

https://doi.org/10.26637/MJM0804/0183

2-Vertex self switching of umbrella graph

C. Jayasekaran^{1*}, A. Vinoth Kumar² and M. Ashwin Shijo³

Abstract

By a graph G = (V, E) we mean a finite undirected graph without loops or multiple edges. Let G be a graph and $\sigma \subseteq V$ be a non-empty subset of V. Then σ is said to be a self switching of G if and only if $G \cong G^{\sigma}$. It can also be referred to as $|\sigma|$ -vertex self-switching. The set of all self switching of the graph G with cardinality k is represented by $SS_k(G)$ and its cardinality by $ss_k(G)$. A vertex v of a graph G is said to be self vertex switching if $G \cong G^{\nu}$. The set of all self vertex switchings of G is denoted by $SS_1(G)$ and its cardinality is given by $ss_1(G)$. If $|\sigma| = 2$, we call it as a 2-vertex self switching. The set of all 2-vertex switchings of G is denoted by $SS_2(G)$ and its cardinality is given by $ss_2(G)$. In this paper we find the number of 2-vertex self switching vertices for the umbrella graph $U_{m,n}$.

Keywords

2-vertex switching, 2-vertex self switching, Umbrella graph.

AMS Subject Classification

05C07, 05CXX.

¹Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil-629003, Kanyakumari District, Tamil Nadu, India.

² Research Scholar, Reg No. 20123132091003, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil-629003, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti-Tirunelveli-627012.

³ Research Scholar, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil-629003, Kanyakumari District, Tamil Nadu, India. *Corresponding author: 1 javacpkc@gmail.com; 2 alagarrvinoth@gmail.com; 3 ashwin1992mas@gmail.com Article History: Received 12 August 2020; Accepted 25 November 2020

©2020 MJM.

Contents

1	Introduction2359
2	2-Vertex Self Switchings 2359
3	2-Vertex Self Switching of Umberlla Graph2360
	References

1. Introduction

By a graph G we mean a finite undirected simple graph. The degree of a vertex v in a graph G is the number of edges incident with v. The degree of v is represented by $d_G(v)$. JJ Seidel made a brief survey of two graphs in [9]. In [8] Lint and Seidel introduces the vertex switching. For a finite undirected graph G(V, E) and a subset $S \subset V$, the switching of G by S is defined as the graph $G^{S}(V, E')$ which is obtained from G by removing all edges between S and its complement V-Sand adding as edges all non edges between S and V - S. For $S = \{v\}$, we write G^v instead of $G^{\{v\}}$ and the corresponding switching is called as vertex switching [3]. Hage and Harju have proved that a switching class [G] contains a hamiltonian graph if and only if G is not a complete bipartite graph of odd order in [6, 7].

The concept of 2-vertex self switchings of graphs was introduced by Jayasekaran, Christabel Sudha and Ashwin Shijo and number of 2-vertex self switching in some special graphs were studied in [1]. Selvam Avadayappan and Bhuvaneshwari studied more about self vertex switching in [10] Let *G* be a graph and let $\sigma \subset V$ be a non-empty subset of V. σ is said to be a self switching if $G \cong G^{\sigma}$ where G^{σ} is obtained from G by removing all edges between σ and $V - \sigma$ and adding edges between all non-adjacent vertices of σ and $V - \sigma$. We also call it as $|\sigma|$ vertex self switching. When $|\sigma| = 2$, we call it as 2-vertex self switching. The set of all 2-vertex self switching sets of a graph G is denoted by $SS_2(G)$ and its cardinality by $ss_2(G)$. In [4], Sampathkumar introduced duplicate graphs. Jayasekaran and Ashwin Shijo [2] introduced the concept of anti-duplication self vertex switching. For basic definitions, we refer F Harrary [5].

In this paper we find the number of 2-vertex self switching vertices for the umbrella graph $U_{m,n}$.

2. 2-Vertex Self Switchings

Here we recall the theorems which are used in the subsequent sections.

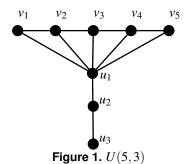
Theorem 2.1. [1] If $\sigma = \{u, v\} \subseteq V$ is a 2-vertex self switching of a graph G, then $d_G(u) + d_G(v) = \begin{cases} p \text{ if } uv \in E(G) \\ p-2 \text{ if } uv \notin E(G). \end{cases}$

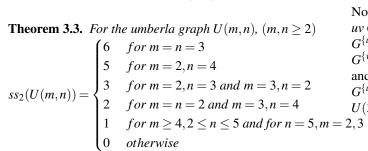
Theorem 2.2. [1] Let G be a connected graph and let w be a vertex of degree 2, adjacent to u and v. Then $\sigma = \{u, v\}$ is not a 2-vertex self switching of G.

