

https://doi.org/10.26637/MJM0804/0184

Distance-*k* unique isolate perfect domination on graphs

Sivagnanam Mutharasu ¹and M. Ramya ²*

Abstract

A domination set *D* of a graph *G* is perfect if each vertex of V(G) - D is dominated by exactly one vertex in *D*. A dominating set *D* is called *k*-perfect if for every $u \in V - D$ there exists a unique vertex $w \in D$ such that $d(u,D) = d(u,w) \le k$. For an integer $k \ge 1$, $D \subseteq V(G)$ is a distance *k*-dominating set of *G*, if every vertex in V(G) - D is within the distance *k* from some vertex $v \in D$. That is, $N_k[D] = V(G)$. A distance -k perfect dominating set *D* of *G* is said to be a distance -k UIPDS of *G* if < D > has exactly one isolated vertex and *D* is *k*-perfect. This paper includes some properties of distance -k UIPDS and gives the distance -k UIPD number of paths, cycles, complete a-partite graphs, disconnected graphs and some directed graphs.

Keywords

Unique isolate dominating set, distance -k unique isolate perfect dominating set, distance -k unique isolate perfect domination number.

AMS Subject Classification

05C69.

¹ Department of Mathematics, C.B.M College, Coimbatore-641042, Coimbatore, Tamil Nadu, India.

² Research Scholar, Department of Mathematics, C.B.M College, Coimbatore-641042, Tamil Nadu, India. Affiliated to Bharathiar University, Coimbatore-641046, Tamil Nadu, India.

*Corresponding author: ² ramyamuruganvattekkad@gmail.com; ¹ skannanmunna@yahoo.com Article History: Received 20 August 2020; Accepted 27 November 2020

©2020 MJM.

Contents

1 Introduction......2369

- 2 Distance-k unique isolate perfect domination on graphs 2370

1. Introduction

In this paper, we consider finite non-trivial graphs with no loops and no multiple edges. Isolate domination was introduced by Sahul Hamid and S.Balamurugan in 2016 [4]. A dominating set *S* is called isolate dominating set if $\langle S \rangle$ has at least one isolate vertex. The minimum cardinality of a minimal isolate dominating set is called the isolate domination number γ_0 .

In 2020, Sivagnanam Mutharasu and V. Nirmala [5] introduced the concept of unique isolate perfect domination in graphs. An isolate dominating set S of a graph G is called to be an UIPDS of G if there exists exactly one isolated vertex in $\langle S \rangle$ and the set *S* is a perfect dominating set. The minimum cardinality of a UIPDS of *G* is called UIPD number $\gamma_{0,p}^{U}(G)$.

By using the above concept 'UIPDS', we define a new parameter called "distance-k Unique Isolate Perfect Domination (distance-k UIPD)".

A dominating set *S* is a perfect dominating set if $|N(v) \cap S| = 1$ for each $v \in V - S$. For an integer $k \ge 1$, $D \subseteq V(G)$ is a distance *k*-dominating set of *G*, if every vertex in V(G) - D is within the distance *k* from some vertex $v \in D$. That is, $N_k[D] = V(G)$. The minimum cardinality of a distance *k*-domination set is the distance-*k* domination number of *G* and it is denoted by $\gamma_k(G)$ [6].

A dominating set *D* is called *k*-perfect if for every $u \in V - D$ there exists a unique vertex $w \in D$ such that $d(u,D) = d(u,w) \le k$.

From now on, in this paper we meant perfect as *k*-perfect. A distance -k perfect dominating set *D* of *G* is said to be a distance -k UIPDS of *G* if $\langle D \rangle$ has exactly one isolated vertex. A distance -k UIPDS *D* is said to be minimal if no proper subset of *D* is an distance -k UIPDS. The minimum(maximum) cardinality of a minimal distance -k UIPDS of *G* is called distance -k UIPD number $\gamma_{0,p,k}^{U}(G)$ (distance -k upper isolate perfect domination number $\Gamma^U_{0,p,k}(G)$).

In this paper, we obtain some basic properties of distance -kUIPDS and also we obtain distance -k UIPD number of paths, cycles, complete a-partite graphs, disconnected graphs, unidirectional paths, unidirectional cycles and disconnected digraphs.

2. Distance -k unique isolate perfect domination on graphs

In this section, we obtain some basic properties of distance -kUIPDS. Also we obtain distance -k UIPD number of paths, cycles, complete a-partite graphs and disconnected graphs.

