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On derivations and Lie structure of semirings
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Abstract. In [9], Herstein introduced the notion of the Lie structure of associative rings and established the Lie type theory for
rings. This paper extends these ring theoretical results and also extends some well known results of [3, 7, 8] in the framework
of semirings, which are very important to investigate the Lie type theory of semirings and their higher commutators. Moreover,
we characterize the Lie structure of semirings and thereby explore the action of derivations on Lie ideals of semirings.
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1. Introduction

In past few years, various authors explored the brief structure of non commutative rings by developing the Lie
type theory of associative rings. In 1969, Herstein [9] introduced the notion of Lie structure for rings and obtained
several results which are helpful for rings of operators on a Hilbert space. The purpose of this study is to extend
these results for some more general structure, e.g., the algebraic structure of non-commutative semirings. But the
problem arises when we replace rings by semirings, as semirings do not have additive inverses, so we impose the
weaker version of additive inverses, i.e., the pseudo inverse introduced by Karvellas [10]. Recently, semirings
have been studied by various researchers (cf. [5, 11, 12]). In this paper, we generalized some of the Herstein’s
results in the framework of additively regular semirings which are further used to study the Lie structure of prime
semirings and some of its subsets. Moreover, the behavior of derivations on Lie ideals of semirings is studied.
Consequently, this enables us to measure the size of the centralizer of Lie ideals for the case of semirings. We
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also investigate some properties regarding Lie semirings which are very useful to investigate the Lie derivations
and higher derivations of Lie ideals of semirings.

The prime motivation for this paper is not only the intense desire to extend these well known results, in
the field of semirings, but to explore the close characterization of Lie theory and derivations in semirings. It is
natural to point out that the ideal theory, homomorphisms and the Jordan theory are easily accessible to analyse
in comparison to the Lie theory. As in the Lie case, the center of algebraic structure comes in our way and
thereby various well known results are untouched in the corresponding Lie theory of semirings which are true in
the aforementioned theories. Henceforth, this paper delivers the suitable techniques which can be efficiently used
more and more to study the enormous structure of Lie semirings.

2. Preliminaries and some examples

Recall from [6] that a non empty set S is called a semiring if (S ,+) is a commutative monoid; (S , ·) is a
semigroup; and both distributive laws of multiplication over addition hold with 0 · t = 0 = t · 0, ∀ t ∈ S .
Further, an element t ∈ S is called additively regular if and only if ∃ some element t′ of S with t+ t+ t′ = t

and t′ + t′ + t = t′ and S is known as an additively regular semiring if and only if S = S ′ = reg(S ), where
reg(S ) represents the set of all additively regular elements of S . The element s′ is the pseudo inverse [10] of
s. For instance, if B = {0, 1} is a boolean semiring with binary operations as 0 + 0 = 0; 0 + 1 = 1 = 1 + 0;
1 + 1 = 1 and 0 · 0 = 1 · 0 = 0 · 1 = 0; 1 · 1 = 1, then B is an additively regular semiring, where t′ = t,∀ t ∈ B
is the pseudo inverse of t ∈ B. One can easily check that the pseudo inverse of an element is always unique. In
1982, Bandelt and Petrich [1] considered an additively regular semiring S with conditions:

(A1) : a1(a1 + a′1) = a1 + a′1, ∀ a1 ∈ S ; (A2) : s1(a1 + a′1) = (a1 + a′1)s1, ∀ a1, s1 ∈ S ; (A3) :

a1 + (a1 + a′1)s1 = 1, ∀ a1, s1 ∈ S and investigated various results for this class of semirings. In addition,
every Bandelt semiring [6] is an additively regular semiring with A2−condition.

Further, S is said to be prime if HK = (0) infers that either H = (0) or K = (0), where H and K are any
two ideals of S . A semiring which does not have any nilpotent ideals is called a semiprime semiring. Note that
every prime semiring is also a semiprime semiring.

For given a, b ∈ S , then [a, b] (the Lie bracket) symbolizes the element ab + b′a or ab + ba′. Indeed, for
H,K ⊆ S , the Lie bracket [H,K] is an additive submonoid of S which is generated by all elements of the form
hk + k′h or hk + kh′, for h ∈ H and k ∈ K and (H) denotes the ideal generated by H. However, an additive
submonoid L of S is called a Lie ideal if [L ,S ] ⊆ L . Note that [L1,L2] is also a Lie ideal of S , for L1 and
L2 are Lie ideals of S , because of the existence of the Jacobi identity [r1, [s1, t1]] + [s1, [t1, r1]] = [[r1, s1], t1].

