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Abstract
A domination set D of a graph G is perfect if each vertex of V (G)−D is dominated by exactly one vertex in
D. A dominating set D is called k-perfect if for every u ∈ V −D there exists a unique vertex w ∈ D such that
d(u,D) = d(u,w) ≤ k. For an integer k ≥ 1, D ⊆ V (G) is a distance k-dominating set of G, if every vertex in
V (G)−D is within the distance k from some vertex v ∈ D. That is, Nk[D] =V (G). A distance−k perfect dominating
set D of G is said to be a distance−k UIPDS of G if < D > has exactly one isolated vertex and D is k−perfect.
This paper includes some properties of distance−k UIPDS and gives the distance−k UIPD number of paths,
cycles, complete a-partite graphs, disconnected graphs and some directed graphs.

Keywords
Unique isolate dominating set, distance−k unique isolate perfect dominating set, distance−k unique isolate
perfect domination number.
AMS Subject Classification
05C69.

1Department of Mathematics, C.B.M College, Coimbatore-641042, Coimbatore, Tamil Nadu, India.
2Research Scholar, Department of Mathematics, C.B.M College, Coimbatore-641042, Tamil Nadu, India. Affiliated to Bharathiar University,
Coimbatore-641046, Tamil Nadu, India.
*Corresponding author: 2 ramyamuruganvattekkad@gmail.com; 1 skannanmunna@yahoo.com
Article History: Received 20 August 2020; Accepted 27 November 2020 ©2020 MJM.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2369

2 Distance−k unique isolate perfect domination on graphs
2370

3 Distance-k unique isolate perfect domination on di-
graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2372

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2373

1. Introduction
In this paper, we consider finite non-trivial graphs with

no loops and no multiple edges. Isolate domination was in-
troduced by Sahul Hamid and S.Balamurugan in 2016 [4]. A
dominating set S is called isolate dominating set if ⟨S⟩ has at
least one isolate vertex. The minimum cardinality of a min-
imal isolate dominating set is called the isolate domination
number γ0.

In 2020, Sivagnanam Mutharasu and V. Nirmala [5] in-
troduced the concept of unique isolate perfect domination in
graphs. An isolate dominating set S of a graph G is called to
be an UIPDS of G if there exists exactly one isolated vertex

in ⟨S⟩ and the set S is a perfect dominating set. The minimum
cardinality of a UIPDS of G is called UIPD number γU

0,p(G).
By using the above concept ’UIPDS’, we define a new

parameter called “distance−k Unique Isolate Perfect Domina-
tion (distance−k UIPD)”.

A dominating set S is a perfect dominating set if |N(v)∩
S|= 1 for each v ∈V −S. For an integer k ≥ 1, D ⊆V (G) is
a distance k-dominating set of G, if every vertex in V (G)−D
is within the distance k from some vertex v ∈ D. That is,
Nk[D] = V (G). The minimum cardinality of a distance k-
domination set is the distance-k domination number of G and
it is denoted by γk(G) [6].

A dominating set D is called k-perfect if for every u ∈
V −D there exists a unique vertex w ∈ D such that d(u,D) =
d(u,w)≤ k.

From now on, in this paper we meant perfect as k-perfect.
A distance−k perfect dominating set D of G is said to be a
distance−k UIPDS of G if ⟨D⟩ has exactly one isolated vertex.
A distance−k UIPDS D is said to be minimal if no proper sub-
set of D is an distance−k UIPDS.The minimum(maximum)
cardinality of a minimal distance−k UIPDS of G is called
distance−k UIPD number γU

0,p,k(G) (distance−k upper isolate
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perfect domination number ΓU
0,p,k(G)).

In this paper, we obtain some basic properties of distance−k
UIPDS and also we obtain distance−k UIPD number of paths,
cycles, complete a-partite graphs, disconnected graphs, uni-
directional paths, unidirectional cycles and disconnected di-
graphs.

2. Distance−k unique isolate perfect
domination on graphs

In this section, we obtain some basic properties of distance−k
UIPDS. Also we obtain distance−k UIPD number of paths,
cycles, complete a-partite graphs and disconnected graphs.