Theorem 2.1. For any graph G, we have $\gamma_{0,k}(G) \leq \gamma_{0,p,k}^U(G)$.

Proof. Since every distance -k UIPDS of G is also a distance-k isolate dominating set of G, we have $\gamma_{0,k}(G) \leq$ $\gamma^U_{0,p,k}(G).$

Remark 2.2. If D is a distance-k UIPDS of a graph G, then the induced subgraph $\langle D \rangle$ has exactly one isolated vertex and all other vertices of D has a neighbor in D.

Lemma 2.3. Let D be any distance -k UIPDS of a graph G such that every non-isolated vertex of < D > has a distance-k private neighbor with respect to D. Then D is minimal.

Proof. Let $v \in D$ and x be the isolated vertex in $\langle D \rangle$. If v =x, then $D - \{v\}$ will not dominate the vertex v. If $v \neq x$, then there exists w such that w is the distance -k private neighbor of v in D. In this case, $D - \{v\}$ is not a distance -k UIPDS. Thus *D* is minimal.

Remark 2.4. The converse of Lemma 2.3 is not true. For example, consider the Path P_n where n = 4k + 4 with $V(P_n) =$ $\{1, 2, \dots, 4k+4\}$. Then $D = \{k+1, 3k+2, 3k+3, 3k+4\}$ is a minimum distance -k UIPDS of G but the vertex 3k + 3 has no private neighbor in D.

Lemma 2.5. (a). If $k \ge rad(G)$ then there exists a vertex in *G* such that $\{v\}$ is a distance-k UIPDS and $\gamma_{0,p,k}^U(G) = 1$. (b). For any graph G which admits distance -k UIPDS, we have $\gamma_{0,p,k}^U(G) \neq 2$.

Proof. (a). Let r be the radius of G(rad(G)). Then there exists a vertex $v \in V(G)$ such that $d(v, w) \leq r$ for all $w \in V(G)$. Since r < k, d(v, w) < k for all $w \in V(G)$. Thus $\{v\}$ is a distance -k UIPDS of G.

(b). Since any distance -k UIPDS D of a graph G contains exactly one isolated vertex in $\langle D \rangle, \gamma_{0,p,k}^U(G) \neq 2$.

Corollary 2.6. Let $k > \lfloor n/2 \rfloor$ be an integer. Then the sun graph Sun(n) admits distance-k UIPDS with $\gamma_{0,p,k}^U(Sun(n)) =$ 1.

Proof. Note that $rad(Sun(n)) = \lfloor n/2 \rfloor$. Thus by case a of the Lemma 2.5, the result is trivial.

Lemma 2.7. Let $a \ge 2$ be an integer and $G = K_{p_1,p_2,\ldots,p_a} =$ (P_1, P_2, \ldots, P_a) be a complete *a*-partite graph.

(a) If k = 1, then G admits distance -k UIPDS if, and only if, $p_i = 1$ for some integer *i* with $1 \le i \le a$.

(b) If k > 2, then G admits distance-k UIPDS with distance-k UIPDN 1.

Proof. Assume that G admits distance-k UIPDS, say D. (a) Suppose k = 1. On the contrary, assume that $p_i \ge 2$ for all $1 \le i \le a$.

Let *x* be the isolated vertex of $\langle D \rangle$. Without loss of generality, assume that $x \in P_1$. Since $|P_1| \ge 2$, we can choose a vertex $y \in P_1$ such that $y \neq x$. Note that no vertex of $P_2 \cup P_3 \cup \ldots \cup P_a$ will be in D(otherwise x will not be isolated in $\langle D \rangle$). Thus to dominate the vertex y, D must include y and hence $\langle D \rangle$ has more than one isolated vertex, namely x and y, a contradiction.

(b) Suppose $k \ge 2$. Note that rad(G) = 2. Thus by Lemma 2.5, G admits a distance -k UIPDS with distance -k UIPDN 1.

Lemma 2.8. Let $n, i \ge 1$ be an integer. Then (a). $\gamma_{0,p,k}^{U}(P_n) = 2 \lceil \frac{n - (2k+1)}{2k+2} \rceil$ if n = (2k+1) + i(2k+2) + 1. (b). $\gamma_{0,p,k}^{U}(P_n) = 2 \lceil \frac{n - (2k+1)}{2k+2} \rceil + 1$ if n = (2k+1) + i(2k+2) + j $2 \le j \le 2k+1$. (c). $\gamma_{0,p,k}^{U}(P_n) = 2\lceil \frac{n-(2k+1)}{2k+2} \rceil + 1$ if n = (2k+1) + i(2k+2).

