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Group mean cordial labeling of some splitting graphs
R.N. Rajalekshmi 1* and R. Kala 2

Abstract
Let G be a (p,q) graph and let A be a group. Let f : V (G)−→ A be a map. For each edge uv assign the label⌊

o( f (u))+o( f (v))
2

⌋
. Here o( f (u)) denotes the order of f (u) as an element of the group A. Let I be the set of all

integers that are labels of the edges of G. f is called a group mean cordial labeling if the following conditions
hold:
(1) For x,y ∈ A, |v f (x)− v f (y)| ≤ 1, where v f (x) is the number of vertices labeled with x .
(2) For i, j ∈ I, |e f (i)− e f ( j)| ≤ 1, where e f (i) denote the number of edges labeled with i.
A graph with a group mean cordial labeling is called a group mean cordial graph. In this paper, we take A as
the group of fourth roots of unity and prove that,the splitting graphs of Path (Pn), Cycle(Cn), Comb(Pn ⊙K1) and
Complete Bipartite graph (Kn,n when n is even ) are group mean cordial graphs. Also we characterized the group
mean cordial labeling of the splitting graph of K1,n.
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1. Introduction
Graphs considered here are finite, undirected and simple.Terms
not defined here are used in the sense of Harary [4] and Gal-
lian [3]. Somasundaram and Ponraj [6] introduced the concept
of mean labeling of graphs.

Definition 1.1. [6] A graph G with p vertices and q edges
is a mean graph if there is an injective function f from the
vertices of G to 0,1,2, ...,q such that when each edge uv is
labeled with f (u)+ f (v)

2 if f (u)+ f (v) is even and f (u)+ f (v)+1
2 if

f (u)+ f (v) is odd then the resulting edge labels are distinct.

Cahit [2] introduced the concept of cordial labeling.

Definition 1.2. [2] Let f : V (G) → {0,1} be any function.
For each edge xy assign the label | f (x)− f (y)|. f is called a
cordial labeling if the number of vertices labeled 0 and the
number of vertices labeled 1 differ by at most 1. Also the
number of edges labeled 0 and the number of edges labeled 1
differ by at most 1.

Ponraj et al. [5] introduced mean cordial labeling of
graphs.

Definition 1.3. [5] Let f be a function from the vertex set
V (G) to {0,1,2}. For each edge uv assign the label

⌈
f (u)+ f (v)

2

⌉
.

f is called a mean cordial labeling if
∣∣v f (i)− v f ( j)

∣∣≤ 1 and∣∣e f (i)− e f ( j)
∣∣ ≤ 1, i, j ∈ {0,1,2}, where v f (x) and e f (x)

respectively denote the number of vertices and edges labeled
with x (x = 0,1,2). A graph with a mean cordial labeling is
called a mean cordial graph.

Athisayanathan et al. [1] introduced the concept of group
A cordial labeling.
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Definition 1.4. [1] Let A be a group. We denote the order
of an element a ∈ A by o(a). Let f : V (G)→ A be a function.
For each edge uv assign the label 1 if (o( f (u)),o( f (v))) =
1or 0 otherwise. f is called a group A Cordial labeling if
|v f (a)− v f (b)| ≤ 1 and |e f (0)− e f (1)| ≤ 1, where v f (x) and
e f (n) respectively denote the number of vertices labelled with
an element x and number of edges labelled with n(n = 0,1).
A graph which admits a group A Cordial labeling is called a
group A Cordial graph.

Motivated by these , we define group mean cordial label-
ing of graphs.

For any real number x, we denoted by ⌊x⌋, the greatest
integer smaller than or equal to x and by ⌈x⌉, we mean the
smallest integer greater than or equal to x.

Definition 1.5. The Splitting graph of G,S′(G) is obtained
from G by adding for each vertex v of G a new vertex v′ so
that v′ is adjacent of every vertex that is adjacent to v.

2. Main Results
Definition 2.1. Let G be a (p,q) graph and let A be a group.
Let f be a map from V (G) to A. For each edge uv assign the

label
⌊

o( f (u))+o( f (v))
2

⌋
. Let I be the set of all integers that

are labels of the edges of G. f is called group mean cordial
labeling if the following conditions hold:
(1) For x,y∈A, |v f (x)−v f (y)| ≤ 1, where v f (x) is the number
of vertices labeled with x.
(2) For i, j ∈ I, |e f (i)− e f ( j)| ≤ 1, where e f (i) denote the
number of edges labeled with i.
A graph with a group mean cordial labeling is called a group
mean cordial graph.