3. 2-Vertex Self Switching of Umberlla Graph

Definition 3.1. Consider the paths $P_m : v_1v_2...v_m$ and $P_n : u_1u_2...u_n$. For $1 \le i \le m$, join u_1 with v_i . The resultant graph is the umbrella graph G = U(m,n) with vertex set $V(G) = \{v_i, u_j : 1 \le i \le m, 1 \le j \le n\}$ and edge set $E(G) = \{v_iv_{i+1}, u_ju_{j+1}, u_1v_k : 1 \le i \le m-1, 1 \le j \le n-1, 1 \le k \le m\}$. Clearly, p = |V(G)| = m + n and q = |E(G)| = 2m + n - 2.

Example 3.2. The umbrella graph U(5,3) is given in figure 1

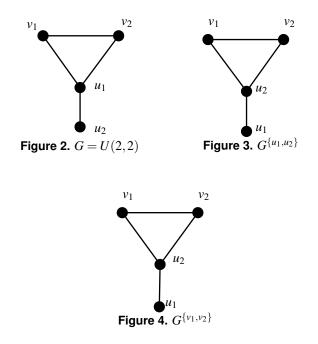




Proof. Consider the paths $P_m: v_1v_2...v_m$ and $P_n: u_1u_2...u_n$. For $1 \le i \le m$, join u_1 with v_i . The resultant graph is the umbrella graph G = U(m, n) with vertex set $V(G) = \{v_i, u_j: 1 \le i \le m, 1 \le j \le n\}$ and edge set $E(G) = \{v_iv_{i+1}, u_ju_{j+1}, u_1v_k: 1 \le i \le m-1, 1 \le j \le n-1, 1 \le k \le m\}$. Clearly, p = |V(G)| = m+n and q = |E(G)| = 2m+n-2. Also $d_G(v_1) = 2 = d_G(v_n)$ and $d_G(v_i) = 3, 2 \le i \le m-1, d_G(u_1) = m+1, d_G(u_n) = 1$ and $d_G(u_j) = 2, 2 \le j \le n-1$. Let $\sigma = \{u, v\} \subseteq V(G)$. Then $uv \in E(G)$ or $uv \notin E(G)$. Also $d_G(u) + d_G(v) \in \{3, 4, 5, 6, m+2, m+3, m+4\}$. Since $m, n \ge 2, p \ge 4$. Case 1. $uv \in E(G)$

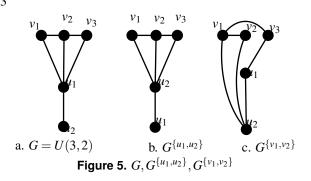
By Theorem 2.1, if $\sigma = \{u, v\}$ is a 2-vertex self switching of *G*, then $d_G(u) + d_G(v) = p = m + n$. If n > 4, then $d_G(u) + d_G(v) = p = m + n > m + 4$ which is not possible and thereby $2 \le n \le 4$. Subcase 1.a. n = 2 Subcase 1.a.a. m = 2

The graph G = U(2,2) is given in figure 2. Since p = 4, $d_G(u) + d_G(v) = p = 4$ implies that $uv \in \{u_1u_2, v_1v_2\}$. The graphs $G^{\{u_1,u_2\}}$ and $G^{\{v_1,v_2\}}$ are given in figures 3 and 4. Clearly, $G^{\{u_1,u_2\}} \cong G \cong G^{\{u_1,u_2\}}$ and hence $\{u_1,u_2\}$ and $\{v_1,v_2\}$ are 2-vertex self switchings of U(2,2).



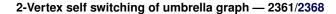
Subcase 1.a.b. m = 3

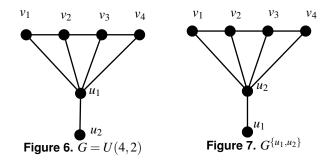
The graph G = U(3,2) is given in figure 5 (a). Now p = m + n = 5 and so $d_G(u) + d_G(v) = 5$ implies that $uv \in \{u_1u_2, v_1v_2, v_2v_3\}$. Clearly $G^{\{v_1,v_2\}} \cong G^{\{v_2,v_3\}}$. The graphs $G^{\{u_1,u_2\}}$ and $G^{\{v_1,v_2\}}$ are given in figure 5 (b) and (c). Since $G^{\{v_1,v_2\}}$ has no vertex of degree 1, $G^{\{v_1,v_2\}} \not\cong G$ and so $\{v_1,v_2\}$ and $\{v_2,v_3\}$ are not 2-vertex self switchings of *G*. Clearly, $G^{\{u_1,u_2\}} \cong G$ and so $\{u_1,u_2\}$ is a 2-vertex self switching of U(3,2).

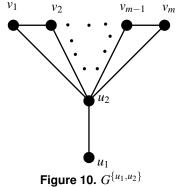


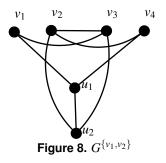
Subcase 1.a.c. m = 4

The graph G = U(4,2) is given in figure 6. Then p = m + n = 6 and so $d_G(u) + d_G(v) = p = 6$ implies that $uv \in \{u_1u_2, v_2v_3\}$. The graphs $G^{\{u_1, u_2\}}$ and $G^{\{v_2, v_3\}}$ are given in figure 7 and 8, repectively.





