

https://doi.org/10.26637/MJM0804/0183

2-Vertex self switching of umbrella graph

C. Jayasekaran ^{1*}, A. Vinoth Kumar ² and M. Ashwin Shijo³

Abstract

By a graph $G = (V, E)$ we mean a finite undirected graph without loops or multiple edges. Let G be a graph and $\sigma\subseteq V$ be a non-empty subset of $V.$ Then σ is said to be a self switching of G if and only if $G\cong G^{\sigma}.$ It can also be referred to as |σ|-vertex self-switching. The set of all self switching of the graph G with cardinality *k* is represented by $SS_k(G)$ and its cardinality by $ss_k(G)$. A vertex v of a graph G is said to be self vertex switching if $G \cong G^v$. The set of all self vertex switchings of G is denoted by $SS_1(G)$ and its cardinality is given by $ss_1(G)$. If $|\sigma| = 2$, we call it as a 2-vertex self switching. The set of all 2-vertex switchings of *G* is denoted by $SS_2(G)$ and its cardinality is given by $ss₂(G)$. In this paper we find the number of 2-vertex self switching vertices for the umbrella graph $U_{m,n}$.

Keywords

2-vertex switching, 2-vertex self switching, Umbrella graph.

AMS Subject Classification

05C07, 05CXX.

¹*Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil-629003, Kanyakumari District, Tamil Nadu, India.*

²*Research Scholar, Reg No. 20123132091003, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil-629003, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti-Tirunelveli-627012.*

³*Research Scholar, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil-629003, Kanyakumari District, Tamil Nadu, India.* ***Corresponding author**: 1 jayacpkc@gmail.com; ² alagarrvinoth@gmail.com; ³ashwin1992mas@gmail.com

Article History: Received **12** August **2020**; Accepted **25** November **2020** ©2020 MJM.

Contents

1. Introduction

By a graph *G* we mean a finite undirected simple graph. The degree of a vertex v in a graph G is the number of edges incident with *v*. The degree of *v* is represented by $d_G(v)$. JJ Seidel made a brief survey of two graphs in [\[9\]](#page-9-0). In [\[8\]](#page-9-1) Lint and Seidel introduces the vertex switching. For a finite undirected graph $G(V, E)$ and a subset $S \subset V$, the switching of *G* by *S* is defined as the graph $G^{S}(V, E')$ which is obtained from G by removing all edges between *S* and its complement *V*–*S* and adding as edges all non edges between *S* and *V* −*S*. For $S = \{v\}$, we write G^v instead of $G^{\{v\}}$ and the corresponding switching is called as vertex switching [\[3\]](#page-8-1). Hage and Harju have proved that a switching class [*G*] contains a hamiltonian graph if and only if G is not a complete bipartite graph of odd order in [\[6,](#page-8-2) [7\]](#page-8-3).

The concept of 2−vertex self switchings of graphs was introduced by Jayasekaran, Christabel Sudha and Ashwin Shijo and number of 2-vertex self switching in some special graphs were studied in [\[1\]](#page-8-4). Selvam Avadayappan and Bhuvaneshwari studied more about self vertex switching in [\[10\]](#page-9-2) Let *G* be a graph and let $\sigma \subset V$ be a non-empty subset of *V*. σ is said to be a self switching if $G \cong G^{\sigma}$ where G^{σ} is obtained from G by removing all edges between σ and $V - \sigma$ and adding edges between all non-adjacent vertices of σ and *V* − σ . We also call it as $|\sigma|$ vertex self switching. When $|\sigma| = 2$, we call it as 2-vertex self switching. The set of all 2-vertex self switching sets of a graph *G* is denoted by $SS_2(G)$ and its cardinality by $ss_2(G)$. In [\[4\]](#page-8-5), Sampathkumar introduced duplicate graphs. Jayasekaran and Ashwin Shijo [\[2\]](#page-8-6) introduced the concept of anti-duplication self vertex switching. For basic definitions, we refer F Harrary [\[5\]](#page-8-7).

In this paper we find the number of 2-vertex self switching vertices for the umbrella graph $U_{m,n}$.

2. 2-Vertex Self Switchings

Here we recall the theorems which are used in the subsequent sections.

Theorem 2.1. *[\[1\]](#page-8-4) If* $\sigma = \{u, v\} \subseteq V$ *is a 2-vertex self switch-* \int *ing of a graph G, then* $d_G(u) + d_G(v) = \begin{cases} p & \text{if } uv \in E(G) \\ 0 & \text{if } v \neq 0 \end{cases}$ $p-2$ *if uv* $\notin E(G)$.