In this paper, we take the group A as the group {1,−1, i,−i}
which is the group of fourth roots of unity, that is cyclic with
generators i and −i.

Example 2.2. The following is a simple example of a group
mean cordial graph.
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Figure 1

Theorem 2.3. The splitting graph of the path, S′(Pn) is a
group mean cordial graph for every n.

Proof. Let Pn : u1u2...un be a path. Let v1,v2, ...,vn be the
newly added vertices. Then E(S′(Pn)) = E(Pn)∪{u jv j+1 :

1 ≤ j ≤ n}∪{u jv j−1 : 2 ≤ j ≤ n}. Note that S′(Pn) has 2n
vertices and 3n−3 edges.
Define f : V (S′(Pn))−→ {1,−1, i,−i} as follows:

f (u j) = 1 ; f (v j) = i f or j ≡ 1 (mod4)

f (u j) =−1; f (v j) =−i f or j ≡ 2 (mod4)

f (u j) = i ; f (v j) = 1 f or j ≡ 3 (mod4)

f (u j) =−i; f (v j) =−1 f or j ≡ 0 (mod4)

The following tables 1 & 2 prove that the function f is a group
mean cordial labeling.

Nature of n v f (1) v f (−1) v f (i) v f (−i)

n is odd n+1
2

n−1
2

n+1
2

n−1
2

n is even n
2

n
2

n
2

n
2

Table 1

Nature of n e f (1) e f (2) e f (3) e f (4)

n ≡ 0 (mod 4) 3n
4 −1 3n

4 −1 3n
4

3n
4 −1

n ≡ 1 (mod 4) 3n−3
4

3n−3
4

3n−3
4

3n−3
4

n ≡ 2 (mod 4) 3n−2
4

3n−2
4

3n−2
4

3n−6
4

n ≡ 3 (mod 4) 3n−1
4

3n−5
4

3n−1
4

3n−5
4

Table 2

Example 2.4. Group mean cordial labeling of S′(P7) is given
in Figure 2
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Figure 2

Theorem 2.5. The splitting graph of cycle, S′(Cn) is a group
mean cordial graph for every n.

Proof. Let Cn : u1u2...unu1 be a cycle. Let v1,v2, ...,vn be the
newly added vertices. E(S′(Cn)) = E(Cn)∪{u j−1v j,u jv j−1 :
2 ≤ j ≤ n}∪{u1vn,unv1}. The number of vertices and edges
in S′(Cn) are 2n and 3n respectively. Define f : V (S′(Cn))−→
{1,−1, i,−i} as follows.
Case 1: n ≡ 0,3 (mod 4)
Label the vertices of S′(Cn) as in Theorem 2.3.
Case 2: n ≡ 1 (mod 4)
Assign the labels to the vertices u j,v j(1 ≤ j ≤ n− 1) as in

2353
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Theorem 2.3. Then assign the labels i,1 to the vertices un,vn
respectively.
Case 3: n ≡ 2 (mod 4)
Here also assign the labels to the vertices u j,v j(1 ≤ j ≤ n−2)
as in Theorem 2.3. Then assign the labels i,1 respectively
to the vertices un−1,un and −i,−1 to the vertices vn−1,vn re-
spectively.
Table 1 in Theorem 2.3 and Table 3 estatablish that f is a
group mean cordial labeling.

Nature of n e f (1) e f (2) e f (3) e f (4)

n ≡ 0 (mod 4) 3n
4

3n
4

3n
4

3n
4

n ≡ 1 (mod 4) 3n−3
4

3n+1
4

3n+1
4

3n+1
4

n ≡ 2 (mod 4) 3n−2
4

3n+2
4

3n+2
4

3n−2
4

n ≡ 3 (mod 4) 3n+3
4

3n−1
4

3n−1
4

3n−1
4

Table 3

Theorem 2.6. The splitting graph of star, S′(K1,n) is a group
mean cordial graph iff n ≤ 4 and n = 6.