Theorem 2.1. For any graph G, we have γ0,k(G)≤ γU
0,p,k(G).

Proof. Since every distance−k UIPDS of G is also a
distance−k isolate dominating set of G, we have γ0,k(G) ≤
γU

0,p,k(G).

Remark 2.2. If D is a distance−k UIPDS of a graph G, then
the induced subgraph < D > has exactly one isolated vertex
and all other vertices of D has a neighbor in D.

Lemma 2.3. Let D be any distance−k UIPDS of a graph G
such that every non-isolated vertex of <D> has a distance−k
private neighbor with respect to D. Then D is minimal.

Proof. Let v ∈ D and x be the isolated vertex in < D >. If v =
x, then D−{v} will not dominate the vertex v. If v ̸= x, then
there exists w such that w is the distance−k private neighbor
of v in D. In this case, D−{v} is not a distance−k UIPDS.
Thus D is minimal.

Remark 2.4. The converse of Lemma 2.3 is not true. For
example, consider the Path Pn where n = 4k+4 with V (Pn) =
{1,2, . . . ,4k+4}. Then D = {k+1,3k+2,3k+3,3k+4} is
a minimum distance−k UIPDS of G but the vertex 3k+3 has
no private neighbor in D.

Lemma 2.5. (a). If k ≥ rad(G) then there exists a vertex in
G such that {v} is a distance−k UIPDS and γU

0,p,k(G) = 1.
(b). For any graph G which admits distance−k UIPDS, we
have γU

0,p,k(G) ̸= 2.

Proof. (a). Let r be the radius of G (rad(G)). Then there
exists a vertex v∈V (G) such that d(v,w)≤ r for all w∈V (G).
Since r ≤ k, d(v,w) ≤ k for all w ∈ V (G). Thus {v} is a
distance−k UIPDS of G.
(b). Since any distance−k UIPDS D of a graph G contains
exactly one isolated vertex in < D >,γU

0,p,k(G) ̸= 2.

Corollary 2.6. Let k > ⌊n/2⌋ be an integer. Then the sun
graph Sun(n) admits distance−k UIPDS with γU

0,p,k(Sun(n))=
1.

Proof. Note that rad(Sun(n)) = ⌊n/2⌋. Thus by case a of the
Lemma 2.5, the result is trivial.

Lemma 2.7. Let a ≥ 2 be an integer and G = Kp1,p2,...,pa =
(P1,P2, . . . ,Pa) be a complete a−partite graph.
(a) If k = 1, then G admits distance−k UIPDS if, and only if,
pi = 1 for some integer i with 1 ≤ i ≤ a.
(b) If k≥ 2, then G admits distance−k UIPDS with distance−k
UIPDN 1.

Proof. Assume that G admits distance−k UIPDS, say D.
(a) Suppose k = 1. On the contrary, assume that pi ≥ 2 for all
1 ≤ i ≤ a.
Let x be the isolated vertex of < D >. Without loss of general-
ity, assume that x ∈ P1. Since |P1| ≥ 2, we can choose a vertex
y ∈ P1 such that y ̸= x. Note that no vertex of P2∪P3∪ . . .∪Pa
will be in D(otherwise x will not be isolated in < D >). Thus
to dominate the vertex y, D must include y and hence < D >
has more than one isolated vertex, namely x and y, a contra-
diction.
(b) Suppose k ≥ 2. Note that rad(G) = 2. Thus by Lemma 2.5,
G admits a distance−k UIPDS with distance−k UIPDN 1.

Lemma 2.8. Let n, i ≥ 1 be an integer. Then
(a). γU

0,p,k(Pn) = 2⌈ n−(2k+1)
2k+2 ⌉ if n = (2k+1)+ i(2k+2)+1.

(b). γU
0,p,k(Pn)= 2⌈ n−(2k+1)

2k+2 ⌉+1 if n=(2k+1)+ i(2k+2)+ j
2 ≤ j ≤ 2k+1.
(c). γU

0,p,k(Pn) = 2⌈ n−(2k+1)
2k+2 ⌉+1 if n = (2k+1)+ i(2k+2).