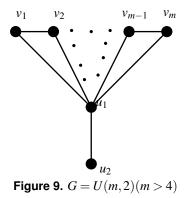




Since $G^{\{v_1,v_2\}}$ has no vertex of degree 1 and *G* has a vertex of degree 1, $G^{\{v_1,v_2\}} \not\cong G$. Clearly, $G^{\{u_1,u_2\}} \cong G$ and thereby $\{u_1, u_2\}$ is a 2-vertex self switching of U(4, 2).

Subcase 1.a.d. $m \ge 5$

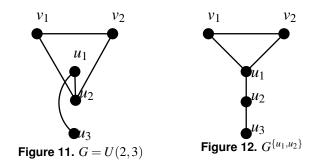
The graph G = U(m, 2) is given in figure 9. Here p = m + 2 and so $d_G(u) + d_G(v) = p = m + 2$ implies that *uv* is the edge u_1u_2 . The graph $G^{\{u_1, u_2\}}$ is given in figure 10 which is isomorphic to G and so $\{u_1, u_2\}$ is a 2- vertex self switching of G = U(m, 2).



Subcase 1.b. n = 3

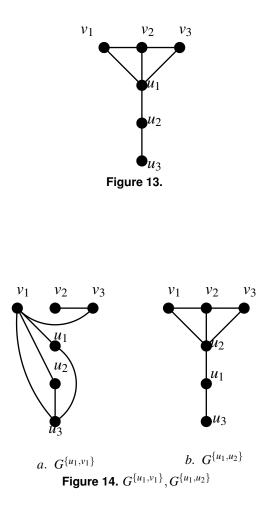
Subcase 1.b.a. m = 2

The graph G = U(2,3) is given in figure 11. Now p = m + n = 5 and so $d_G(u) + d_G(v) = p = 5$ implies that $uv \in$ $\{u_1u_2, u_1v_1, u_1v_2\}$. Clearly, $G^{\{u_1, v_1\}} \cong G^{\{u_1, v_2\}}$. The vertices u_1 and v_1 and the vertices u_1 and v_2 are adjacent to a vertex of degree 2 in G and thereby Theorem 2.2, $\{u_1, v_1\}$ and $\{u_1, v_2\}$ are not 2-vertex self switchings of G. The graph $G^{\{u_1,u_2\}}$ is given in figure 12 which is isomorphiuc to G. Hence, $\{u_1, u_2\}$ is a 2-vertex self switching of U(2,3).



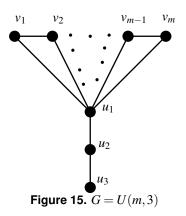
Subcase 1.b.b. m = 3

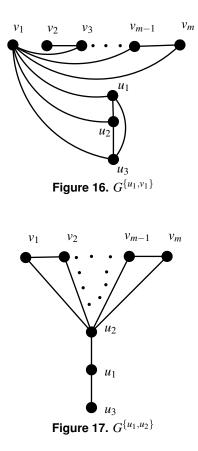
The graph G = U(3,3) is given in figure 13. Now p = m + n = 6 and so $d_G(u) + d_G(v) = p = 6$ implies that $uv \in \{u_1u_2, u_1v_1, u_1v_3\}$. Clearly, $G^{\{u_1, v_1\}} \cong G^{\{u_1, v_3\}}$. The graphs $G^{\{u_1,u_2\}}$ and $G^{\{u_1,v_1\}}$ are given in figures 14 (a) and 14 (*b*), respectively. The graph $G^{\{u_1,v_1\}} \cong G$ and an isomorphism f between G and $G^{\{u_1,v_1\}}$ is given by $f(v_1) = u_1, f(v_2) =$ $u_3, f(v_3) = u_2, f(u_1) = v_1, f(u_2) = v_3$ and $f(u_3) = v_2$. Hence $\{u_1, v_1\}$ and $\{u_1, v_3\}$ are 2-vertex self switchings of U(3,3). Also $\{u_1, u_2\}$ is a 2-vertex self switching of U(3,3) since $G^{\{u_1,u_2\}} \cong G.$



Subcase 1.b.c. $m \ge 4$

The graph G = U(m,3) is given in figure 15. Hence p = m+3 and so $d_G(u) + d_G(v) = p = m+3$ implies that $uv \in \{u_1u_2, u_1v_1, u_1v_m\}$. Clearly, $G^{\{u_1,v_1\}} \cong G^{\{u_1,v_m\}}$. The graphs $G^{\{u_1,v_1\}}$ and $G^{\{u_1,u_2\}}$ are given in figures 16 and 17, respectively.