Throughout this study, S represents an additively regular semiring with A2−condition and L is a Lie ideal
of S , unless otherwise mentioned. We now delay the discussion of higher commutators of S until later and
proceed with some results which will be used frequently in the sequel.

For simplicity, we denote u◦ = u + u′ and by A2− condition, u◦ ∈ Z (S ), ∀ u ∈ S , where Z (S )

represents the center of S .

Lemma 2.1 ([6]). Let S be an additively regular semiring. Then the following hold:
(i) u′′

1 = u1; (ii) u′
1v

′
1 = (u′

1v1)
′ = (u1v

′
1)

′ = (u1v1)
′′ = u1v1; (iii) (u1v1)

′ = u′
1v1 = u1v

′
1; (iv) (u1 + v1)

′ =

u′
1+v′1; (v) If u1+v1 = 0, then v1 = u′

1; (vi) u1◦+u1◦ = u1◦ = u1
′
◦; (vii) u1+u1◦ = u1; (viii) u′

1+u1◦ = u′
1;

(ix) u1◦v1 = u1v1◦ = (u1v1)◦ = u1◦v1◦ = v1◦u1◦ = (v1u1)◦, ∀ u1, v1 ∈ S .

Example 2.2. Consider S = {0, 1, a} having all additively idempotent elements and the binary operations in it
can be illustrated with the help of the Cayley tables given below:

⊕ 0 1 a

0 0 1 a

1 1 1 a

a a a a

⊗ 0 1 a

0 0 0 0

1 0 1 a

a 0 a a
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One can easily see that the pseudo inverse of a is a′ = a, ∀ a ∈ S . Obviously, S is an additively regular
semiring with A2−condition and L = {0, a}, is a Lie ideal of S .

The forthcoming example demonstrates that every additively regular semiring may not satisfy A2−condition.

Example 2.3. Consider a Boolean semiring B and S =

{[
a b

c d

]
∈ M2×2(B) : a, b, c, d ∈ B

}
with usual

addition and usual multiplication of matrices. Define pseudo inverse of an element of S by
[
a b

c d

]′
=

[
a′ b′

c′ d′

]
, ∀[

a b

c d

]
∈ S . Then S is an additively regular semiring which does not satisfy A2−condition.

The following lemma is easy to prove, so we omit it.

Lemma 2.4. If u1, v1, w1 ∈ S , then
(i) [u1, v1w1] = [u1, v1]w1+v1[u1, w1]; (ii) [u1v1, w1] = u1[v1, w1]+[u1, w1]v1; (iii) [u1+v1, w1] = [u1, w1]+

[v1, w1]; (iv) [u1, [v1, w1]] + [v1, [w1, u1]] = [[u1, v1], w1] (Jacobi Identity).

3. Lie Ideals and Higher Commutators

We hereby introduce the notion of higher commutators of semirings. Also, some results regarding higher
commutators of S are proved which play a significant part in characterizing the Lie structure of semirings.
Throughout this section, S represents a prime additively regular semiring satisfying A2−condition.

Proposition 3.1. If u1 ∈ S with u1[u1,S ] = (0), then u1 ∈ Z (S ).

Proof. By hypothesis,
u1[u1, r] = 0, ∀ r ∈ S . (1)

Again by hypothesis, we have u1[u1, rs] = 0, ∀ r, s ∈ S which implies that u1(u1rs+ rs′u1) = 0, ∀ r, s ∈ S .
Further, Lemma 2.1 implies that

0 = u1(u1rs+ rs′u1 + r◦su1) = u1(u1rs+ rs′u1 + rs◦u1)

= u1(u1rs+ rs′u1 + rsu1◦) = u1(u1rs+ rs′u1 + ru1◦s), by A2−condition

= u1(u1rs+ rs′u1 + r◦u1s) = u1((u1r + r′u1)s+ r(u1s+ s′u1)).