Proof. Let V (K1,n) = {u,u j : 1 ≤ j ≤ n}. Let v,v j(1 ≤ j ≤ n)
be the newly added vertices. Then E(S

′
(K1,n))= {uu j,uv j,vu j :

1 ≤ j ≤ n}. Clearly this graph has 2n+ 2 vertices and 3n
edges.
For n ≤ 4, assign the labels i,1 to the vertices u,v respectively.
Next assign −1,1,−i,1 to the vertices u1,u2,u3,u4 respec-
tively. Then assign −i,−1, i,−1 to the vertices v1,v2,v3,v4
respectively. By this labeling, we get S′(K1,n) is a group mean
corial graph when n ≤ 4.
The group mean cordial labeling of S′(K1,6) is given in Figure
3
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Figure 3

Now, assume n ≥ 5 and n ̸= 6.
Let f be a group mean cordial labeling.

First we consider the following cases.
(a) If f (u) = f (v) = 1 or −1. Then e f (4) = 0.
(b) If f (u) = f (v) = i or −i. Then e f (1) = 0.
It is clear that u and v doesn’t get the same labels.
Without loss of generality, the following cases may arise.
(1) f (u) = 1 and f (v) = i.
(2) f (u) =−1 and f (v) = i.
(3) f (u) = i and f (v) = 1 or −1.
Case 1: n ≡ 0 (mod 4)
Let n = 4s,s > 1. Here the splitting graph of K1,n has 8s+2
vertices and 12s edges.
Clearly, v f (x)= 2s or 2s+1, x∈{1,−1, i,−i} and e f ( j)= 3s,
j ∈ {1,2,3,4}
Subcase 1.1: f (u) = 1 and f (v) = i.
In S

′
(K1,n), at least 2s vertices are labeled with 1 and atleast

2s vertices are labeled with −1. Then there is at least 4s−1
edges get the label 1. This implies, e f (1)≥ 4s−1 > 3s, for
s > 1.
Subcase 1.2: f (u) =−1 and f (v) = i.
Here, at least 2s vertices are labeled with i and at least 2s
vertices are labeled with −i. This implies, e f (3)≥ 4s−1> 3s,
for s > 1.
Subcase 1.3: f (u) = i and f (v) = 1 or −1.
Here, at least 2s vertices are labeled with i and at least 2s
vertices are labeled with −i. This implies, e f (4)≥ 4s−1> 3s,
for s > 1.
Case 2: n ≡ 1 (mod 4)
Let n = 4s+ 1,s ≥ 1. Then the splitting graph of K1,n has
8s+4 vertices and 12s+3 edges.
Clearly, v f (x) = 2s+1, for all x ∈ {1,−1, i,−i} and e f ( j) =
3s or 3s+1, j ∈ {1,2,3,4}.
Subcase 2.1: f (u) = 1 and f (v) = i.
In this subcase, 2s+1 vertices are labeled with 1 and 2s+1
vertices are labeled with −1. This implies, e f (1) = 4s+1 >
3s+1, for s ≥ 1.
Subcase 2.2: f (u) =−1 and f (v) = i.
Here, 2s+1 vertices are labeled with i and 2s+1 vertices are
labeled with −i. This implies, e f (3) = 4s+ 1 > 3s+ 1, for
s ≥ 1.
Subcase 2.3: f (u) = i and f (v) = 1 or −1.
Here, 2s+1 vertices are labeled with i and 2s+1 vertices are
labeled with −i. This implies, e f (4) = 4s+ 1 > 3s+ 1, for
s ≥ 1.
Case 3: n ≡ 2 (mod 4)
Let n= 4s+2,s> 1. Clearly,the order and size of the splitting
graph of K1,n are 8s+6 and 12s+6 respectively.
Here, v f (x) = 2s+1 or 2s+2, x ∈ {1,−1, i,−i} and e f ( j) =
3s+1 or 3s+2, j ∈ {1,2,3,4}
Subcase 3.1: f (u) = 1 and f (v) = i.
In S

′
(K1,n), at least 2s+ 1 vertices are labeled with 1 and

at least 2s+ 1 vertices are labeled with −1. This implies,
e f (1)≥ 4s+1 > 3s+2, for s > 1.
Subcase 3.2: f (u) =−1 and f (v) = i.
Here, atleast 2s+ 1 vertices are labeled with i and at least
2s+ 1 vertices are labeled with −i. This implies, e f (3) ≥