Theorem 2.2. *[\[1\]](#page-8-4) Let G be a connected graph and let w be a vertex of degree 2, adjacent to u and v. Then* $\sigma = \{u, v\}$ *is not a 2-vertex self switching of G.*

3. 2-Vertex Self Switching of Umberlla Graph

Definition 3.1. *Consider the paths* P_m : $v_1v_2...v_m$ *and* P_n : *u*₁*u*₂...*u*_{*n*}. For $1 \le i \le m$, join *u*₁ *with v*_{*i*}. The resultant *graph is the umbrella graph* $G = U(m,n)$ *with vertex set* $V(G) = \{v_i, u_j : 1 \le i \le m, 1 \le j \le n\}$ *and edge set* $E(G) =$ $\{v_i v_{i+1}, u_j u_{j+1}, u_1 v_k : 1 \le i \le m-1, 1 \le j \le n-1, 1 \le k \le m\}.$ $Clearly, p = |V(G)| = m + n$ and $q = |E(G)| = 2m + n - 2$.

Example 3.2. *The umbrella graph U*(5,3) *is given in figure [1](#page-1-1)*

Proof. Consider the paths P_m : $v_1v_2...v_m$ and P_n : $u_1u_2...u_n$. For $1 \le i \le m$, join u_1 with v_i . The resultant graph is the umbrella graph $G = U(m, n)$ with vertex set $V(G) = \{v_i, u_j : 1 \leq j \}$ $i \leq m, 1 \leq j \leq n$ and edge set $E(G) = \{v_i v_{i+1}, u_j u_{j+1}, u_1 v_k\}$ 1 ≤ *i* ≤ *m* − 1,1 ≤ *j* ≤ *n* − 1,1 ≤ *k* ≤ *m*}. Clearly, *p* = $|V(G)| = m + n$ and $q = |E(G)| = 2m + n - 2$. Also $d_G(v_1) =$ $2 = d_G(v_n)$ and $d_G(v_i) = 3, 2 \le i \le m-1, d_G(u_1) = m+1$, $d_G(u_n) = 1$ and $d_G(u_i) = 2, 2 \leq j \leq n-1$. Let $\sigma = \{u, v\} \subseteq$ *V*(*G*). Then *uv* ∈ *E*(*G*) or *uv* ∉ *E*(*G*). Also $d_G(u) + d_G(v)$ ∈ ${3,4,5,6,m+2,m+3,m+4}$. Since $m, n \ge 2, p \ge 4$. Case 1. $uv \in E(G)$

By Theorem [2.1](#page-1-2), if $\sigma = \{u, v\}$ is a 2-vertex self switching of *G*, then $d_G(u) + d_G(v) = p = m + n$. If $n > 4$, then $d_G(u) + d_G(v) = p = m + n > m + 4$ which is not possible and thereby $2 \leq n \leq 4$. Subcase 1.a. $n = 2$

Subcase 1.a.a. $m = 2$

The graph $G = U(2, 2)$ is given in figure [2.](#page-1-3) Since $p = 4$, $d_G(u) + d_G(v) = p = 4$ implies that $uv \in \{u_1u_2, v_1v_2\}.$ The graphs $G^{\{u_1, u_2\}}$ and $G^{\{v_1, v_2\}}$ are given in figures [3](#page-1-4) and [4.](#page-1-5) Clearly, $G^{\{u_1, u_2\}} \cong G \cong G^{\{u_1, u_2\}}$ and hence $\{u_1, u_2\}$ and $\{v_1, v_2\}$ are 2-vertex self switchings of $U(2,2)$.

Subcase 1.a.b. $m = 3$

The graph $G = U(3,2)$ is given in figure [5](#page-1-6) (a). Now $p = m + n = 5$ and so $d_G(u) + d_G(v) = 5$ implies that $uv \in \{u_1u_2, v_1v_2, v_2v_3\}$. Clearly $G^{\{v_1, v_2\}} \cong G^{\{v_2, v_3\}}$. The graphs $G^{\{u_1, u_2\}}$ and $G^{\{v_1, v_2\}}$ are given in figure [5](#page-1-6) (b) and (c). Since *G* $\{v_1, v_2\}$ has no vertex of degree 1, $G^{\{v_1, v_2\}} \not\cong G$ and so $\{v_1, v_2\}$ and $\{v_2, v_3\}$ are not 2-vertex self switchings of *G*. Clearly, *G* $G^{\{u_1, u_2\}} \cong G$ and so $\{u_1, u_2\}$ is a 2-vertex self switching of *U*(3,2).