Proof. Let D be a minimum distance−k UIPDS and x be the
isolated vertex in < D >.
Note that x can dominate a maximum of (2k + 1) vertices
including it.−−−−−>(1)
Also any other vertex of D has a neighbor in D. Further two
adjacent vertices of D can dominate a maximum of (2k+2)
vertices including them.−−−−−>(2)
Case a: n = (2k+1)+ i(2k+2)+1 for some i ≥ 1.
From equations (1) and (2), to dominate (2k+1)+ i(2k+2)
vertices, D must have 1+ 2i vertices in it. To dominate the
remaining 1 vertex, D must include one more vertex in it.
Thus |D| ≥ 1+2i+1 = 2⌈ n−(2k+1)

2k+2 ⌉.
Consider the set D = {k + 1} ∪ {(2b+ 1)(k + 1)− 1,(2b+
1)(k+1) : b = 1,2,3, . . . , i}∪{(2i+1)(k+1)+1} with 2i+
2 = 2⌈ n−(2k+1)

2k+2 ⌉ elements.
Let v ∈V −D.
Subcase a.1: Suppose 1 ≤ v ≤ k or k+2 ≤ v ≤ 2k+1.
Then v is dominated only by k+1 ∈ D.
Subcase a.2: Suppose v=((2b+1)(k+1)−1)−a: 1≤ a≤ k;
1 ≤ b ≤ i.
Then v is dominated only by (2b+1)(k+1)−1 ∈ D.
Subcase a.3: Suppose v = ((2b+1)(k+1))+a: 1 ≤ a ≤ k;
1 ≤ b ≤ i−1.
Then v is dominated only by (2b+1)(k+1) ∈ D.
Subcase a.4: Suppose v=((2b+1)(k+1)+1)+a: 1≤ a≤ k;
b = i.
Then v is dominated only by (2b+1)(k+1) ∈ D.
Clearly for each b = 1,2,3, . . . , i the vertex (2b+1)(k+1)−
1 ∈ D is adjacent with another vertex of D, namely (2b+
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1)(k+1).
Also the vertex (2i+1)(k+1)+1 ∈ D is adjacent with (2i+
1)(k+1) ∈ D. Further the vertex (k+1) ∈ D is not adjacent
with any vertices of D.
Thus < D > has exactly one isolated vertex.
Hence D is a distance−k dominating set.
Therefore D is a distance k− UIPDS.
Case b: n = (2k+1)+ i(2k+2)+2 for some i ≥ 1.
We prove this case by using induction on i.
When i = 1, n = 4k+5.We claim that γU

0,p,k(Pn) = 5.
Let D be a minimum distance−k UIPDS of Pn and x be an
isolated in D.
Here, x will dominate a maximum of 2k+1 vertices including
x, let Nk[x] = A.
Since |V (Pn)| > 2k+ 1, by the definition of UIPD, D must
have at least two adjacent vertices in D, say y and z.
Note that y and z together will dominate a maximum of (2k+
2) vertices including y and z, let Nk[{y,z}] = B.
Note that there are at least two undominated vertices, say u,v
which lies outside of A∪B as given below.

b b
Figure.2.3
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b b
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b b
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Subcase b.1: Suppose u and v are as shown in Figure.2.1.
If either u or v alone in D(without loss of generality, let it be
v), then < D > has two isolated vertices, namely x and v, a
contradiction.
Suppose u,v /∈ D. Then there must exists a vertex w ∈ D such
that 3 ≤ w ≤ k+1 and u and v are dominated by w.
In this case, D has two isolated vertices, namely w and x, a
contradiction.
Thus u,v ∈ D and so |D| ≥ 5.
As proved in subcase b.1, we can prove that |D| ≥ 5 if u and v
are as shown in Figure.2.2 and Figure.2.3.
Subcase b.2: Suppose u and v are as shown in Figure.2.4.
In this case, the two vertices u and v are of distance greater
than or equal to 2k+2. Thus a vertex cannot dominate both u
and v. Therefore D must include two more vertices in it and
so |D| ≥ 5.
As proved in subcase b.2, we can prove that |D| ≥ 5 if u and v
are as shown in Figure.2.5 and Figure.2.6.
Thus γU