Proof. Let *D* be a minimum distance -k UIPDS and *x* be the isolated vertex in $\langle D \rangle$.

Note that x can dominate a maximum of (2k+1) vertices including it. --->(1)

Also any other vertex of D has a neighbor in D. Further two adjacent vertices of D can dominate a maximum of (2k+2)vertices including them. --- > (2)

Case a: n = (2k+1) + i(2k+2) + 1 for some $i \ge 1$.

From equations (1) and (2), to dominate (2k+1) + i(2k+2)vertices, D must have 1 + 2i vertices in it. To dominate the remaining 1 vertex, D must include one more vertex in it.

Thus $|D| \ge 1 + 2i + 1 = 2 \lfloor \frac{n - (2k+1)}{2k+2} \rfloor$. Consider the set $D = \{k+1\} \cup \{(2b+1)(k+1) - 1, (2b+1)(k+1) - 1\}$ 1) $(k+1): b = 1, 2, 3, ..., i \} \cup \{(2i+1)(k+1)+1\}$ with $2i + 2 = 2 \lceil \frac{n-(2k+1)}{2k+2} \rceil$ elements. Let $v \in V - D$.

Subcase a.1: Suppose $1 \le v \le k$ or $k+2 \le v \le 2k+1$.

Then *v* is dominated only by $k + 1 \in D$.

Subcase a.2: Suppose v = ((2b+1)(k+1)-1) - a: $1 \le a \le k$; $1 \le b \le i$.

Then *v* is dominated only by $(2b+1)(k+1) - 1 \in D$.

Subcase a.3: Suppose v = ((2b+1)(k+1)) + a: $1 \le a \le k$; $1 \leq b \leq i-1$.

Then *v* is dominated only by $(2b+1)(k+1) \in D$.

Subcase a.4: Suppose v = ((2b+1)(k+1)+1) + a: $1 \le a \le k$; b = i

Then *v* is dominated only by $(2b+1)(k+1) \in D$.

 $1 \in D$ is adjacent with another vertex of D, namely (2b + 1)(k+1).

Also the vertex $(2i+1)(k+1) + 1 \in D$ is adjacent with $(2i+1)(k+1) \in D$. Further the vertex $(k+1) \in D$ is not adjacent with any vertices of *D*.

Thus < D > has exactly one isolated vertex.

Hence *D* is a distance -k dominating set.

Therefore *D* is a distance k- UIPDS.

Case b: n = (2k+1) + i(2k+2) + 2 for some $i \ge 1$.

We prove this case by using induction on *i*.

When i = 1, n = 4k + 5. We claim that $\gamma_{0,p,k}^{U}(P_n) = 5$.

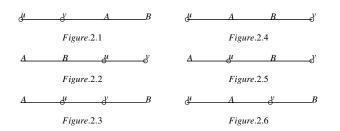
Let *D* be a minimum distance -k UIPDS of P_n and *x* be an isolated in *D*.

Here, *x* will dominate a maximum of 2k + 1 vertices including *x*, let $N_k[x] = A$.

Since $|V(P_n)| > 2k + 1$, by the definition of UIPD, *D* must have at least two adjacent vertices in *D*, say *y* and *z*.

Note that *y* and *z* together will dominate a maximum of (2k + 2) vertices including *y* and *z*, let $N_k[\{y, z\}] = B$.

Note that there are at least two undominated vertices, say u, v which lies outside of $A \cup B$ as given below.



Subcase b.1: Suppose *u* and *v* are as shown in Figure.2.1. If either *u* or *v* alone in *D*(without loss of generality, let it be *v*), then < D > has two isolated vertices, namely *x* and *v*, a contradiction.

Suppose $u, v \notin D$. Then there must exists a vertex $w \in D$ such that $3 \le w \le k+1$ and u and v are dominated by w.

In this case, D has two isolated vertices, namely w and x, a contradiction.

Thus $u, v \in D$ and so $|D| \ge 5$.

As proved in subcase b.1, we can prove that $|D| \ge 5$ if *u* and *v* are as shown in Figure 2.2 and Figure 2.3.

Subcase b.2: Suppose *u* and *v* are as shown in Figure.2.4.