Subcase 1.a.c. $m = 4$

The graph $G = U(4,2)$ is given in figure [6.](#page-2-0) Then $p = m + n = 6$ and so $d_G(u) + d_G(v) = p = 6$ implies that $uv \in \{u_1u_2, v_2v_3\}$. The graphs $G^{\{u_1, u_2\}}$ and $G^{\{v_2, v_3\}}$ are given in figure [7](#page-2-1) and [8,](#page-2-2) repectively.

Since $G^{\{v_1, v_2\}}$ has no vertex of degree 1 and G has

The graph $G = U(m, 2)$ is given in figure [9.](#page-2-3) Here

a vertex of degree 1, $G^{\{v_1, v_2\}} \not\cong G$. Clearly, $G^{\{u_1, u_2\}} \cong G$ and thereby $\{u_1, u_2\}$ is a 2-vertex self switching of $U(4, 2)$.

 $p = m + 2$ and so $d_G(u) + d_G(v) = p = m + 2$ implies that *uv* is the edge u_1u_2 . The graph $G^{\{u_1, u_2\}}$ is given in figure [10](#page-2-4) which is isomorphic to *G* and so $\{u_1, u_2\}$ is a 2- vertex self

Subcase 1.a.d. *m* ≥ 5

switching of $G = U(m, 2)$.

Subcase 1.b. $n = 3$

Subcase 1.b.a. $m = 2$

The graph $G = U(2,3)$ is given in figure [11.](#page-2-5) Now $p = m + n = 5$ and so $d_G(u) + d_G(v) = p = 5$ implies that $uv \in$ ${u_1u_2, u_1v_1, u_1v_2}$. Clearly, $G^{(\bar{u}_1, v_1)} \cong G^{\{u_1, v_2\}}$. The vertices u_1 and v_1 and the vertices u_1 and v_2 are adjacent to a vertex of degree 2 in *G* and thereby Theorem [2.2,](#page-1-7) $\{u_1, v_1\}$ and $\{u_1, v_2\}$ are not 2-vertex self switchings of *G*. The graph $G^{\{u_1, u_2\}}$ is given in figure [12](#page-2-6) which is isomorphiuc to *G*. Hence, $\{u_1, u_2\}$ is a 2-vertex self switching of $U(2,3)$.

 v_1 v_2 *u*1 *u*2 *u*3 **Figure 11.** $G = U(2,3)$ *v*¹ *v*² *u*1 *u*2 *u*3 **Figure 12.** $G^{\{u_1, u_2\}}$

Subcase 1.b.b. $m = 3$

The graph $G = U(3,3)$ is given in figure [13.](#page-3-0) Now $p = m + n = 6$ and so $d_G(u) + d_G(v) = p = 6$ implies that $uv \in \{u_1u_2, u_1v_1, u_1v_3\}.$ Clearly, $G^{\{u_1, v_1\}} \cong G^{\{u_1, v_3\}}.$ The graphs $G^{\{u_1, u_2\}}$ and $G^{\{u_1, v_1\}}$ are given in figures [14](#page-3-1) (*a*) and 14 (b) , respectively. The graph $G^{\{u_1, v_1\}} \cong G$ and an isomorphism *f* between *G* and $G^{\{u_1, v_1\}}$ is given by $f(v_1) = u_1, f(v_2) =$ $u_3, f(v_3) = u_2, f(u_1) = v_1, f(u_2) = v_3$ and $f(u_3) = v_2$. Hence $\{u_1, v_1\}$ and $\{u_1, v_3\}$ are 2-vertex self switchings of $U(3,3)$. Also $\{u_1, u_2\}$ is a 2-vertex self switching of $U(3,3)$ since $G^{\{u_1, u_2\}} \cong G$.

Subcase 1.b.c. $m \geq 4$

The graph $G = U(m, 3)$ is given in figure [15.](#page-3-2) Hence $p = m+3$ and so $d_G(u) + d_G(v) = p = m+3$ implies that $uv \in \{u_1u_2, u_1v_1, u_1v_m\}$. Clearly, $G^{\{u_1, v_1\}} \cong G^{\{u_1, v_m\}}$. The graphs $G^{\{u_1, v_1\}}$ and $G^{\{u_1, u_2\}}$ are given in figures [16](#page-3-3) and [17,](#page-3-4) respectively.