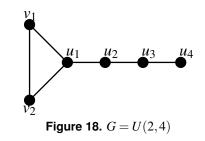




Now *G* has a vertex of degree 1 which is adjacent to a vertex of degree 2 whereas in $G^{\{u_1,v_1\}}$, the vertex of degree 1 is adjacent to a vertex of degree 3 and so $\{u_1,v_1\}$ and $\{u_1,v_m\}$ are not a 2-vertex self switchings of *G*. Clearly, $G^{\{u_1,u_2\}} \cong G$ and thereby $\{u_1,u_2\}$ is a 2- vertex self switching of U(m,3). Subcase 1.c. n = 4

Subcase 1.c.a. m = 2

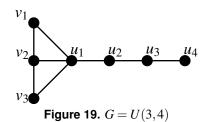
The graph G = U(2, 4) is given in figure 18. Now p = m + n = 6 and so $d_G(u) + d_G(v) = p = 6$ implies that there is no edge uv exists in G since G has exactly one vertex with degree 3 and all other vertices have degree less than 3. This shows that U(2, 4) has no 2-vertex self switchings when uv is an edge of G.



Subcase 1.c.b. m = 3

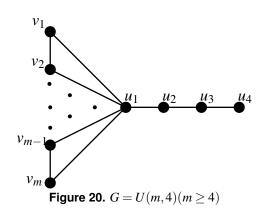
The graph G = U(3,4) is given in figure 19. Now p = m + n = 7 and so $d_G(u) + d_G(v) = p = 7$ implies that uv is u_1v_2 . Since the vertices u_1 and v_2 are adjacent to a vertex

of degree 2, by Theorem 2.2, $\{u_1, v_2\}$ is not a 2-vertex self switching of G.



Subcase 1.c.c. $m \ge 4$

The graph G = U(m, 4) is given in figure 20. Here p = m + 4 and so $d_G(u) + d_G(v) = p = m + 4$ implies that $uv \in \{u_1v_2, u_1v_3, ..., u_1v_{m-1}\}$. Clearly, $G^{\{u_1, v_2\}} \cong G^{\{u_1, v_{m-1}\}}$ and the vertices u_1 and v_2 are adjacent to a vertex of degree 2 in G. By Theorem 2.2, $\{u_1, v_2\}$ and $\{u_1, v_{m-1}\}$ are not 2vertex self switchings of G. In G, the vertices v_{i-1} and v_{i+1} have degree 3 and adjacent to both u_1 and v_i , $3 \le i \le m - 2$. This implies that v_{i-1} and v_{i+1} have degree 1 in $G^{\{u_1,v_i\}}$ and hence $G^{\{u_1,v_i\}} \not\cong G$. This implies that U(m,4) has no 2-vertex self switchings.



Case 2. $uv \notin E(G)$

By Theorem 2.1, if $\sigma = \{u, v\}$ is a 2-vertex self switching of G, then $d_G(u) + d_G(v) = p - 2 = m + n - 2$. Since u_1 is adjacent to v_i and u_2 , $1 \le i \le n$, $uv \in \{u_1u_i, v_iu_k, v_lv_r :$ $3 \le j \le n, 1 \le i \le m, 2 \le k \le n, 1 \le l \ne r \le m$ and $r \ne l - q$ 1, l+1 }. Clearly, $d_G(u) + d_G(v) \in \{3, 4, 5, 6, m+2, m+3\}$. Subcase 2.a. n = 2

If m > 6, then $d_G(u) + d_G(v) = p - 2 = m > 6$ which is not possible and so $m \le 6$.

Subcase 2.a.a. m = 2

The graph G = U(2,2) is given in figure 2. Since p = 4, $d_G(u) + d_G(v) = p - 2 = 2$ which is not possible since $d_G(u) + d_G(v) \ge 3$ and so there is no 2-vertex self switchings in *G* when $uv \notin E(G)$.

Subcase 2.a.b. m = 3

The graph G = U(3,2) is given in figure 5. Now p = m + n = 5 and so $d_G(u) + d_G(v) = p - 2 = 3$ implies that $uv \in \{v_1u_2, v_3u_2\}$. Clearly, $G^{\{v_1, u_2\}} \cong G^{\{v_3, u_2\}}$. The graph $G^{\{v_1,u_2\}}$ is given in figure 21. Also $G^{\{v_1,u_2\}} \cong G$ and an isomorphism f between them is given by $f(v_1) = u_1, f(v_2) =$ $v_2, f(v_3) = u_2, f(u_1) = v_3$ and $f(u_2) = v_1$. Hence $\{v_1, u_2\}$ and $\{v_3, u_2\}$ are 2-vertex self switchings of U(3, 2).

