

https://doi.org/10.26637/MJM0804/0181

Group mean cordial labeling of some splitting graphs

R.N. Rajalekshmi ¹* and R. Kala ²

Abstract

Let *G* be a (p,q) graph and let *A* be a group. Let $f: V(G) \longrightarrow A$ be a map. For each edge *uv* assign the label $\overline{ }$ $o(f(u)) + o(f(v))$ $\frac{+o(f(v))}{2}$. Here $o(f(u))$ denotes the order of $f(u)$ as an element of the group A. Let I be the set of all integers that are labels of the edges of *G*. *f* is called a group mean cordial labeling if the following conditions hold:

(1) For $x, y \in A$, $|v_f(x) - v_f(y)| \le 1$, where $v_f(x)$ is the number of vertices labeled with x.

(2) For $i, j \in I$, $|e_f(i) − e_f(j)| ≤ 1$, where $e_f(i)$ denote the number of edges labeled with *i*.

A graph with a group mean cordial labeling is called a group mean cordial graph. In this paper, we take *A* as the group of fourth roots of unity and prove that, the splitting graphs of Path (P_n) , Cycle (C_n) , Comb $(P_n \odot K_1)$ and Complete Bipartite graph (*Kn*,*ⁿ* when *n* is even) are group mean cordial graphs. Also we characterized the group mean cordial labeling of the splitting graph of *K*1,*n*.

Keywords

Cordial labeling, mean labeling, group mean cordial labeling.

AMS Subject Classification

05C78.

¹*Research Scholar, Reg. No. 18224012092018, Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India*.

² *Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India*.

*Corresponding author: ¹ rajalekshmimoni@gmail.com; ² karthipyi91@yahoo.co.in

Article History: Received **18** June **2020**; Accepted **17** October **2020** ©2020 MJM.

1. Introduction

Graphs considered here are finite, undirected and simple.Terms not defined here are used in the sense of Harary [\[4\]](#page-3-1) and Gallian [\[3\]](#page-3-2). Somasundaram and Ponraj [\[6\]](#page-3-3) introduced the concept of mean labeling of graphs.

Definition 1.1. [\[6\]](#page-3-3) A graph *G* with *p* vertices and *q* edges is a mean graph if there is an injective function *f* from the vertices of *G* to 0,1,2,...,*q* such that when each edge *uv* is labeled with $\frac{f(u)+f(v)}{2}$ if $f(u)+f(v)$ is even and $\frac{f(u)+f(v)+1}{2}$ if $f(u) + f(v)$ is odd then the resulting edge labels are distinct.

Cahit [\[2\]](#page-3-4) introduced the concept of cordial labeling.

Definition 1.2. [\[2\]](#page-3-4) Let $f: V(G) \rightarrow \{0,1\}$ be any function. For each edge *xy* assign the label $|f(x) - f(y)|$. *f* is called a cordial labeling if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most 1. Also the number of edges labeled 0 and the number of edges labeled 1 differ by at most 1.

Ponraj et al. [\[5\]](#page-3-5) introduced mean cordial labeling of graphs.

Definition 1.3. [\[5\]](#page-3-5) Let *f* be a function from the vertex set $V(G)$ to $\{0, 1, 2\}$. For each edge *uv* assign the label $\frac{f(u)+f(v)}{2}$ $\frac{f(v)}{2}$. *f* is called a *mean cordial labeling* if $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$, *i*, *j* ∈ {0,1,2}, where *v_f* (*x*) and *e_f* (*x*) respectively denote the number of vertices and edges labeled with x ($x = 0, 1, 2$). A graph with a mean cordial labeling is called a mean cordial graph.

Athisayanathan et al. [\[1\]](#page-3-6) introduced the concept of group *A* cordial labeling.

Definition 1.4. [\[1\]](#page-3-6) Let *A* be a group. We denote the order of an element $a \in A$ by $o(a)$. Let $f : V(G) \to A$ be a function. For each edge *uv* assign the label 1 if $(o(f(u)), o(f(v))) =$ 1or 0 otherwise. *f* is called a group A Cordial labeling if $|v_f(a) - v_f(b)|$ ≤ 1 and $|e_f(0) - e_f(1)|$ ≤ 1, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labelled with an element *x* and number of edges labelled with $n(n = 0, 1)$. A graph which admits a group *A* Cordial labeling is called a group *A* Cordial graph.