Now *G* has a vertex of degree 1 which is adjacent to a vertex of degree 2 whereas in $G^{\{u_1, v_1\}}$, the vertex of degree 1 is adjacent to a vertex of degree 3 and so $\{u_1, v_1\}$ and $\{u_1, v_m\}$ are not a 2-vertex self switchings of *G*. Clearly, $G^{\{u_1, u_2\}} \cong G$ and thereby $\{u_1, u_2\}$ is a 2- vertex self switching of $U(m,3)$. Subcase 1.c. $n = 4$

Subcase 1.c.a. $m = 2$

The graph $G = U(2, 4)$ is given in figure [18.](#page-3-5) Now $p = m + n = 6$ and so $d_G(u) + d_G(v) = p = 6$ implies that there is no edge *uv* exists in *G* since *G* has exactly one vertex with degree 3 and all other vertices have degree less than 3. This shows that $U(2,4)$ has no 2-vertex self switchings when *uv* is an edge of *G*.

Subcase 1.c.b. $m = 3$

The graph $G = U(3, 4)$ is given in figure [19.](#page-4-0) Now $p = m + n = 7$ and so $d_G(u) + d_G(v) = p = 7$ implies that *uv* is u_1v_2 . Since the vertices u_1 and v_2 are adjacent to a vertex

of degree 2, by Theorem [2.2](#page-1-7), $\{u_1, v_2\}$ is not a 2-vertex self switching of *G*.

Subcase 1.c.c. $m \geq 4$

The graph $G = U(m, 4)$ is given in figure [20.](#page-4-1) Here $p = m + 4$ and so $d_G(u) + d_G(v) = p = m + 4$ implies that $uv \in \{u_1v_2, u_1v_3, ..., u_1v_{m-1}\}.$ Clearly, $G^{\{u_1, v_2\}} \cong G^{\{u_1, v_{m-1}\}}$ and the vertices u_1 and v_2 are adjacent to a vertex of degree 2 in *G*. By Theorem [2.2,](#page-1-7) $\{u_1, v_2\}$ and $\{u_1, v_{m-1}\}$ are not 2vertex self switchings of *G*. In *G*, the vertices v_{i-1} and v_{i+1} have degree 3 and adjacent to both *u*₁ and *v*_{*i*}, $3 \le i \le m - 2$. This implies that v_{i-1} and v_{i+1} have degree 1 in $G^{\{u_1, v_i\}}$ and hence $G^{\{u_1, v_i\}} \not\cong G$. This implies that $U(m, 4)$ has no 2-vertex self switchings.

Case 2. $uv \notin E(G)$

By Theorem [2.1,](#page-1-2) if $\sigma = \{u, v\}$ is a 2-vertex self switching of *G*, then $d_G(u) + d_G(v) = p - 2 = m + n - 2$. Since *u*₁ is adjacent to *v*_{*i*} and *u*₂, $1 \le i \le n$, $uv \in \{u_1u_j, v_iu_k, v_lv_r :$ $3 \leq j \leq n, 1 \leq i \leq m, 2 \leq k \leq n, 1 \leq l \neq r \leq m$ and $r \neq l - 1$ 1, $l + 1$. Clearly, $d_G(u) + d_G(v) \in \{3, 4, 5, 6, m + 2, m + 3\}.$ Subcase 2.a. $n = 2$

If $m > 6$, then $d_G(u) + d_G(v) = p - 2 = m > 6$ which is not possible and so $m \leq 6$. Subcase 2.a.a. *m* = 2

The graph $G = U(2,2)$ is given in figure [2.](#page-1-3) Since $p = 4$, $d_G(u) + d_G(v) = p - 2 = 2$ which is not possible since $d_G(u) + d_G(v) \geq 3$ and so there is no 2-vertex self switchings in *G* when $uv \notin E(G)$.

Subcase 2.a.b. $m = 3$

The graph $G = U(3, 2)$ is given in figure [5.](#page-1-6) Now *p* = *m* + *n* = 5 and so $d_G(u) + d_G(v) = p - 2 = 3$ implies that $uv \in \{v_1u_2, v_3u_2\}$. Clearly, $G^{\{v_1, u_2\}} \cong G^{\{v_3, u_2\}}$. The graph

 $G^{\{v_1, u_2\}}$ is given in figure [21.](#page-4-2) Also $G^{\{v_1, u_2\}} \cong G$ and an isomorphism *f* between them is given by $f(v_1) = u_1, f(v_2) =$ $v_2, f(v_3) = u_2, f(u_1) = v_3$ and $f(u_2) = v_1$. Hence $\{v_1, u_2\}$ and $\{v_3, u_2\}$ are 2-vertex self switchings of $U(3,2)$.