0,p,k(Pn) ≥ 5 when i = 1. Note that, when k is even
{k + 1,3(k + 1)− 1,3(k + 1),4k + 4,4k + 5} is a minimum
distance−k UIPDS and when k odd then {k+ 1,3(k+ 1)−
1,3(k+1),4k+3,4k+4} is a minimum distance−k UIPDS.
Thus γU

0,p,k(Pn)≤ 5.
Hence we proved the result for i = 1.
Assume the result for all i ≤ a. Next we prove the result for

i = a+1.
By mathematical induction, we have γU

0,p,k(Pn)= 2⌈ n−(2k+1)
2k+2 ⌉+

1 = 2a + 3 if n = (2k + 1) + a(2k + 2) + 2 for some i ≥
1.−−−−−> (1).
Suppose n = (2k + 1) + (a + 1)(2k + 2) + 2 = (2k + 1) +
a(2k+2)+2k+4.
By (1), to dominate the first (2k + 1) + a(2k + 2) + 2 ver-
tices, we need 2a+ 3 vertices in D. Thus to dominate the
remaining (2k+ 2) vertices, D must have at least two more
vertices in it and so γU

0,p,k(Pn)≥ 2a+5 when i = a+1. Note
that, when k is even D = {k+1}∪{(2b+1)(k+1)−1,(2b+
1)(k+1) : b= 1,2,3, . . . , i}∪{n−⌈ j

2⌉,n−(⌈ j
2⌉−1) is a min-

imum distance−k UIPDS and when k is odd D = {k+1}∪
{(2b+1)(k+1)−1,(2b+1)(k+1) : b= 1,2,3, . . . , i}∪{n−
(⌈ j

2⌉+1),n−⌈ j
2⌉ is a minimum distance−k UIPDS. Hence

γU
0,p,k(Pn)≤ 2a+5. Thus γU

0,p,k(Pn) = 2a+5 = 2⌈ n−(2k+1)
2k+2 ⌉+

1.
When n = (2k+1)+ i(2k+2)+ j for some 3 ≤ j ≤ 2k+1, as
proved in case b, we can prove that γU

0,p,k(Pn) = 2⌈ n−(2k+1)
2k+2 ⌉+

1.
Case c: n = (2k+1)+ i(2k+2) for some i ≥ 1.
As proved in above cases, we can prove γU

0,p,k(Pn) =

2⌈ n−(2k+1)
2k+2 ⌉+1. Note that D = {k+1}∪{(2b+1)(k+1)−

1,(2b+1)(k+1) : b = 1,2,3, . . . , i}.

As proved the above result, we can prove the following
result.

Lemma 2.9. Let Cn be a cycle of n vertices for n ≥ 1. Then
(a). γU

0,p,k(Cn) = 2⌈ n−(2k+1)
2k+2 ⌉ if n = (2k+1)+ i(2k+2)+1.

(b). γU
0,p,k(Cn) = 2⌈ n−(2k+1)

2k+2 ⌉+1 if n = (2k+1)+ i(2k+2)+
j, 2 ≤ j ≤ 2k.
(c). γU

0,p,k(Cn)≤ 2⌈ n−(2k+1)
2k+2 ⌉+2 if n = (2k+1)+ i(2k+2)+

2k+1.
(d). γU

0,p,k(Cn) = 2⌈ n−(2k+1)
2k+2 ⌉+1 if n = (2k+1)+ i(2k+2).

Theorem 2.10. Let n ≥ 2 be an integer and let G be a dis-
connected graph with n components G1,G2, . . . ,Gn such that
the first r components G1,G2, . . . ,Gr admit distance−k UIPD.
Then γU

0,p,k(G) = min
1≤i≤r

{ti},

where ti = γU
0,p,k(Gi) +

n
∑

j=1, j ̸=i
γt,p,k(G j) for 1 ≤ i ≤ r and

|V (G j)| ≥ 2.

Proof. Without loss of generality, let t1 = min
1≤i≤r

{ti}.