2354



Group mean cordial labeling of some splitting graphs — 2355/2355

4s+1 > 3s+2, for s > 1.
Subcase 3.3: f (u) = i and f (v) = 1 or −1.
Here, at least 2s+ 1 vertices are labeled with i and at least
2s+1 vertices are labeled with −i. Then, e f (4) ≥ 4s+1 >
3s+2, for s > 1.
Case 4: n ≡ 3 (mod 4)
Let n = 4s+ 3,s ≥ 1. Then the splitting graph of K1,n has
8s+8 vertices and 12s+9 edges.
Clearly, v f (x) = 2s+2, for all x ∈ {1,−1, i,−i} and e f ( j) =
3s+2 or 3s+1, j ∈ {1,2,3,4}.
Subcase 4.1: f (u) = 1 and f (v) = i.
In this subcase, 2s+2 vertices are labeled with 1 and 2s+2
vertices are labeled with −1. This implies, e f (1) = 4s+3 >
3s+3, for s ≥ 1.
Subcase 4.2: f (u) =−1 and f (v) = i.
Here, 2s+2 vertices are labeled with i and 2s+2 vertices are
labeled with −i. Then, e f (3) = 4s+3 > 3s+3, for s ≥ 1.
Subcase 4.3: f (u) = i and f (v) = 1 or −1.
Here, 2s+2 vertices are labeled with i and 2s+2 vertices are
labeled with −i. This implies, e f (4) = 4s+ 3 > 3s+ 3, for
s ≥ 1.
In each case, we get a contradiction.
Thus f is not a group mean cordial labeling for n ≥ 5 and
n ̸= 6.

Theorem 2.7. The splitting graph of Comb, S′(Pn ⊙K1) is a
group mean cordial graph.

Proof. Let V (Pn ⊙K1) = {u j,u′j : 1 ≤ j ≤ n}. Then E(Pn ⊙
K1) = {u ju j+1 : 1 ≤ j ≤ n− 1} ∪ {u ju′j : 1 ≤ j ≤ n}. Let
v1,v2, ...,vn and v′1,v

′
2, ...,v

′
n be the newly added vertices. Then

E(S′(Pn ⊙ K1)) = E(Pn ⊙ K1) ∪ {u jv′j,u
′
jv j : 1 ≤ j ≤ n}

∪{u j−1v′j,u
′
jv j−1 : 2 ≤ j ≤ n}. The order and size of S′(Pn ⊙

K1) are 4n and 6n − 3 respectively. Define f : V (S′(Pn ⊙
K1))−→ {1,−1, i,−i} as follows:

f (u j)= i; f (u′j)=−i; f (v j)= 1; f (v′j)=−1 f or j ≡ 0,2(mod 4)

f (u j)= 1; f (u′j)=−1; f (v j)= i; f (v′j)=−i f or j ≡ 1(mod 4)

f (u j)=−1; f (u′j)= 1; f (v j)= i; f (v′j)=−i f or j ≡ 3(mod 4)

By this labeling we get, v f (1) = v f (−1) = v f (i) = v f (−i) =
n. Table 4 shows that |e f (x)− e f (y)| ≤ 1. Hence f is a group
mean cordial labeling of the splitting graph of comb.

Nature of n e f (1) e f (2) e f (3) e f (4)

n ≡ 0 (mod 4) 6n−4
4

6n−4
4

6n
4

6n−4
4

n ≡ 1,2 (mod 4) 6n−2
4

6n−2
4

6n−2
4

6n−6
4

n ≡ 3 (mod 4) 6n−4
4

6n
4

6n−4
4

6n−4
4

Table 4

Theorem 2.8. The splitting graph of the complete bipartite
graph, S′(Kn,n) is a group mean cordial graph when n is even.

Proof. Let V (Kn,n) = {u j,v j : 1 ≤ j ≤ n}. Let E(Kn,n) =

{uiv j : 1 ≤ i, j ≤ n}. Let u
′
j,v

′
j be the newly added vertices.

Then E(S′(Kn,n)) = {uiv j,uiv
′
j,u

′
iv j : 1 ≤ i, j ≤ n}. Here the

order and size of the graph are 4n and 3n2 respectively.

Define f : V (S′(Kn,n))−→ {1,−1, i,−i} by,

f (u j) = f (u′j) =−1

f (v j) = f (v′j) = 1

f (u n
2+ j) = f (u′n

2+ j) =−i

f (v n
2+ j) = f (v′n

2+ j) = i,

for 1 ≤ j ≤ n
2 . By this labeling, we get v f (1) = v f (−1) =

v f (i) = v f (−i) = n and e f (1) = e f (−1) = e f (i) = e f (−i) =
e f (1) = e f (2) = e f (3) = e f (4) = 3n2

4 .
Hence f is a group mean cordial labeling when n is even.
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