In this case, the two vertices u and v are of distance greater than or equal to 2k + 2. Thus a vertex cannot dominate both u and v. Therefore D must include two more vertices in it and so $|D| \ge 5$.

As proved in subcase b.2, we can prove that $|D| \ge 5$ if *u* and *v* are as shown in Figure 2.5 and Figure 2.6.

Thus $\gamma_{0,p,k}^{U}(P_n) \ge 5$ when i = 1. Note that, when k is even $\{k+1,3(k+1)-1,3(k+1),4k+4,4k+5\}$ is a minimum distance-k UIPDS and when k odd then $\{k+1,3(k+1)-1,3(k+1),4k+3,4k+4\}$ is a minimum distance-k UIPDS. Thus $\gamma_{0,p,k}^{U}(P_n) \le 5$.

Hence we proved the result for i = 1.

Assume the result for all $i \leq a$. Next we prove the result for

i = a + 1.

By mathematical induction, we have $\gamma_{0,p,k}^{U}(P_n) = 2\lceil \frac{n-(2k+1)}{2k+2} \rceil + 1 = 2a+3$ if n = (2k+1) + a(2k+2) + 2 for some $i \ge 1.--->(1)$. Suppose n = (2k+1) + (a+1)(2k+2) + 2 = (2k+1) + a(2k+2) + a(2k+2

a(2k+2)+2k+4.

By (1), to dominate the first (2k+1) + a(2k+2) + 2 vertices, we need 2a + 3 vertices in D. Thus to dominate the remaining (2k+2) vertices, D must have at least two more vertices in it and so $\gamma_{0,p,k}^U(P_n) \ge 2a + 5$ when i = a + 1. Note that, when k is even $D = \{k+1\} \cup \{(2b+1)(k+1) - 1, (2b+1)(k+1) : b = 1, 2, 3, \dots, i\} \cup \{n - \lceil \frac{j}{2} \rceil, n - (\lceil \frac{j}{2} \rceil - 1)$ is a minimum distance -k UIPDS and when k is odd $D = \{k+1\} \cup \{(2b+1)(k+1) - 1, (2b+1)(k+1) : b = 1, 2, 3, \dots, i\} \cup \{n - \lceil \frac{j}{2} \rceil + 1), n - \lceil \frac{j}{2} \rceil$ is a minimum distance -k UIPDS. Hence $\gamma_{0,p,k}^U(P_n) \le 2a + 5$. Thus $\gamma_{0,p,k}^U(P_n) = 2a + 5 = 2\lceil \frac{n - (2k+1)}{2k+2} \rceil + 1$.

When n = (2k+1) + i(2k+2) + j for some $3 \le j \le 2k+1$, as proved in case b, we can prove that $\gamma_{0,p,k}^U(P_n) = 2\lceil \frac{n-(2k+1)}{2k+2}\rceil + 1$.

Case c: n = (2k+1) + i(2k+2) for some $i \ge 1$. As proved in above cases, we can prove $\gamma_{0,p,k}^{U}(P_n) = 2\lceil \frac{n-(2k+1)}{2k+2} \rceil + 1$. Note that $D = \{k+1\} \cup \{(2b+1)(k+1) - 1, (2b+1)(k+1) : b = 1, 2, 3, ..., i\}$.

As proved the above result, we can prove the following result.

Lemma 2.9. Let
$$C_n$$
 be a cycle of n vertices for $n \ge 1$. Then
(a). $\gamma_{0,p,k}^U(C_n) = 2 \lceil \frac{n-(2k+1)}{2k+2} \rceil$ if $n = (2k+1) + i(2k+2) + 1$.
(b). $\gamma_{0,p,k}^U(C_n) = 2 \lceil \frac{n-(2k+1)}{2k+2} \rceil + 1$ if $n = (2k+1) + i(2k+2) + i$, $2 \le j \le 2k$.
(c). $\gamma_{0,p,k}^U(C_n) \le 2 \lceil \frac{n-(2k+1)}{2k+2} \rceil + 2$ if $n = (2k+1) + i(2k+2) + 2k + 1$.
(d). $\gamma_{0,p,k}^U(C_n) = 2 \lceil \frac{n-(2k+1)}{2k+2} \rceil + 1$ if $n = (2k+1) + i(2k+2)$.