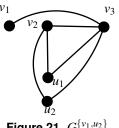
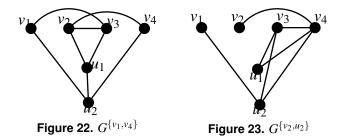


Figure 21. $G^{\{v_1, u_2\}}$

Subcase 2.a.c. m = 4

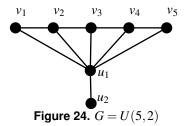
The graph G = U(4,2) is given in figure 6.12. Here p = m + n = 6 and so $d_G(u) + d_G(v) = p - 2 = 4$ implies that $uv \in \{v_1v_4, v_2u_2, v_3u_2\}$. Clearly, $G^{\{v_2, u_2\}} \cong G^{\{v_3, u_2\}}$. The graphs $G^{\{v_1,v_4\}}$ and $G^{\{v_2,u_2\}}$ are given in figures 22 and 23.

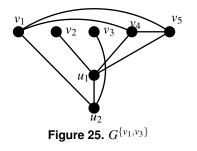


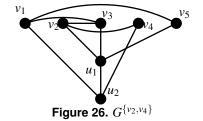
The graph G has one vertex of degree 1 and two vertices of degree 2 but the graph $G^{\{v_1,v_4\}}$ has no vertex of degree 1 and the graph $G^{\{v_2, u_2\}}$ has only one vertex of degree 2. This shows that U(4,2) has no 2-vertex self switchings when $uv \notin E(U(4,2))$.

Subcase 2.a.d. m = 5

The graph G = U(5,2) is given in figure 24. Here p = m + n = 7 and so $d_G(u) + d_G(v) = p - 2 = 5$ implies that $uv \in \{v_1v_3, v_1u_4, v_5v_2, v_5v_3\}$. Clearly, $G^{\{v_1, v_3\}} \cong G^{\{v_3, v_5\}}$ and $G^{\{v_1,v_4\}} \cong G^{\{v_2,v_5\}}$. The graphs $G^{\{v_1,v_3\}}$ and $G^{\{v_1,v_4\}}$ are given in figures 25 and 26.







The graph *G* has one vertex of degree 1 and two vertices of degree 2 but $G^{\{v_1,v_3\}}$ has two vertices of degree 1 and the graph $G^{\{v_1,v_4\}}$ has no vertex of degree 1. Hence U(5,2) has no 2-vertex self switchings when $uv \notin E(U(5,2))$.

Subcase 2.a.e. m = 6

The graph G = U(6,2) is given in figure 27. Then p = m + n = 8 and so $d_G(u) + d_G(v) = p - 2 = 6$ implies that $uv \in \{v_2v_4, v_2v_5, v_3v_5\}$. Clearly $G^{\{v_2, v_4\}} \cong G^{\{v_3, v_5\}}$. The graphs $G^{\{v_2, v_4\}}$ and $G^{\{v_2, v_5\}}$ are given in figure 28 and 29.

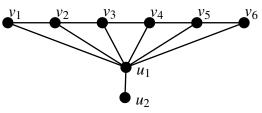


Figure 27. G = U(6,2)

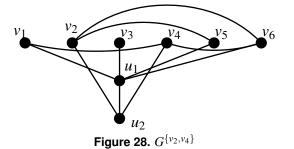


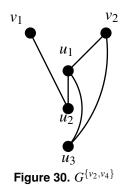
Figure 29. $G^{\{v_2, v_5\}}$

The graph $G^{\{v_2,v_4\}}$ has one vertex of degree 2 and the graph $G^{\{v_2,v_5\}}$ has no vertex of degree 1 and hence both graphs are not isomorphic to *G*. Thus, U(6,2) has no 2-vertex self switchings when $uv \notin E(U(6,2))$.

Subcase 2.b. n = 3

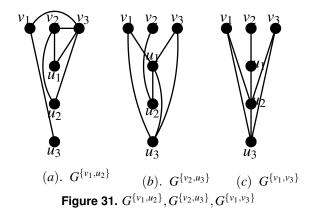
If m > 5, then $d_G(u) + d_G(v) = p - 2 = m + 3 - 2 = m + 1$ which is not possible and so $m \le 5$. Subcase 2.b.a. m = 2

The graph G = U(2,3) is given in figure 11. Since p = 5, $d_G(u) + d_G(v) = p - 2 = 3$ and so $uv \in \{v_1u_3, v_2u_3\}$. Clearly, $G^{\{v_1, u_3\}} \cong G^{\{v_2, u_3\}}$. The graph $G^{\{v_1, u_3\}}$ is given in figure 30. Now $G^{\{v_1, u_3\}} \cong G$ and an isomorphism f between them is given by $f(v_1) = v_2$, $f(v_2) = u_3$, $f(u_1) = u_1$, $f(u_2) = u_2$ and $f(u_3) = v_1$. Hence $\{v_1, u_3\}$ and $\{v_2, u_3\}$ are 2-vertex self switchings of U(2, 3).