Figure 21. *G* {*v*1,*u*2}

Subcase 2.a.c. $m = 4$

The graph $G = U(4,2)$ is given in figure 6.12. Here $p = m + n = 6$ and so $d_G(u) + d_G(v) = p - 2 = 4$ implies that $uv \in \{v_1v_4, v_2u_2, v_3u_2\}$. Clearly, $G^{\{v_2, u_2\}} \cong G^{\{v_3, u_2\}}$. The graphs $G^{\{v_1, v_4\}}$ and $G^{\{v_2, u_2\}}$ are given in figures [22](#page-4-3) and [23.](#page-4-4)

The graph *G* has one vertex of degree 1 and two vertices of degree 2 but the graph $G^{\{v_1, v_4\}}$ has no vertex of degree 1 and the graph $G^{\{v_2, u_2\}}$ has only one vertex of degree 2. This shows that $U(4,2)$ has no 2-vertex self switchings when $uv \notin E(U(4,2))$.

Subcase 2.a.d. $m = 5$

The graph $G = U(5,2)$ is given in figure [24.](#page-4-5) Here $p = m + n = 7$ and so $d_G(u) + d_G(v) = p - 2 = 5$ implies that $uv \in \{v_1v_3, v_1u_4, v_5v_2, v_5v_3\}$. Clearly, $G^{\{v_1, v_3\}} \cong G^{\{v_3, v_5\}}$ and $G^{\{v_1, v_4\}} \cong G^{\{v_2, v_5\}}$. The graphs $G^{\{v_1, v_3\}}$ and $G^{\{v_1, v_4\}}$ are given in figures [25](#page-5-0) and [26.](#page-5-1)

The graph *G* has one vertex of degree 1 and two vertices of degree 2 but $G^{\{v_1, v_3\}}$ has two vertices of degree 1 and the graph $G^{\{v_1, v_4\}}$ has no vertex of degree 1. Hence $U(5,2)$ has no 2-vertex self switchings when $uv \notin E(U(5,2))$.

Subcase 2.a.e. $m = 6$

The graph $G = U(6,2)$ is given in figure [27.](#page-5-2) Then $p = m + n = 8$ and so $d_G(u) + d_G(v) = p - 2 = 6$ implies that $uv \in \{v_2v_4, v_2v_5, v_3v_5\}$. Clearly $G^{\{v_2, v_4\}} \cong G^{\{v_3, v_5\}}$. The graphs $G^{\{v_2, v_4\}}$ and $G^{\{v_2, v_5\}}$ are given in figure [28](#page-5-3) and [29.](#page-5-4)

Figure 27. $G = U(6, 2)$

Figure 29. *G* {*v*2,*v*5}

The graph $G^{\{v_2, v_4\}}$ has one vertex of degree 2 and the graph $G^{\{v_2, v_5\}}$ has no vertex of degree 1 and hence both graphs are not isomorphic to G . Thus, $U(6,2)$ has no 2-vertex self switchings when $uv \notin E(U(6, 2))$.

Subcase 2.b. $n = 3$

If $m > 5$, then $d_G(u) + d_G(v) = p - 2 = m + 3 - 1$ $2 = m + 1$ which is not possible and so $m \leq 5$. Subcase 2.b.a. $m = 2$

The graph $G = U(2,3)$ is given in figure [11.](#page-2-5) Since $p = 5$, $d_G(u) + d_G(v) = p - 2 = 3$ and so $uv \in \{v_1u_3, v_2u_3\}.$ Clearly, $G^{\{v_1, u_3\}} \cong G^{\{v_2, u_3\}}$. The graph $G^{\{v_1, u_3\}}$ is given in figure [30.](#page-5-5) Now $G^{\{v_1, u_3\}} \cong G$ and an isomorphism *f* between them is given by $f(v_1) = v_2, f(v_2) = u_3, f(u_1) = u_1, f(u_2) =$ *u*₂ and $f(u_3) = v_1$. Hence $\{v_1, u_3\}$ and $\{v_2, u_3\}$ are 2-vertex self switchings of $U(2,3)$.