Let D be a γU
0,p,k- set of G1 and Di be a γt,p,k- set of Gi for

each i with 2 ≤ i ≤ n. Then D ∪ (
n⋃

i=2
Di) is a distance−k

UIPDS of G with cardinality γU
0,p,k(G1)+

n
∑

i=2
γt,p,k(Gi) and so

γU
0,p,k(G)≤ γU

0,p,k(G1)+
n
∑

i=2
γt,p,k(Gi) = t1.

Let D be a minimal distance−k UIPDS of G. Then D must
intersect V (Gi) for each 1 ≤ i ≤ n. Further, there exists an
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integer j such that D∩V (G j) is a minimal distance−k UIPDS
of G j and 1 ≤ j ≤ r. Also for each 1 ≤ i ≤ n, i ̸= j, the set
D∩V (Gi) is a minimal distance−k total perfect dominating
set of Gi.

Therefore |D| ≥ γU
0,p,k(G j)+

n
∑

i=1,i ̸= j
γt,p,k(Gi)≥ t1 and hence

γU
0,p,k(G) = min

1≤i≤r
{ti}.

3. Distance-k unique isolate perfect
domination on digraphs

In this section, we obtain some basic properties of distance−k
UIPDS of digraphs and also we obtain distance−k UIPD num-
ber of unidirectional paths, unidirectional cycles and discon-
nected digraphs.

Remark 3.1. If D is a distance−k UIPDS of a digraph
−→
G ,

then the induced subgraph < D > has exactly one isolated
vertex and all other vertices of D has a neighbor in D.

Lemma 3.2. (a). If a digraph
−→
G has at least one vertex u

such that N+
k [u] = V (

−→
G ), then

−→
G admits distance−k UIPD

with γU
0,p,k(

−→
G ) = 1.

(b). For any digraph
−→
G which admits distance−k UIPDS, we

have γU
0,p,k(

−→
G ) ̸= 2.

Proof. (a). The set D = {v} is distance−k UIPDS of
−→
G with

γU
0,p,k(

−→
G ) = 1.

(b). Since any distance−k UIPDS D of a digraph
−→
G contains

exactly one isolated vertex in < D >, γU
0,p,k(

−→
G ) ̸= 2.

Lemma 3.3. Let n, i ≥ 1 be an integers. Then
(a). γU

0,p,k(
−→
P n) = 2⌈ n−(k+1)

k+2 ⌉ if n = (k+1)+ i(k+2)+1.

(b). γU
0,p,k(

−→
P n) = 2⌈ n−(k+1)

k+2 ⌉+1 if n = (k+1)+ i(k+2)+ j,
2 ≤ j ≤ k+1.
(c). γU

0,p,k(
−→
P n) = 2⌈ n−(k+1)

k+2 ⌉+1 if n = (k+1)+ i(k+2).

Proof. Let D be a minimum distance−k UIPDS and x be the
isolated vertex in < D >.
Note that x can dominate a maximum of (k+1) vertices in-
cluding it.−−−−−>(1)
Also any other vertex of D has a neighbor in D. Further two
adjacent vertices of D can dominate a maximum of (k+ 2)
vertices including them.−−−−−>(2)
Case a: n = (k+1)+ i(k+2)+1 for some i ≥ 1.
From equations (1) and (2), to dominate (k + 1)+ i(k + 2)
vertices, D must have 1+ 2i vertices in it. To dominate the
remaining 1 vertex, D must include one more vertex in it.
Thus |D| ≥ 1+2i+1 = 2⌈ n−(k+1)

k+2 ⌉.
Consider the set D = {1} ∪ {b(k + 2),b(k + 2) + 1 :
b = 1,2,3, . . . , i}∪ {i(k + 2)+ 2} with 2i+ 2 = 2⌈ n−(k+1)

k+2 ⌉
elements.
Let v ∈V −D.
Subcase a.1: Suppose 2 ≤ v ≤ k.