Motivated by these , we define group mean cordial labeling of graphs.

For any real number *x*, we denoted by $|x|$, the greatest integer smaller than or equal to *x* and by $\lceil x \rceil$, we mean the smallest integer greater than or equal to *x*.

Definition 1.5. *The Splitting graph of G,S* ′ (*G*) *is obtained from G by adding for each vertex v of G a new vertex v* ′ *so that v*′ *is adjacent of every vertex that is adjacent to v.*

2. Main Results

Definition 2.1. *Let G be a* (*p*,*q*) *graph and let A be a group. Let* f *be a map from* $V(G)$ *to* A *. For each edge av assign the label* j $o(f(u)) + o(f(v))$ $\frac{+o(f(v))}{2}$. Let $\mathbb I$ be the set of all integers that *are labels of the edges of G. f is called group mean cordial labeling if the following conditions hold:*

(1) For *x*, *y* ∈ *A*, $|v_f(x) - v_f(y)|$ ≤ 1, *where* $v_f(x)$ *is the number of vertices labeled with x.*

(2) For $i, j \in I$ *,* $|e_f(i) - e_f(j)| ≤ 1$ *, where* $e_f(i)$ *denote the number of edges labeled with i.*

A graph with a group mean cordial labeling is called a group mean cordial graph.

In this paper, we take the group *A* as the group $\{1, -1, i, -i\}$ which is the group of fourth roots of unity, that is cyclic with generators *i* and −*i*.

Example 2.2. *The following is a simple example of a group mean cordial graph.*

Theorem 2.3. *The splitting graph of the path,* $S'(P_n)$ *is a group mean cordial graph for every n.*

Proof. Let $P_n: u_1u_2...u_n$ be a path. Let $v_1, v_2,..., v_n$ be the newly added vertices. Then $E(S'(P_n)) = E(P_n) \cup \{u_jv_{j+1} :$

1 ≤ *j* ≤ *n*} ∪ { u_jv_{j-1} : 2 ≤ *j* ≤ *n*}. Note that *S'*(P_n) has 2*n* vertices and 3*n*−3 edges. Define $f: V(S'(P_n)) \longrightarrow \{1, -1, i, -i\}$ as follows:

$$
f(u_j) = 1; f(v_j) = i \quad for \ j \equiv 1 \ (mod 4)
$$

$$
f(u_j) = -1; f(v_j) = -i \ for \ j \equiv 2 \ (mod 4)
$$

$$
f(u_j) = i; f(v_j) = 1 \quad for \ j \equiv 3 \ (mod 4)
$$

$$
f(u_j) = -i; f(v_j) = -1 \ for \ j \equiv 0 \ (mod 4)
$$

The following tables $1 \& 2$ $1 \& 2$ $1 \& 2$ prove that the function f is a group mean cordial labeling.

 \Box

Example 2.4. *Group mean cordial labeling of S* ′ (*P*7) *is given in Figure [2](#page-1-3)*

Theorem 2.5. *The splitting graph of cycle,* $S'(C_n)$ *is a group mean cordial graph for every n.*

Proof. Let C_n : $u_1u_2...u_nu_1$ be a cycle. Let $v_1, v_2,..., v_n$ be the newly added vertices. $E(S'(C_n)) = E(C_n) \cup \{u_{j-1}v_j, u_jv_{j-1} : j \in C_n\}$ $2 \leq j \leq n$ \cup $\{u_1v_n, u_nv_1\}$. The number of vertices and edges in $S'(C_n)$ are $2n$ and $3n$ respectively. Define $f: V(S'(C_n)) \longrightarrow$ {1,−1,*i*,−*i*} as follows. **Case 1:** $n \equiv 0.3 \pmod{4}$ Label the vertices of $S'(C_n)$ as in Theorem [2.3.](#page-1-4)

Case 2: $n \equiv 1 \pmod{4}$

Assign the labels to the vertices u_j , v_j (1 ≤ *j* ≤ *n* − 1) as in

Theorem [2.3.](#page-1-4) Then assign the labels *i*, 1 to the vertices u_n , v_n respectively.