Theorem 2.10. Let $n \ge 2$ be an integer and let G be a disconnected graph with n components G_1, G_2, \ldots, G_n such that the first r components G_1, G_2, \ldots, G_r admit distance-k UIPD. Then $\gamma_{0,p,k}^U(G) = \min_{1 \le i \le r} \{t_i\},$

where $t_i = \gamma_{0,p,k}^U(G_i) + \sum_{j=1, j \neq i}^n \gamma_{i,p,k}(G_j)$ for $1 \le i \le r$ and $|V(G_j)| \ge 2$.

Proof. Without loss of generality, let $t_1 = \min_{1 \le i \le r} \{t_i\}$.

Let *D* be a $\gamma_{0,p,k}^{U}$ - set of G_1 and D_i be a $\gamma_{i,p,k}$ - set of G_i for each *i* with $2 \le i \le n$. Then $D \cup (\bigcup_{i=2}^{n} D_i)$ is a distance-*k* UIPDS of *G* with cardinality $\gamma_{0,p,k}^{U}(G_1) + \sum_{i=2}^{n} \gamma_{i,p,k}(G_i)$ and so $\gamma_{0,p,k}^{U}(G) \le \gamma_{0,p,k}^{U}(G_1) + \sum_{i=2}^{n} \gamma_{i,p,k}(G_i) = t_1$. Let *D* be a minimal distance-*k* UIPDS of *G*. Then *D* must

Let *D* be a minimal distance -k UIPDS of *G*. Then *D* must intersect $V(G_i)$ for each $1 \le i \le n$. Further, there exists an

integer *j* such that $D \cap V(G_j)$ is a minimal distance-*k* UIPDS of G_j and $1 \le j \le r$. Also for each $1 \le i \le n, i \ne j$, the set $D \cap V(G_i)$ is a minimal distance-*k* total perfect dominating set of G_i .

Therefore
$$|D| \ge \gamma_{0,p,k}^U(G_j) + \sum_{i=1,i\neq j}^n \gamma_{i,p,k}(G_i) \ge t_1$$
 and hence $\gamma_{0,p,k}^U(G) = \min_{1 \le i \le r} \{t_i\}.$

3. Distance-*k* unique isolate perfect domination on digraphs

In this section, we obtain some basic properties of distance -k UIPDS of digraphs and also we obtain distance -k UIPD number of unidirectional paths, unidirectional cycles and disconnected digraphs.

Remark 3.1. If D is a distance-k UIPDS of a digraph \overline{G} , then the induced subgraph $\langle D \rangle$ has exactly one isolated vertex and all other vertices of D has a neighbor in D.

Lemma 3.2. (a). If a digraph \overrightarrow{G} has at least one vertex u such that $N_{k}^{+}[u] = V(\overrightarrow{G})$, then \overrightarrow{G} admits distance-k UIPD with $\gamma_{0,p,k}^{U}(\overrightarrow{G}) = 1$.

(b). For any digraph \overrightarrow{G} which admits distance-k UIPDS, we have $\gamma_{0,n,k}^{U}(\overrightarrow{G}) \neq 2$.

Proof. (a). The set $D = \{v\}$ is distance -k UIPDS of \vec{G} with $\gamma_{0,p,k}^{U}(\vec{G}) = 1$.

(b). Since any distance -k UIPDS D of a digraph \overrightarrow{G} contains exactly one isolated vertex in $\langle D \rangle$, $\gamma_{0,p,k}^U(\overrightarrow{G}) \neq 2$. \Box

Lemma 3.3. Let $n, i \ge 1$ be an integers. Then (a). $\gamma_{0,p,k}^{U}(\overrightarrow{P}_{n}) = 2\lceil \frac{n-(k+1)}{k+2} \rceil$ if n = (k+1) + i(k+2) + 1. (b). $\gamma_{0,p,k}^{U}(\overrightarrow{P}_{n}) = 2\lceil \frac{n-(k+1)}{k+2} \rceil + 1$ if n = (k+1) + i(k+2) + j, $2 \le j \le k+1$. (c). $\gamma_{0,p,k}^{U}(\overrightarrow{P}_{n}) = 2\lceil \frac{n-(k+1)}{k+2} \rceil + 1$ if n = (k+1) + i(k+2).

Proof. Let *D* be a minimum distance -k UIPDS and *x* be the isolated vertex in < D >.

