vertices are labeled with -1. This implies, $e_f(1) = 4s + 3 > 3s + 3$, for $s \ge 1$.

Subcase 4.2: f(u) = -1 and f(v) = i.

Here, 2s + 2 vertices are labeled with *i* and 2s + 2 vertices are labeled with -i. Then, $e_f(3) = 4s + 3 > 3s + 3$, for $s \ge 1$. **Subcase 4.3:** f(u) = i and f(v) = 1 or -1.

Here, 2s + 2 vertices are labeled with *i* and 2s + 2 vertices are labeled with -i. This implies, $e_f(4) = 4s + 3 > 3s + 3$, for $s \ge 1$.

In each case, we get a contradiction.

Thus f is not a group mean cordial labeling for $n \ge 5$ and $n \ne 6$.

Theorem 2.7. The splitting graph of Comb, $S'(P_n \odot K_1)$ is a group mean cordial graph.

Proof. Let $V(P_n \odot K_1) = \{u_j, u'_j : 1 \le j \le n\}$. Then $E(P_n \odot K_1) = \{u_j u_{j+1} : 1 \le j \le n-1\} \cup \{u_j u'_j : 1 \le j \le n\}$. Let $v_1, v_2, ..., v_n$ and $v'_1, v'_2, ..., v'_n$ be the newly added vertices. Then $E(S'(P_n \odot K_1)) = E(P_n \odot K_1) \cup \{u_j v'_j, u'_j v_j : 1 \le j \le n\}$ $\cup \{u_{j-1} v'_j, u'_j v_{j-1} : 2 \le j \le n\}$. The order and size of $S'(P_n \odot K_1)$ are 4n and 6n - 3 respectively. Define $f : V(S'(P_n \odot K_1)) \longrightarrow \{1, -1, i, -i\}$ as follows:

$$f(u_j) = i; f(u'_j) = -i; f(v_j) = 1; f(v'_j) = -1 \text{ for } j \equiv 0, 2 \pmod{4}$$

$$f(u_j) = 1; f(u'_j) = -1; f(v_j) = i; f(v'_j) = -i \text{ for } j \equiv 1 \pmod{4}$$

$$f(u_j) = -1; f(u'_j) = 1; f(v_j) = i; f(v'_j) = -i \text{ for } j \equiv 3 \pmod{4}$$

By this labeling we get, $v_f(1) = v_f(-1) = v_f(i) = v_f(-i) = n$. Table 4 shows that $|e_f(x) - e_f(y)| \le 1$. Hence *f* is a group mean cordial labeling of the splitting graph of comb.

Nature of n	$e_f(1)$	$e_f(2)$	$e_f(3)$	$e_f(4)$	
$n \equiv 0 (mod 4)$	$\frac{6n-4}{4}$	$\frac{6n-4}{4}$	$\frac{6n}{4}$	$\frac{6n-4}{4}$	
$n \equiv 1, 2 \pmod{4}$	$\frac{6n-2}{4}$	$\frac{6n-2}{4}$	$\frac{6n-2}{4}$	$\frac{6n-6}{4}$	
$n \equiv 3 (mod 4)$	$\frac{6n-4}{4}$	$\frac{6n}{4}$	$\frac{6n-4}{4}$	$\frac{6n-4}{4}$	
Table 4					

Theorem 2.8. The splitting graph of the complete bipartite graph, $S'(K_{n,n})$ is a group mean cordial graph when n is even.

Proof. Let $V(K_{n,n}) = \{u_j, v_j : 1 \le j \le n\}$. Let $E(K_{n,n}) = \{u_i v_j : 1 \le i, j \le n\}$. Let u'_j, v'_j be the newly added vertices. Then $E(S'(K_{n,n})) = \{u_i v_j, u'_i v'_j, u'_i v_j : 1 \le i, j \le n\}$. Here the order and size of the graph are 4n and $3n^2$ respectively.

Define
$$f: V(S'(K_{n,n})) \longrightarrow \{1, -1, i, -i\}$$
 by,
 $f(u_j) = f(u'_j) = -1$
 $f(v_j) = f(v'_j) = 1$
 $f(u_{\frac{n}{2}+j}) = f(u'_{\frac{n}{2}+j}) = -i$
 $f(v_{\frac{n}{2}+j}) = f(v'_{\frac{n}{2}+j}) = i$,

for $1 \le j \le \frac{n}{2}$. By this labeling, we get $v_f(1) = v_f(-1) = v_f(i) = v_f(-i) = n$ and $e_f(1) = e_f(-1) = e_f(i) = e_f(-i) = e_f(1) = e_f(2) = e_f(3) = e_f(4) = \frac{3n^2}{4}$.

Hence f is a group mean cordial labeling when n is even.

References

- [1] S. Athisayanathan, R. Ponraj, and M. K. Karthik Chidambaram, Group a cordial labeling of Graphs, *International Journal of Applied Mathematical Sciences*, 10(1)(2017), 1–11.
- ^[2] I. Cahit, Cordial graphs a weaker version of graceful and harmonious graphs, *Ars Combin.*, 23(1987), 201–207.
- ^[3] c J. A. Gallian A Dynamic survey of Graph Labeling, *The Electronic Journal of Combinatories*, No. DS6, Dec 7(2015).
- [4] F. Harary, *Graph Theory*, Addison Wesley, Reading Mass, 1972.
- [5] R. Ponraj, M. Sivakumar, M. Sundaram, Mean cordial labeling of graphs, *Open Journal of Discrete Mathematics*, 2(2012), 145–148.
- [6] S. Somasundaram and R. Ponraj, Mean labeling of graphs, *Natl. Acad. Sci. Let.*, 26(2003), 210–213.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