Subcase 2.b.b. $m = 3$

The graph $G = U(3,3)$ is given in figure [13.](#page-3-0) Now $p-2 = m+n-2 = 4$ and so $d_G(u) + d_G(v) = p-2 = 4$ implies that $uv \in \{v_1u_2, v_3u_2, v_2u_3, v_1v_3\}$. Clearly, $G^{\{v_1, u_2\}} \cong$ $G^{\{v_3, u_2\}}$. The graphs $G^{\{v_1, u_2\}}$, $G^{\{v_2, u_3\}}$ and $G^{\{v_1, v_3\}}$ are given in figures [31](#page-6-0) (a), 31 (b) and 31 (c), respectively. Now $G^{\{v_1, u_2\}} \cong$ *G* and an isomorphism *f* between them is given by $f(v_1) =$ $u_1, f(v_2) = v_2, f(v_3) = u_2, f(u_1) = v_3, f(u_2) = v_1$ and $f(u_3) = v_2$ u_1 . $G^{\{v_2, u_3\}} \cong G$ and an isomorphism between them is given by $g(v_1) = v_1, g(v_2) = u_3, g(v_3) = v_3, g(u_1) = u_1, g(u_2) = u_2$ and $g(u_3) = v_2$. Also $G^{\{v_1, v_3\}} \cong G$ and an isomorphism *h* between them is given by $h(v_1) = v_1, h(v_2) = u_3, h(v_3) =$ v_3 , $h(u_1) = u_2$, $h(u_2) = u_1$ and $f(u_3) = v_2$. Hence $\{v_1, u_2\}$, $\{v_1, v_3\}$ and $\{v_2, u_3\}$ are 2-vertex self switchings of $U(3,3)$.

The graph $G = U(4,3)$ is given in figure [32](#page-6-1) (a). Here *p* − 2 = 5 and so $d_G(u) + d_G(v) = p - 2 = 5$ implies that $uv \in \{v_1v_3, v_2v_4, v_2u_2, v_3u_2\}$. Clearly $G^{\{v_1, v_3\}} \cong G^{\{v_2, v_4\}}$ and $G^{\{v_2, u_2\}} \cong G^{\{v_3, u_2\}}$. The graphs $G^{\{v_1, v_3\}}$ and $G^{\{v_2, u_2\}}$ are given in figure [32\(](#page-6-1)b) and [32\(](#page-6-1)c), respectively. The graph *G* has one vertex of degree 1 and three vertices of degree 2 whereas each of the graphs $G^{\{v_1, v_3\}}$ and $G^{\{v_2, u_2\}}$ has only two vertices of degree 2. This shows that $U(4,3)$ has no 2-vertex self switchings when $uv \notin E(U(4,3))$.

Subcase 2.b.d. $m = 5$

The graph $G = U(5,3)$ is given in figure [33.](#page-6-2) Then $p - 2 = 6$ and so $d_G(u) + d_G(v) = p - 2 = 6$ implies that *uv* is v_2v_4 . The graph $G^{\{v_2,v_4\}}$ is given in figure [34.](#page-6-3)

 u_3

The graph *G* has three vertices of degree 2 whereas $G^{\{v_2, v_4\}}$ has two vertices of degree 2 and so $G^{\{v_2, v_4\}} \ncong G$. Hence, $G = U(5,3)$ has no 2-vertex self switchings. Subcase 2.c. $n = 4$ Subcase 2.c.a. $m = 2$

The graph $G = U(2, 4)$ is given in figure [18.](#page-3-5) Since $p = 6$, $d_G(u) + d_G(v) = p - 2 = 4$ and so $uv \in \{v_1u_2, v_1u_3, v_2u_2, v_3u_4\}$ $\nu_2 u_3, u_1 u_4$. Clearly, $G^{\{\nu_1, \nu_2\}}$ $\cong G^{\{\nu_2, \nu_2\}}$ and $G^{\{\nu_1, \nu_3\}} \cong G^{\{\nu_2, \nu_3\}}$. The graphs $G^{\{v_1, u_2\}}$, $G^{\{v_1, u_3\}}$ and $G^{\{u_1, u_4\}}$ are given in figures [35](#page-6-4) (a), [35](#page-6-4) (b) and [35](#page-6-4) (c), respectively.