Note that *x* can dominate a maximum of (k+1) vertices including it.--->(1)

Also any other vertex of *D* has a neighbor in *D*. Further two adjacent vertices of *D* can dominate a maximum of (k+2) vertices including them. ---->(2)

Case a: n = (k+1) + i(k+2) + 1 for some $i \ge 1$.

From equations (1) and (2), to dominate (k+1) + i(k+2) vertices, *D* must have 1+2i vertices in it. To dominate the remaining 1 vertex, *D* must include one more vertex in it. Thus $|D| > 1+2i+1 = 2\lfloor \frac{n-(k+1)}{2} \rfloor$.

Thus $|D| \ge 1 + 2i + 1 = 2 \lceil \frac{n - (k+1)}{k+2} \rceil$. Consider the set $D = \{1\} \cup \{b(k+2), b(k+2) + 1 : b = 1, 2, 3, \dots, i\} \cup \{i(k+2) + 2\}$ with $2i + 2 = 2 \lceil \frac{n - (k+1)}{k+2} \rceil$ elements.

Let $v \in V - D$.

Subcase a.1: Suppose $2 \le v \le k$.

Then *v* is dominated only by $1 \in D$. Subcase a.2: Suppose v = b(k+2) + a: $2 \le a \le k$; $1 \le b \le a \le k$ i - 1. Then *v* is dominated only by $b(k+2) + 2 \in D$. Subcase a.3: Suppose v = i(k+2) + a: $2 \le a \le k$. Then *v* is dominated only by $i(k+2) + 1 \in D$. Clearly $(b(k+2), b(k+2)+1) \in E(G)$ for all b = 1, 2, 3, ..., iand $(i(k+2)+1, i(k+2)+2) \in E(G)$. Thus $\langle D \rangle$ has exactly one isolated vertex. Therefore D is a distance -k UIPDS and |D| > 2i + 2. Hence |D| = 2i + 2. Case b: Suppose n = (k+1) + i(k+2) + 2 for some $i \ge 1$. We prove this case by using induction on *i*. When i = 1, n = 2k + 5. We claim that $\gamma_{0,p,k}^U(\overrightarrow{P}_n) = 5$. Let D be a minimum distance -k UIPDS of \overrightarrow{P}_n and x be an isolated in D. Here, x will dominate a maximum of k + 1 vertices including

 $x, \text{ let } N_k[x] = A; A = \{x, x+1, \dots, x+k\}.$

Since $|V(\vec{P}_n)| > k+1$, by the definition of UIPD, *D* must have at least two adjacent vertices in *D*, say *y* and *y*+1.

Note that *y* and *y* + 1 together will dominate a maximum of (k+2) vertices including *y* and *y* + 1, let $N_k[\{y, y+1\}] = B$; $B = \{y, y+1, \dots, y+k+1\}$.

Note that there are at least two undominated vertices, say u, v which lies outside of $A \cup B$ as given below.

$\overset{\mu}{\Leftrightarrow} \xrightarrow{\gamma} \xrightarrow{A} \xrightarrow{B}$	$\overset{\mu}{\longleftrightarrow} \xrightarrow{A} \xrightarrow{B} \xrightarrow{\phi}$
Figure.3.1	Figure.3.4
$A \longrightarrow B \longrightarrow \phi^{\mu} \longrightarrow \phi^{\nu}$	$\xrightarrow{A \longrightarrow \phi^{\mu} \longrightarrow B \longrightarrow \phi^{\nu}}$
Figure.3.2	Figure.3.5
$A \longrightarrow \phi^{\mu} \longrightarrow \phi^{\nu} \longrightarrow B$	$\overset{d^{\mu}}{\longrightarrow} \xrightarrow{A} \xrightarrow{\gamma} \overset{\gamma}{\longrightarrow} \xrightarrow{B}$
Figure.3.3	Figure.3.6

Subcase b.1: Suppose *u* and *v* are as shown in Figure.3.1. If $v \in D$, then $(v,x) \in E(\overrightarrow{P_n})$, *x* is not a isolated vertex in *D*, a contradiction.

If $u \in D$ and $v \notin D$, then *u* and *x* are two isolated vertices in $\langle D \rangle$, a contradiction. Therefore this case does not exist. Subcase b.2: Suppose *u* and *v* are as shown in Figure.3.2.

If we take either *u* or *v* alone in *D*, then $\langle D \rangle$ has two isolated vertices namely *x* and *u* or *v*, a contradiction. Thus $u, v \in D$ and so $|D| \ge 5$.