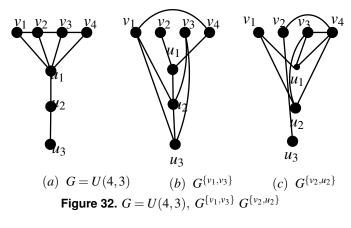
Subcase 2.b.b. m = 3

The graph G = U(3,3) is given in figure 13. Now p-2 = m+n-2 = 4 and so $d_G(u) + d_G(v) = p-2 = 4$ implies that $uv \in \{v_1u_2, v_3u_2, v_2u_3, v_1v_3\}$. Clearly, $G^{\{v_1, u_2\}} \cong G^{\{v_3, u_2\}}$. The graphs $G^{\{v_1, u_2\}}$, $G^{\{v_2, u_3\}}$ and $G^{\{v_1, v_3\}}$ are given in figures 31 (a), 31 (b) and 31 (c), respectively. Now $G^{\{v_1, u_2\}} \cong G$ and an isomorphism f between them is given by $f(v_1) = u_1, f(v_2) = v_2, f(v_3) = u_2, f(u_1) = v_3, f(u_2) = v_1$ and $f(u_3) = u_1$. $G^{\{v_2, u_3\}} \cong G$ and an isomorphism between them is given by $g(v_1) = v_1, g(v_2) = u_3, g(v_3) = v_3, g(u_1) = u_1, g(u_2) = u_2$ and $g(u_3) = v_2$. Also $G^{\{v_1, v_3\}} \cong G$ and an isomorphism h between them is given by $h(v_1) = v_1, h(v_2) = u_3, h(v_3) = v_3, h(u_1) = u_2, h(u_2) = u_1$ and $f(u_3) = v_2$. Hence $\{v_1, u_2\}, \{v_1, v_3\}$ and $\{v_2, u_3\}$ are 2-vertex self switchings of U(3, 3).



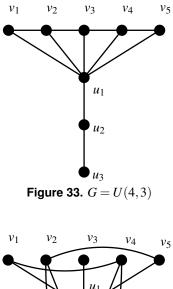
Subcase 2.b.c. m = 4

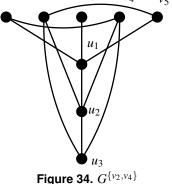
The graph G = U(4,3) is given in figure 32 (a). Here p - 2 = 5 and so $d_G(u) + d_G(v) = p - 2 = 5$ implies that $uv \in \{v_1v_3, v_2v_4, v_2u_2, v_3u_2\}$. Clearly $G^{\{v_1, v_3\}} \cong G^{\{v_2, v_4\}}$ and $G^{\{v_2, u_2\}} \cong G^{\{v_3, u_2\}}$. The graphs $G^{\{v_1, v_3\}}$ and $G^{\{v_2, u_2\}}$ are given in figure 32(b) and 32(c), respectively. The graph *G* has one vertex of degree 1 and three vertices of degree 2 whereas each of the graphs $G^{\{v_1, v_3\}}$ and $G^{\{v_2, u_2\}}$ has only two vertices of degree 2. This shows that U(4, 3) has no 2-vertex self switchings when $uv \notin E(U(4, 3))$.



Subcase 2.b.d. m = 5

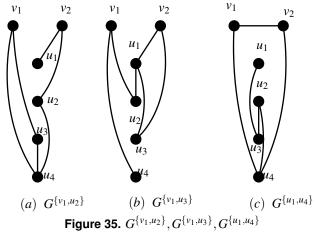
The graph G = U(5,3) is given in figure 33. Then p-2 = 6 and so $d_G(u) + d_G(v) = p-2 = 6$ implies that uv is v_2v_4 . The graph $G^{\{v_2,v_4\}}$ is given in figure 34.





The graph *G* has three vertices of degree 2 whereas $G^{\{v_2,v_4\}}$ has two vertices of degree 2 and so $G^{\{v_2,v_4\}} \ncong G$. Hence, G = U(5,3) has no 2-vertex self switchings. Subcase 2.c. n = 4Subcase 2.c.a. m = 2

The graph G = U(2,4) is given in figure 18. Since p = 6, $d_G(u) + d_G(v) = p - 2 = 4$ and so $uv \in \{v_1u_2, v_1u_3, v_2u_2, v_2u_3, u_1u_4\}$. Clearly, $G^{\{v_1, u_2\}} \cong G^{\{v_2, u_2\}}$ and $G^{\{v_1, u_3\}} \cong G^{\{v_2, u_3\}}$. The graphs $G^{\{v_1, u_2\}}, G^{\{v_1, u_3\}}$ and $G^{\{u_1, u_4\}}$ are given in figures 35 (a), 35 (b) and 35 (c), respectively.