Now $G^{\{v_1, u_2\}} \cong G$ and an isomorphism f between

them is given by $f(v_1) = v_1$, $f(v_2) = u_3$, $f(u_1) = u_4$, $f(u_2) = u_3$ $u_2, f(u_3) = v_2$ and $f(u_4) = u_1$. Hence, $\{v_1, u_2\}$ and $\{v_2, u_2\}$ are 2-vertex self switchings of $U(2,4)$. Also $G^{\{v_1,u_3\}} \cong G$ and an isomorphism *g* between them is given by $g(v_1) =$ $v_2, f(v_2) = u_3, f(u_1) = u_1, f(u_2) = u_2, f(u_3) = v_1$ and $f(u_4) = v_2$ u_4 . Hence, $\{v_1, u_3\}$ and $\{v_2, u_3\}$ are 2-vertex self switchings of *U*(2,4). Moreover $G^{[u_1, u_4]}$ ≅ *G* and an isomorphism *h* between them is given by $h(v_1) = v_1, h(v_2) = v_2, h(u_1) =$ u_4 , $h(u_2) = u_2$, $h(u_3) = u_3$ and $h(u_4) = u_1$. Hence, $\{u_1, u_4\}$ is a 2-vertex self switchings of $U(2,4)$. Thus, $U(2,4)$ has five 2-vertex self switchings when $uv \notin E(U(2,4))$.

Subcase 2.c.b. $m = 3$

The graph $G = U(3, 4)$ is given in figure [19.](#page-4-0) Now $p-2 = m+n-2 = 5$ and so $d_G(u) + d_G(v) = p-2 = 5$ implies that $uv \in \{v_2u_2, v_2u_3, u_1u_4\}$. The graphs $G^{\{v_2, u_2\}}$, $G^{\{v_2, u_3\}}$ and $G^{\{u_1, u_4\}}$ are given in figures [36.](#page-7-0)

The graph $G^{\{v_2, u_2\}}$ has no vertex of degee 1 and so $\{v_2, u_2\}$ is not a 2-vertex self switching of *G*. Now $G^{\{v_2, u_3\}} \cong$ *G* and an isomorphism *f* between them is given by $f(v_1) =$ $v_1, f(v_2) = u_3, f(v_3) = v_3, f(u_1) = u_1, f(u_2) = u_2, f(u_3) = v_2$ and $f(u_4) = u_4$. Hence, $\{v_2, u_3\}$ is a 2-vertex self switching of $U(3,4)$. Also $G^{\{u_1,u_4\}} \cong G$ and so $\{u_1,u_4\}$ is a 2-vertex self switching of $U(3,4)$. Thus $U(3,4)$ has two 2-vertex self switchings when $uv \notin E(U(3,4))$.

Subcase 2.c.c. $m \geq 4$

The graph $G = U(m, 4)$ is given in figure [37.](#page-7-1) Here $p-2 = m+2$ and so $d_G(u) + d_G(v) = p-2 = m+2$ implies that *uv* is u_1u_4 . The graph $G^{\{u_1, u_4\}}$ is given in figure [37.](#page-7-1) Clearly, $G^{\{u_1, u_4\}} \cong G$ and an isomorphism *f* between them is given by $f(v_1) = v_1, f(v_2) = v_2, ..., f(v_m) = v_m, f(u_1) = v_m$ $u_4, f(u_2) = u_2, f(u_3) = u_3$ and $f(u_4) = u_1$ and is shown in figure [38.](#page-7-2) Hence, $U(m, 4)$ has one 2-vertex self switching when $uv \notin E(U(m,4))$.

Subcase 2.4. $n = 5$ Subcase 2.4.a. $m = 2$

The graph $G = U(2,5)$ is given in figure [39.](#page-7-3) Then $p - 2 = 5$ and so $d_G(u) + d_G(v) = p - 2 = 5$ implies that $uv \in \{u_1u_3, u_1u_4\}$. The vertices u_1 and u_3 are adjacent to the vertex v_2 of degree 2 in $U(2,5)$ and thereby Theorem [2.2,](#page-1-7) $\{u_1, u_3\}$ is not a 2-vertex switching of $U(2, 5)$. The graph $G^{\{u_1, u_4\}}$ is given in figure [40.](#page-8-8)

Clearly, $G^{\{u_1, u_4\}} \cong G$ and an isomorphism *f* between them is given by $f(v_1) = v_1$, $f(v_2) = v_2$, $f(u_1) = u_4$, $f(u_2) = v_1$ $u_3, f(u_3) = u_2, f(u_4) = u_1$ and $f(u_5) = u_5$. Hence $U(2,5)$ has one 2-vertex self switching when $uv \notin E(U(2,5))$.