Subcase b.3: Suppose *u* and *v* are shown in Figure.3.3.

W.K.T $x, x + 1, x + 2, \dots, x + k + 1$ are all vertices in A and $x \in D$.

To dominate *u* and *v*, either x + 1 or x + 2 or ... or x + k + 1or $u \in D$. Suppose $x + 1 \in D$, since $(x, x + 1) \in E(\overrightarrow{P_n})$, a contradiction to *x* is isolated vertex in *D*.

Therefore $x + 1 \notin D$.

Suppose a vertex $x + i \in D$ $\forall i = 2, 3, ..., k + 1$ then x and x + i are two isolated vertex in $\langle D \rangle$, a contradiction. Thus $\{x+i, x+i+1\} \in D$ and so $|D| \ge 5$.

Subcase b.4: Suppose *u* and *v* are shown in Figure.3.4 and Figure.3.6, to dominate *u*, *D* must include *u*, a contradiction to *x* is isolated vertex in $\langle D \rangle$. Thus these two cases does not exist.

Subcase b.5: Suppose *u* and *v* as shown in Figure.3.5, to dominate *v*, either y + 2 or y + 3 or ... or y + k + 1 or $v \in D$.

If $v \in D$, then there exist two isolated vertices in $\langle D \rangle$ namely *x* and *v*, a contradiction.

We must include one more vertices y + k + 1, and so $(y + k + 1, v) \in E(\overrightarrow{P_n})$. Thus $\gamma_{0,p,k}^U(\overrightarrow{P_n}) \ge 5$. If $y + 2 \in D$, then *v* dominated by $y + 2 \in D$, then *v* dominated

If $y+2 \in D$, then v dominated by $y+2 \in D$, then v dominated by y+2. Further to dominate u, as we proved in subcase 3 we must include at least one vertex in D.

Thus $\gamma_{0,p,k}^U(\overrightarrow{P_n}) \ge 5$.

Note that $\{1, k+2, k+3, 2k+4, 2k+5\}$ is a minimum distance -k UIPDS and so $\gamma_{0,k}^{U}(\overrightarrow{P_n}) \leq 5$. Hence we proved the result for i = 1.

Assume the result for all $i \le a$. Next we prove the result for i = a + 1.

By mathematical induction, we have $\gamma_{0,k}^{U}(\overrightarrow{P_n}) = 2\lceil \frac{n-(k+1)}{k+2} \rceil + 1 = 2a+3$ if n = (k+1) + a(k+2) + 2 for some $i \ge 1.--$ --->(1)Suppose n = (k+1) + (a+1)(k+2) + 2 = (k+1) + a(k+2) + (k+2) + 2.

By (1), to dominate the first (k+1) + a(k+2) + 2 vertices, we need 2a+3 vertices in *D*. Thus to dominate the remaining (k+2) vertices, *D* must have at least two more vertices in it and so $\gamma_{0,p,k}^{U}(\overrightarrow{P_n}) \ge 2a+5$ when i = a+1.

Note that $D = \{1\} \cup \{b(k+2), b(k+2) + 1 : b = 1, 2, 3, \dots, i+1\}$ is a minimum distance -k UIPDS and so $\gamma_{0,p,k}^{U}(\overrightarrow{P_n}) \leq 2a+5$. Thus $\gamma_{0,p,k}^{U}(\overrightarrow{P_n}) = 2a+5 = 2\lceil \frac{n-(k+1)}{k+2} \rceil + 1$. When n = (k+1) + i(k+2) + j for some $3 \leq j \leq k+1$, as proved in case b, we can prove that $\gamma_{0,p,k}^{U}(\overrightarrow{P_n}) = 2\lceil \frac{n-(k+1)}{k+2} \rceil + 1$.

Case c: Suppose n = (k + 1) + i(k + 2).

As proved in above cases, we can prove $\gamma_{0,p,k}^U(\overrightarrow{P}_n) = 2\lceil \frac{n-(k+1)}{k+2}\rceil + 1$. Note that $D = \{1\} \cup \{b(k+2), b(k+2) + 1: b = 1, 2, 3, \dots, i\}$ is a minimum distance -k UIPDS. \Box

As proved the above result, we can prove the following result.