Then v is dominated only by 1 ∈ D.
Subcase a.2: Suppose v = b(k+2)+a: 2 ≤ a ≤ k; 1 ≤ b ≤
i−1.
Then v is dominated only by b(k+2)+2 ∈ D.
Subcase a.3: Suppose v = i(k+2)+a: 2 ≤ a ≤ k.
Then v is dominated only by i(k+2)+1 ∈ D.
Clearly (b(k+2),b(k+2)+1)∈ E(G) forall b = 1,2,3, . . . , i
and (i(k+2)+1, i(k+2)+2) ∈ E(G).
Thus < D > has exactly one isolated vertex. Therefore D is a
distance−k UIPDS and |D| ≥ 2i+2.
Hence |D|= 2i+2.
Case b: Suppose n = (k+1)+ i(k+2)+2 for some i ≥ 1.
We prove this case by using induction on i.
When i = 1, n = 2k+5. We claim that γU

0,p,k(
−→
P n) = 5.

Let D be a minimum distance−k UIPDS of
−→
P n and x be an

isolated in D.
Here, x will dominate a maximum of k+1 vertices including
x, let Nk[x] = A;A = {x,x+1, . . . ,x+ k}.
Since

∣∣∣V (
−→
P n)

∣∣∣ > k+ 1, by the definition of UIPD, D must
have at least two adjacent vertices in D, say y and y+1.
Note that y and y+1 together will dominate a maximum of
(k+2) vertices including y and y+1, let Nk[{y,y+1}] = B;
B = {y,y+1, . . . ,y+ k+1}.
Note that there are at least two undominated vertices, say u,v
which lies outside of A∪B as given below.

b b
Figure.3.3
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b b
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Subcase b.1: Suppose u and v are as shown in Figure.3.1.
If v ∈ D, then (v,x) ∈ E(

−→
Pn), x is not a isolated vertex in D, a

contradiction.
If u ∈ D and v /∈ D, then u and x are two isolated vertices in
< D >, a contradiction. Therefore this case does not exist.
Subcase b.2: Suppose u and v are as shown in Figure.3.2.
If we take either u or v alone in D, then <D> has two isolated
vertices namely x and u or v, a contradiction. Thus u,v ∈ D
and so |D| ≥ 5.
Subcase b.3: Suppose u and v are shown in Figure.3.3.
W.K.T x,x+ 1,x+ 2, . . . ,x+ k+ 1 are all vertices in A and
x ∈ D.
To dominate u and v, either x+1 or x+2 or . . . or x+ k+1
or u ∈ D. Suppose x+1 ∈ D, since (x,x+1) ∈ E(

−→
Pn), a con-

tradiction to x is isolated vertex in D.
Therefore x+1 /∈ D.
Suppose a vertex x + i ∈ D ∀i = 2,3, . . . ,k + 1 then x and
x+ i are two isolated vertex in < D >, a contradiction. Thus
{x+ i,x+ i+1} ∈ D and so |D| ≥ 5.
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Subcase b.4: Suppose u and v are shown in Figure.3.4 and
Figure.3.6, to dominate u, D must include u, a contradiction
to x is isolated vertex in < D >. Thus these two cases does
not exist.
Subcase b.5: Suppose u and v as shown in Figure.3.5, to dom-
inate v, either y+2 or y+3 or . . . or y+ k+1 or v ∈ D.
If v∈D, then there exist two isolated vertices in <D> namely
x and v, a contradiction.
We must include one more vertices y+ k+1, and so (y+ k+
1,v) ∈ E(

−→
Pn). Thus γU

0,p,k(
−→
Pn)≥ 5.

If y+2 ∈ D, then v dominated by y+2 ∈ D, then v dominated
by y+2. Further to dominate u, as we proved in subcase 3 we
must include at least one vertex in D.
Thus γU

0,p,k(
−→
Pn)≥ 5.