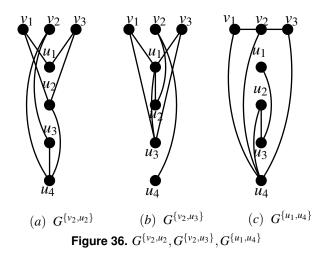
Now $G^{\{v_1, u_2\}} \cong G$ and an isomorphism *f* between

them is given by $f(v_1) = v_1, f(v_2) = u_3, f(u_1) = u_4, f(u_2) = u_2, f(u_3) = v_2$ and $f(u_4) = u_1$. Hence, $\{v_1, u_2\}$ and $\{v_2, u_2\}$ are 2-vertex self switchings of U(2, 4). Also $G^{\{v_1, u_3\}} \cong G$ and an isomorphism g between them is given by $g(v_1) = v_2, f(v_2) = u_3, f(u_1) = u_1, f(u_2) = u_2, f(u_3) = v_1$ and $f(u_4) = u_4$. Hence, $\{v_1, u_3\}$ and $\{v_2, u_3\}$ are 2-vertex self switchings of U(2, 4). Moreover $G^{\{u_1, u_4\}} \cong G$ and an isomorphism h between them is given by $h(v_1) = v_1, h(v_2) = v_2, h(u_1) = u_4, h(u_2) = u_2, h(u_3) = u_3$ and $h(u_4) = u_1$. Hence, $\{u_1, u_4\}$ is a 2-vertex self switchings of U(2, 4). Thus, U(2, 4) has five 2-vertex self switchings when $uv \notin E(U(2, 4))$.

Subcase 2.c.b. m = 3

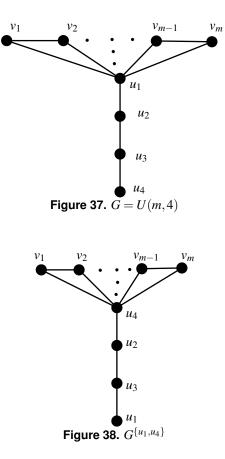
The graph G = U(3,4) is given in figure 19. Now p-2 = m+n-2 = 5 and so $d_G(u) + d_G(v) = p-2 = 5$ implies that $uv \in \{v_2u_2, v_2u_3, u_1u_4\}$. The graphs $G^{\{v_2, u_2\}}, G^{\{v_2, u_3\}}$ and $G^{\{u_1, u_4\}}$ are given in figures 36.

The graph $G^{\{v_2, u_2\}}$ has no vertex of degee 1 and so $\{v_2, u_2\}$ is not a 2-vertex self switching of *G*. Now $G^{\{v_2, u_3\}} \cong G$ and an isomorphism *f* between them is given by $f(v_1) = v_1, f(v_2) = u_3, f(v_3) = v_3, f(u_1) = u_1, f(u_2) = u_2, f(u_3) = v_2$ and $f(u_4) = u_4$. Hence, $\{v_2, u_3\}$ is a 2-vertex self switching of U(3, 4). Also $G^{\{u_1, u_4\}} \cong G$ and so $\{u_1, u_4\}$ is a 2-vertex self switching of U(3, 4). Thus U(3, 4) has two 2-vertex self switchings when $uv \notin E(U(3, 4))$.



Subcase 2.c.c. $m \ge 4$

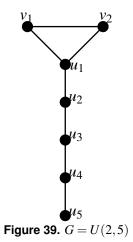
The graph G = U(m, 4) is given in figure 37. Here p-2 = m+2 and so $d_G(u) + d_G(v) = p-2 = m+2$ implies that uv is u_1u_4 . The graph $G^{\{u_1,u_4\}}$ is given in figure 37. Clearly, $G^{\{u_1,u_4\}} \cong G$ and an isomorphism f between them is given by $f(v_1) = v_1, f(v_2) = v_2, ..., f(v_m) = v_m, f(u_1) = u_4, f(u_2) = u_2, f(u_3) = u_3$ and $f(u_4) = u_1$ and is shown in figure 38. Hence, U(m, 4) has one 2-vertex self switching when $uv \notin E(U(m, 4))$.

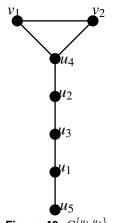


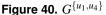
Subcase 2.4. n = 5Subcase 2.4.a. m = 2

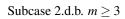
The graph G = U(2,5) is given in figure 39. Then p-2=5 and so $d_G(u) + d_G(v) = p-2=5$ implies that $uv \in \{u_1u_3, u_1u_4\}$. The vertices u_1 and u_3 are adjacent to the vertex v_2 of degree 2 in U(2,5) and thereby Theorem 2.2, $\{u_1, u_3\}$ is not a 2-vertex switching of U(2,5). The graph $G^{\{u_1,u_4\}}$ is given in figure 40.

Clearly, $G^{\{u_1,u_4\}} \cong G$ and an isomorphism f between them is given by $f(v_1) = v_1, f(v_2) = v_2, f(u_1) = u_4, f(u_2) = u_3, f(u_3) = u_2, f(u_4) = u_1$ and $f(u_5) = u_5$. Hence U(2,5) has one 2-vertex self switching when $uv \notin E(U(2,5))$.