Figure 40. $G^{\{u_1, u_4\}}$

Subcase 2.d.b. *m* ≥ 3

The graph $G = U(m, 5)$ is given in figure [41.](#page-8-9) Clearly, $d_G(u) + d_G(v) \in \{3, 4, 5, 6, m+2, m+3\}$. Since $p =$ *m*+*n*, *p*−2 = *m* + 3 and so *uv* ∈ {*u*₁*u*₃, *u*₁*u*₄}. The vertices u_1 and u_3 are adjacent to the vertex v_2 of degree 2 in $U(m,5)$ and thereby Theorem [2.2,](#page-1-7) $\{u_1, u_3\}$ is not a 2-vertex switching of $U(m, 5)$. The graph $G^{\{u_1, u_4\}}$ is also given in figure [42.](#page-8-10)

Clearly, $G^{\{u_1, u_4\}} \cong G$ and an isomorphism *f* between them is given by $f(v_1) = v_1, f(v_2) = v_2, ..., f(v_m) =$ v_m , $f(u_1) = u_4$, $f(u_2) = u_3$, $f(u_3) = u_2$, $f(u_4) = u_1$ and $f(u_5) = u_2$ u_5 . Hence $U(m,5)$ has one 2-vertex self switching when $uv \notin E(U(m,5)).$

Figure 42. *G* {*u*1,*u*4}

Subcase 2.e. $n > 6$

Clearly, for $2 \le m \le 4$, $d_G(u) + d_G(v) \in \{3, 4, 5, m+\}$ 2,*m*+3} and for $m \ge 5$, $d_G(u) + d_G(v) \in \{3, 4, 5, 6, m+2, m+2\}$ 3}. Since $p = m + n$ and $n \ge 6$, $p - 2 \ge m + 4$. Also for 2 ≤ *m* ≤ 4, *p*−2 ≥ 6, and for *m* ≥ 5, *p*−2 ≥ 9 and thereby no possible $uv \notin E(U(m, n))$ exists and so $ss_2(U(m, n)) = 0$ for $uv \notin E(U(m, n))$.

From subcases 1.a.a and 2.a.a, $ss_2(U(2,2)) =$ 2, from subcases 1.a.b and 2.a.b, $ss_2(U(3,2)) = 3$, from subcases 1.a.c, 2.a.c, 2.a.d and 2.a.e, $ss_2(U(m,2))=1$ for all $m \geq 4$, from subcases 1.b.a and 2.b.a, $ss_2(U(2,3)) = 3$, from subcases 1.b.b and 2.b.b, $ss_2(U(3,3)) = 6$, from subcases 1.b.c, 2.b.c and 2.b.d, $ss_2(U(m,3)) = 1$ for all $m \ge 4$, from subcases 1.c.a and 2.c.a, $ss_2(U(2,4)) = 5$, from subcases 1.c.b and 2.c.b, $ss_2(U(3,4)) = 2$, from subcases 1.c.c and 2.c.c, $ss_2(U(m,4)) = 1$ for all $m \geq 4$, from subcase 2.d.a, $ss_2(U(2,5)) = 1$ and from subcases 2.d.b and 2.e, $ss_2(U(m,n)) =$ 0 for all other values of *u* and *n*. Hence the theorem. \Box

References

- [1] C. Jayasekaran, J Christabel Sudha and M. Ashwin Shijo, 2-vertex self switching of of some special graphs, *International Journal of Scientific Research and Review*, 7(12)(2018), 408-414.
- [2] C. Jayasekaran, M. Ashwin Shijo, Some Results on Antiduplication of a vertex in graphs, *Advances in Mathematics: A Scientific Journal*, 6(2020), 4145–4153.
- [3] C. Jayasekaran, Self vertex Switching of trees, *Ars Combinatoria*, 127(2016), 33–43.
- [4] E. Sambathkumar, On Duplicate Graphs, *Journal of Indian Math. Soc.*, 37(1973), 285–293.
- [5] F. Harrary, *Graph Theory*, Addition Wesley, 1972.
- [6] J. Hage and T. Harju, Acyclicity of Switching classes, *Europeon J. Combinatorics*, 19(1998), 321–327.
- [7] J. Hage and T. Harju, A characterization of acyclic switching classes using forbidden subgraphs, Technical Report 5, Leiden University, Department of Computer Science, 2000.

- [8] J.H. Lint and J.J. Seidel, Equilateral points in elliptic geometry, *In Proc. Kon. Nede. Acad. Watensch, Ser. A*, 69(1966), 335–348.
- [9] J.J. Seidel, A survey of two graphs, in Proceedings of the Inter National Coll. 1976 Theorie combinatorie (Rome), Tomo I, Acca. Naz. Lincei, pp. 481-511, 1973.
- [10] S. Avadayappan and M. Bhuvaneshwari, More results on self vertex switching, *International Journal of Modern Sciences and Engineering Technology*, 1(3)(2014), 10– 17.

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