Case 3: $n \equiv 2 \pmod{4}$

Here also assign the labels to the vertices u_j , v_j ($1 \le j \le n-2$) as in Theorem [2.3.](#page-1-4) Then assign the labels *i*,1 respectively to the vertices u_{n-1} , u_n and $-i$, -1 to the vertices v_{n-1} , v_n respectively.

 \Box

Theorem 2.6. *The splitting graph of star,* $S'(K_{1,n})$ *is a group mean cordial graph iff* $n \leq 4$ *and* $n = 6$ *.*

Proof. Let $V(K_{1,n}) = \{u, u_j : 1 \le j \le n\}$. Let $v, v_j (1 \le j \le n)$ be the newly added vertices. Then $E(S'(K_{1,n})) = \{uu_j, uv_j, vu_j\}$. $1 \leq j \leq n$. Clearly this graph has $2n + 2$ vertices and 3n edges.

For $n \leq 4$, assign the labels *i*, 1 to the vertices *u*, *v* respectively. Next assign -1 , 1 , $-i$, 1 to the vertices u_1 , u_2 , u_3 , u_4 respectively. Then assign $-i$, -1 , i , -1 to the vertices v_1 , v_2 , v_3 , v_4 respectively. By this labeling, we get $S'(K_{1,n})$ is a group mean corial graph when $n \leq 4$.

The group mean cordial labeling of $S'(K_{1,6})$ is given in Figure [3](#page-2-1)

Now, assume $n \geq 5$ and $n \neq 6$. Let *f* be a group mean cordial labeling. First we consider the following cases.

(a) If $f(u) = f(v) = 1$ or -1 . Then $e_f(4) = 0$.

(b) If $f(u) = f(v) = i$ or $-i$. Then $e_f(1) = 0$.

It is clear that *u* and *v* doesn't get the same labels.

Without loss of generality, the following cases may arise.

 $f(u) = 1$ and $f(v) = i$.

(2) $f(u) = -1$ and $f(v) = i$.

(3) $f(u) = i$ and $f(v) = 1$ or -1 .

Case 1: $n \equiv 0 \pmod{4}$

Let $n = 4s, s > 1$. Here the splitting graph of $K_{1,n}$ has $8s + 2$ vertices and 12*s* edges.

Clearly, $v_f(x) = 2s$ or $2s+1$, $x \in \{1, -1, i, -i\}$ and $e_f(j) = 3s$, *j* ∈ {1,2,3,4}

Subcase 1.1: $f(u) = 1$ and $f(v) = i$.

In $S'(K_{1,n})$, at least 2*s* vertices are labeled with 1 and at least 2*s* vertices are labeled with −1. Then there is at least 4*s*−1 edges get the label 1. This implies, $e_f(1) \geq 4s - 1 > 3s$, for $s > 1$.

Subcase 1.2: $f(u) = -1$ and $f(v) = i$.

Here, at least 2*s* vertices are labeled with *i* and at least 2*s* vertices are labeled with $-i$. This implies, $e_f(3) \geq 4s - 1 > 3s$, for $s > 1$.

Subcase 1.3: $f(u) = i$ and $f(v) = 1$ or -1 .

Here, at least 2*s* vertices are labeled with *i* and at least 2*s* vertices are labeled with $-i$. This implies, $e_f(4) \ge 4s - 1 > 3s$, for $s > 1$.

Case 2: $n \equiv 1 \pmod{4}$

Let $n = 4s + 1$, $s \ge 1$. Then the splitting graph of $K_{1,n}$ has $8s + 4$ vertices and $12s + 3$ edges.

Clearly, $v_f(x) = 2s + 1$, for all $x \in \{1, -1, i, -i\}$ and $e_f(j) =$ 3*s* or $3s + 1$, $j \in \{1, 2, 3, 4\}$.

Subcase 2.1: $f(u) = 1$ and $f(v) = i$.