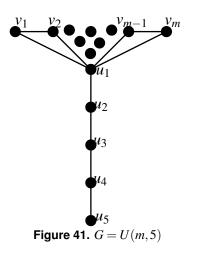


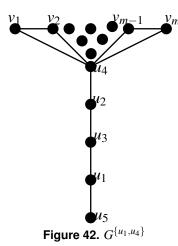




The graph G = U(m,5) is given in figure 41. Clearly, $d_G(u) + d_G(v) \in \{3,4,5,6,m+2,m+3\}$. Since p = m+n, p-2 = m+3 and so $uv \in \{u_1u_3, u_1u_4\}$. The vertices u_1 and u_3 are adjacent to the vertex v_2 of degree 2 in U(m,5) and thereby Theorem 2.2, $\{u_1, u_3\}$ is not a 2-vertex switching of U(m,5). The graph $G^{\{u_1,u_4\}}$ is also given in figure 42.

Clearly, $G^{\{u_1,u_4\}} \cong G$ and an isomorphism f between them is given by $f(v_1) = v_1, f(v_2) = v_2, ..., fv_m) =$ $v_m, f(u_1) = u_4, f(u_2) = u_3, f(u_3) = u_2, f(u_4) = u_1$ and $f(u_5) =$ u_5 . Hence U(m,5) has one 2-vertex self switching when $uv \notin E(U(m,5))$.





Subcase 2.e. $n \ge 6$

Clearly, for $2 \le m \le 4$, $d_G(u) + d_G(v) \in \{3,4,5,m+2,m+3\}$ and for $m \ge 5$, $d_G(u) + d_G(v) \in \{3,4,5,6,m+2,m+3\}$. Since p = m + n and $n \ge 6$, $p - 2 \ge m + 4$. Also for $2 \le m \le 4$, $p - 2 \ge 6$, and for $m \ge 5$, $p - 2 \ge 9$ and thereby no possible $uv \notin E(U(m,n))$ exists and so $ss_2(U(m,n)) = 0$ for $uv \notin E(U(m,n))$.

From subcases 1.a.a and 2.a.a, $ss_2(U(2,2)) = 2$, from subcases 1.a.b and 2.a.b, $ss_2(U(3,2)) = 3$, from subcases 1.a.c, 2.a.c, 2.a.d and 2.a.e, $ss_2(U(3,2)) = 3$, from subcases 1.b.b and 2.b.a, $ss_2(U(2,3)) = 3$, from subcases 1.b.b and 2.b.b, $ss_2(U(3,3)) = 6$, from subcases 1.b.c, 2.b.c and 2.b.d, $ss_2(U(m,3)) = 1$ for all $m \ge 4$, from subcases 1.c.a and 2.c.a, $ss_2(U(2,4)) = 5$, from subcases 1.c.b and 2.c.b, $ss_2(U(3,4)) = 2$, from subcases 1.c.c and 2.c.c, $ss_2(U(m,4)) = 1$ for all $m \ge 4$, from subcases 2.d.a, $ss_2(U(2,5)) = 1$ and from subcases 2.d.b and 2.e., $ss_2(U(m,n)) = 0$ for all other values of u and n. Hence the theorem.

References

- [1] C. Jayasekaran, J Christabel Sudha and M. Ashwin Shijo, 2-vertex self switching of of some special graphs, *International Journal of Scientific Research and Review*, 7(12)(2018), 408-414.
- [2] C. Jayasekaran, M. Ashwin Shijo, Some Results on Antiduplication of a vertex in graphs, *Advances in Mathematics: A Scientific Journal*, 6(2020), 4145–4153.
- [3] C. Jayasekaran, Self vertex Switching of trees, Ars Combinatoria, 127(2016), 33–43.
- [4] E. Sambathkumar, On Duplicate Graphs, *Journal of Indian Math. Soc.*, 37(1973), 285–293.
- ^[5] F. Harrary, *Graph Theory*, Addition Wesley, 1972.
- [6] J. Hage and T. Harju, Acyclicity of Switching classes, *Europeon J. Combinatorics*, 19(1998), 321–327.
- [7] J. Hage and T. Harju, A characterization of acyclic switching classes using forbidden subgraphs, Technical Report 5, Leiden University, Department of Computer Science, 2000.

- [8] J.H. Lint and J.J. Seidel, Equilateral points in elliptic geometry, *In Proc. Kon. Nede. Acad. Watensch, Ser. A*, 69(1966), 335–348.
- [9] J.J. Seidel, A survey of two graphs, in Proceedings of the Inter National Coll. 1976 Theorie combinatorie (Rome), Tomo I, Acca. Naz. Lincei, pp. 481-511, 1973.
- [10] S. Avadayappan and M. Bhuvaneshwari, More results on self vertex switching, *International Journal of Modern Sciences and Engineering Technology*, 1(3)(2014), 10– 17.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