Note that {1,k + 2,k + 3,2k + 4,2k + 5} is a minimum
distance−k UIPDS and so γU

0,k(
−→
Pn) ≤ 5. Hence we proved

the result for i = 1.
Assume the result for all i ≤ a. Next we prove the result for
i = a+1.
By mathematical induction, we have γU

0,k(
−→
Pn) = 2⌈ n−(k+1)

k+2 ⌉+
1 = 2a+ 3 if n = (k+ 1)+ a(k+ 2)+ 2 for some i ≥ 1.−−
−−−> (1)
Suppose n = (k+ 1)+ (a+ 1)(k+ 2)+ 2 = (k+ 1)+ a(k+
2)+(k+2)+2.
By (1), to dominate the first (k+ 1)+ a(k+ 2)+ 2 vertices,
we need 2a+3 vertices in D. Thus to dominate the remaining
(k+2) vertices, D must have at least two more vertices in it
and so γU

0,p,k(
−→
Pn)≥ 2a+5 when i = a+1.

Note that D= {1}∪{b(k+2),b(k+2)+1 : b= 1,2,3, . . . , i+
1} is a minimum distance−k UIPDS and so γU

0,p,k(
−→
Pn) ≤

2a+5. Thus γU
0,p,k(

−→
Pn) = 2a+5 = 2⌈ n−(k+1)

k+2 ⌉+1.
When n = (k+ 1)+ i(k+ 2)+ j for some 3 ≤ j ≤ k+ 1, as
proved in case b, we can prove that γU

0,p,k(
−→
Pn) = 2⌈ n−(k+1)

k+2 ⌉+
1.
Case c: Suppose n = (k+1)+ i(k+2).
As proved in above cases, we can prove γU

0,p,k(
−→
P n) =

2⌈ n−(k+1)
k+2 ⌉+1. Note that D = {1}∪{b(k+2),b(k+2)+1 :

b = 1,2,3, . . . , i} is a minimum distance−k UIPDS.

As proved the above result, we can prove the following
result.

Lemma 3.4. Let
−→
C n be an unidirectional cycle of n vertices

for n ≥ 1. Then
(a). γU

0,p,k(
−→
C n) = 2⌈ n−(k+1)

k+2 ⌉ if n = (k+1)+ i(k+2)+1.

(b). γU
0,p,k(

−→
C n) = 2⌈ n−(k+1)

k+2 ⌉+1 if n = (k+1)+ i(k+2)+ j,
2 ≤ j ≤ k+1.
(c). γU

0,p,k(
−→
C n) = 2⌈ n−(k+1)

k+2 ⌉+1 if n = (k+1)+ i(k+2).

Theorem 3.5. Let n ≥ 2 be an integer and let
−→
G be a dis-

connected directed graph with n components
−→
G 1,

−→
G 2, . . . ,

−→
G n

such that the first r components
−→
G 1,

−→
G 2, . . . ,

−→
G r admit

distance−k UIPD. Then γU
0,p,k(

−→
G ) = min

1≤i≤r
{ti}, where ti =

γU
0,p,k(

−→
G i)+

n
∑

j=1, j ̸=i
γt,p,k(

−→
G j) for 1 ≤ i ≤ r and |V (

−→
G j)| ≥ 2.

Proof. Without loss of generality, let t1 = min
1≤i≤r

{ti}.

Let D be a γU
0,p,k- set of

−→
G 1 and Di be a γt,p,k- set of

−→
G i for

each i with 2 ≤ i ≤ n.

Then D∪ (
n⋃

i=2
Di) is a distance−k UIPDS of

−→
G with cardinal-

ity γU
0,p,k(

−→
G 1)+

n
∑

i=2
γt,p,k(

−→
G i) and so γU

0,p,k(
−→
G )≤ γU

0,p,k(
−→
G 1)+

n
∑

i=2
γt,p,k(

−→
G i) = t1.

Let D be a minimal distance−k UIPDS of
−→
G . Then D must

intersect V (
−→
G i) for each 1 ≤ i ≤ n.

Further, there exists an integer j such that D∩V (
−→
G j) is a min-

imal distance−k UIPDS of
−→
G j and 1 ≤ j ≤ r. Also for each

1 ≤ i ≤ n, i ̸= j, the set D∩V (
−→
G i) is a minimal distance−k

total perfect dominating set of
−→
G i.

Therefore |D| ≥ γU
0,p,k(

−→
G j)+

n
∑

i=1,i̸= j
γt,p,k(

−→
G i)≥ t1 and hence

γU
0,p,k(

−→
G ) = min

1≤i≤r
{ti}.
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