In this subcase, $2s + 1$ vertices are labeled with 1 and $2s + 1$ vertices are labeled with -1 . This implies, $e_f(1) = 4s + 1$ $3s + 1$, for $s \ge 1$.

Subcase 2.2: $f(u) = -1$ and $f(v) = i$.

Here, $2s + 1$ vertices are labeled with *i* and $2s + 1$ vertices are labeled with $-i$. This implies, $e_f(3) = 4s + 1 > 3s + 1$, for $s \geq 1$.

Subcase 2.3: $f(u) = i$ and $f(v) = 1$ or -1 .

Here, $2s + 1$ vertices are labeled with *i* and $2s + 1$ vertices are labeled with $-i$. This implies, $e_f(4) = 4s + 1 > 3s + 1$, for $s \geq 1$.

Case 3: $n \equiv 2 \pmod{4}$

Let $n = 4s + 2$, $s > 1$. Clearly, the order and size of the splitting graph of $K_{1,n}$ are $8s+6$ and $12s+6$ respectively.

Here, $v_f(x) = 2s + 1$ or $2s + 2$, $x \in \{1, -1, i, -i\}$ and $e_f(j) =$ 3*s*+1 or 3*s*+2, *j* ∈ {1,2,3,4}

Subcase 3.1: $f(u) = 1$ and $f(v) = i$.

In $S'(K_{1,n})$, at least $2s + 1$ vertices are labeled with 1 and at least $2s + 1$ vertices are labeled with -1 . This implies, $e_f(1) \geq 4s + 1 > 3s + 2$, for $s > 1$.

Subcase 3.2: $f(u) = -1$ and $f(v) = i$.

Here, at least $2s + 1$ vertices are labeled with *i* and at least 2*s* + 1 vertices are labeled with $-i$. This implies, $e_f(3) \geq$

 $4s+1 > 3s+2$, for $s > 1$.

Subcase 3.3: $f(u) = i$ and $f(v) = 1$ or -1 .

Here, at least $2s + 1$ vertices are labeled with *i* and at least 2*s* + 1 vertices are labeled with $-i$. Then, $e_f(4) \ge 4s + 1$ $3s + 2$, for $s > 1$.

Case 4: $n \equiv 3 \pmod{4}$

Let $n = 4s + 3$, $s \ge 1$. Then the splitting graph of $K_{1,n}$ has $8s+8$ vertices and $12s+9$ edges.

Clearly, $v_f(x) = 2s + 2$, for all $x \in \{1, -1, i, -i\}$ and $e_f(j) =$ $3s+2$ or $3s+1$, $j \in \{1,2,3,4\}$.

Subcase 4.1: $f(u) = 1$ and $f(v) = i$.

In this subcase, $2s + 2$ vertices are labeled with 1 and $2s + 2$ vertices are labeled with -1 . This implies, $e_f(1) = 4s + 3$ $3s + 3$, for $s \ge 1$.

Subcase 4.2: $f(u) = -1$ and $f(v) = i$.

Here, $2s + 2$ vertices are labeled with *i* and $2s + 2$ vertices are labeled with $-i$. Then, $e_f(3) = 4s + 3 > 3s + 3$, for $s \ge 1$. **Subcase 4.3:** $f(u) = i$ and $f(v) = 1$ or -1 .

Here, $2s + 2$ vertices are labeled with *i* and $2s + 2$ vertices are labeled with $-i$. This implies, $e_f(4) = 4s + 3 > 3s + 3$, for $s > 1$.

In each case, we get a contradiction.

Thus *f* is not a group mean cordial labeling for $n \geq 5$ and \Box $n \neq 6$.