Lemma 3.4. Let \overrightarrow{C}_n be an unidirectional cycle of *n* vertices for $n \ge 1$. Then (a). $\gamma_{0,p,k}^U(\overrightarrow{C}_n) = 2\lceil \frac{n-(k+1)}{k+2} \rceil$ if n = (k+1) + i(k+2) + 1. (b). $\gamma_{0,p,k}^U(\overrightarrow{C}_n) = 2\lceil \frac{n-(k+1)}{k+2} \rceil + 1$ if n = (k+1) + i(k+2) + j, $2 \le j \le k+1$. (c). $\gamma_{0,p,k}^U(\overrightarrow{C}_n) = 2\lceil \frac{n-(k+1)}{k+2} \rceil + 1$ if n = (k+1) + i(k+2).

Theorem 3.5. Let $n \ge 2$ be an integer and let \overrightarrow{G} be a disconnected directed graph with n components $\overrightarrow{G}_1, \overrightarrow{G}_2, \ldots, \overrightarrow{G}_n$ such that the first r components $\overrightarrow{G}_1, \overrightarrow{G}_2, \ldots, \overrightarrow{G}_r$ admit distance-k UIPD. Then $\gamma_{0,p,k}^U(\overrightarrow{G}) = \min_{1 \le i \le r} \{t_i\}$, where $t_i =$

$$\gamma_{0,p,k}^{U}(\overrightarrow{G}_{i}) + \sum_{j=1, j \neq i}^{n} \gamma_{t,p,k}(\overrightarrow{G}_{j}) \text{ for } 1 \leq i \leq r \text{ and } |V(\overrightarrow{G}_{j})| \geq 2.$$

Proof. Without loss of generality, let $t_1 = \min_{1 \le i \le r} \{t_i\}$.

Let *D* be a $\gamma_{0,p,k}^{U^-}$ set of \overrightarrow{G}_1 and D_i be a $\gamma_{1,p,k}^{U^-}$ set of \overrightarrow{G}_i for each *i* with $2 \le i \le n$.

Then $D \cup (\bigcup_{i=2}^{n} D_i)$ is a distance -k UIPDS of \overrightarrow{G} with cardinality $\gamma_{0,p,k}^{U}(\overrightarrow{G}_1) + \sum_{i=2}^{n} \gamma_{t,p,k}(\overrightarrow{G}_i)$ and so $\gamma_{0,p,k}^{U}(\overrightarrow{G}) \le \gamma_{0,p,k}^{U}(\overrightarrow{G}_1) + \sum_{i=2}^{n} \gamma_{t,p,k}(\overrightarrow{G}_i) = t_1.$

Let *D* be a minimal distance -k UIPDS of \vec{G} . Then *D* must intersect $V(\vec{G}_i)$ for each $1 \le i \le n$.

Further, there exists an integer *j* such that $D \cap V(\overrightarrow{G}_j)$ is a minimal distance -k UIPDS of \overrightarrow{G}_j and $1 \le j \le r$. Also for each $1 \le i \le n, i \ne j$, the set $D \cap V(\overrightarrow{G}_i)$ is a minimal distance -k total perfect dominating set of \overrightarrow{G}_i .

Therefore $|D| \ge \gamma_{0,p,k}^U(\overrightarrow{G}_j) + \sum_{i=1,i\neq j}^n \gamma_{i,p,k}(\overrightarrow{G}_i) \ge t_1$ and hence $\gamma_{0,p,k}^U(\overrightarrow{G}) = \min_{1\le i\le r} \{t_i\}.$

References

- ^[1] G. Chartrand and Lesniak, *Graphs and Digraphs*, Fourth ed., CRC press, Boca Raton, 2005.
- ^[2] T.W. Hakynes, S.T. Hedetniemi and P.J. Slater, *Funda*mental of Domination in Graphs Marcel Dekker, New York, 1998
- [3] I. Sahul Hamid and S.Balamurugan, Isolate domination in Unicycle Graphs, International Journal of Mathematics and soft Computing, 3(2013), 79–83.
- ^[4] I. Sahul Hamid and S. Balamurugan, *Isolate domination in graphs*, *Arab. J. Math. Sci.*, 22 (2016), 232–241.
- [5] Sivagnanam Mutharasu and V. Nirmala, Unique isolated perfect domination in graphs, TEST Engineering & Management, (2020), 14877–14882.
- [6] S.K.Vaidya and N.J. Kothari, *Distance k-domination in Some Cycle Related Graphs*, Miskolc Mathematical Notes 19(2)(2018), 1223–1231.

******* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******