Theorem 2.7. *The splitting graph of Comb,* $S'(P_n \odot K_1)$ *is a group mean cordial graph.*

Proof. Let $V(P_n \odot K_1) = \{u_j, u'_j : 1 \le j \le n\}$. Then $E(P_n \odot K_1)$ *K*₁) = {*u_ju_{j+1}* : 1 ≤ *j* ≤ *n* − 1} ∪ {*u_ju'_j* : 1 ≤ *j* ≤ *n*}. Let v_1, v_2, \ldots, v_n and v'_1, v'_2, \ldots, v'_n be the newly added vertices. Then $E(S'(P_n \odot K_1)) = E(P_n \odot K_1) \cup \{u_j v'_j, u'_j v_j : 1 \le j \le n\}$ ∪ $\{u_{j-1}v'_j, u'_jv_{j-1} : 2 \le j \le n\}$. The order and size of $S'(P_n \odot$ *K*₁) are $4n$ and $6n - 3$ respectively. Define $f: V(S'(P_n \odot P))$ K_1)) \longrightarrow {1, -1, *i*, -*i*} as follows:

$$
f(u_j) = i; f(u'_j) = -i; f(v_j) = 1; f(v'_j) = -1 \text{ for } j \equiv 0, 2 \pmod{4}
$$

$$
f(u_j) = 1; f(u'_j) = -1; f(v_j) = i; f(v'_j) = -i \text{ for } j \equiv 1 \text{ (mod 4)}
$$

$$
f(u_j) = -1; f(u'_j) = 1; f(v_j) = i; f(v'_j) = -i \text{ for } j \equiv 3 \text{ (mod 4)}
$$

By this labeling we get, $v_f(1) = v_f(-1) = v_f(i) = v_f(-i)$ *n*. Table [4](#page-3-8) shows that $|e_f(x) - e_f(y)| \leq 1$. Hence *f* is a group mean cordial labeling of the splitting graph of comb.

Theorem 2.8. *The splitting graph of the complete bipartite graph, S* ′ (*Kn*,*n*) *is a group mean cordial graph when n is even.* *Proof.* Let $V(K_{n,n}) = \{u_j, v_j : 1 \le j \le n\}$. Let $E(K_{n,n}) =$ $\{u_iv_j : 1 \le i, j \le n\}$. Let *u*^{\prime} *j* , *v* ′ *j* be the newly added vertices. Then $E(S'(K_{n,n})) = \{u_i v_j, u_i v_j\}$ *j* ,*u* ′ i_iv_j : $1 \le i, j \le n$. Here the order and size of the graph are $4n$ and $3n^2$ respectively.

Define
$$
f: V(S'(K_{n,n})) \longrightarrow \{1, -1, i, -i\}
$$
 by,
\n $f(u_j) = f(u'_j) = -1$
\n $f(v_j) = f(v'_j) = 1$
\n $f(u_{\frac{n}{2}+j}) = f(u'_{\frac{n}{2}+j}) = -i$
\n $f(v_{\frac{n}{2}+j}) = f(v'_{\frac{n}{2}+j}) = i$,

for $1 \leq j \leq \frac{n}{2}$. By this labeling, we get $v_f(1) = v_f(-1) =$ $v_f(i) = v_f(-i) = n$ and $e_f(1) = e_f(-1) = e_f(i) = e_f(-i) = 0$ $e_f(1) = e_f(2) = e_f(3) = e_f(4) = \frac{3n^2}{4}$ $\frac{n^2}{4}$.

Hence *f* is a group mean cordial labeling when n is even.

 \Box

References

- [1] S. Athisayanathan, R. Ponraj, and M. K. Karthik Chidambaram, Group a cordial labeling of Graphs, *International Journal of Applied Mathematical Sciences*, 10(1)(2017), 1–11.
- [2] I. Cahit, Cordial graphs a weaker version of graceful and harmonious graphs, *Ars Combin.,* 23(1987), 201–207.
- [3] c J. A. Gallian A Dynamic survey of Graph Labeling, *The Electronic Journal of Combinatories*, No. DS6, Dec 7(2015).
- [4] F. Harary, *Graph Theory*, Addison Wesley, Reading Mass, 1972.
- [5] R. Ponraj, M. Sivakumar, M. Sundaram, Mean cordial labeling of graphs, *Open Journal of Discrete Mathematics*, 2(2012), 145–148.
- [6] S. Somasundaram and R. Ponraj, Mean labeling of graphs, *Natl. Acad. Sci. Let.*, 26(2003), 210–213.

 \Box