Then by equation (1), we have u1r(u1s+s′u1) = 0, ∀ r, s ∈ S , that is, u1S [u1, s] = (0), ∀ s ∈ S . Therefore,
primeness of S infers that either u1 = 0 or [u1,S ] = (0) and hence u1 ∈ Z (S ). ■

Lemma 3.2. If char S ̸= 2 and [u1, [u1,S ]] = (0), for u1 ∈ S , then u1 ∈ Z (S ).

Proof. For any x1 ∈ S , we have [u1, [u1, x1]] = 0 which gives that

u1[u1, x1] + [u1, x1]u
′
1 = 0.

Then by adding both sides [u1, x1]u1, we obtain

u1[u1, x1] + [u1, x1]u
′
1 + [u1, x1]u1 = [u1, x1]u1.

This infers that
u1[u1, x1] + [u1, x1]u1◦ = [u1, x1]u1.
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In view of A2−condition, we obtain u1[u1, x1] + u1◦[u1, x1] = [u1, x1]u1. Thus,

u1(u1x1 + x′
1u1) = (u1x1 + x′

1u1)u1, ∀ x1 ∈ S . (1)

Again hypothesis leads to [u1, [u1, x1y]] = 0, ∀ x1, y ∈ S . Equivalently,

u1(u1x1y + x′
1yu1) + (u1x1y + x′

1yu1)u
′
1 = 0, for any x1, y ∈ S .

Thus, by Lemma 2.1 and A2−condition, we can replace u1x1y + x′
1yu1 by (u1x1 + x′

1u1)y + x1(u1y + y′u1)

which gives that

u1((u1x1 + x′
1u1)y + x1(u1y + y′u1)) + ((u1x1 + x′

1u1)y + x1(u1y + y′u1))u
′
1 = 0, for any x1, y ∈ S .

Further, by applying equation (1), we obtain 2(u1x1+x′
1u1)(u1y+y′u1) = 0, ∀ x1, y ∈ S . As the characteristic

of S is other than 2, so we are left with

[u1, x1][u1, y] = 0, ∀ x1, y ∈ S . (2)

Replacing x1 by x1z in (2), where z ∈ S , then by Lemma 2.4 and equation (2), we get that [u1, x1]S [u1, y] =

(0), ∀ x1, y ∈ S . Now, since S is prime, therefore [u1, x1] = 0 or [u1, y] = 0, ∀ x1, y ∈ S and hence in both
cases u1 ∈ Z (S ). ■

Proposition 3.3. If char S ̸= 2 and [L ,L ] = (0), then L ⊆ Z (S ).

Proof. For any l1 ∈ L , s1 ∈ S , we have [l1, s1] ∈ L . By hypothesis, [l1, [l1, s1]] = 0, ∀ l1 ∈ L , s1 ∈ S , that
is, [l1, [l1,S ]] = (0), ∀ l1 ∈ L . Lemma 3.2 concludes that L ⊆ Z (S ). ■

One can easily prove the upcoming two lemmas by using the similar arguments of [9, Lemma 1.8 and Lemma
1.9] with necessary variations.

Lemma 3.4. If J ̸= (0) is a left ideal of S , then J + [S ,S ] = S .

Lemma 3.5. If L ̸= (0) with u1L = (0) or L u1 = (0), for any u1 ∈ S , then u1 = 0.

Now, we turn our attention to define the higher commutator of S and prove some basic lemmas which we
need later to prove results concerning the Lie structure of higher commutators.

Definition 3.6. The higher commutator of S is defined inductively by:
(1) S (0) = S , of weight 1;
(2) S (1) = [S ,S ], of weight 2

and a higher commutator of S of weight n is defined by [P,Q], where P is a higher commutator of S of
weight p, Q is of weight q, with p+ q = n.

For convenience, we give notation S (k) for the following series of S defined as: S (0) = S ,
S (1) = [S ,S ],..., S (k) = [S (k−1),S (k−1)].

It is pertinent to mention that the higher commutator of weight 2 is only [S ,S ] = S (1), whereas the
higher commutator of weight 3 is only S (3) = [[S ,S ],S ]; there are two higher commutators of weight 4 viz,
[S , [S , [S ,S ]]] and [[S ,S ], [S ,S ]]; three of weight 5 viz, [S , [S , [S , [S ,S ]]]], [S , [[S ,S ], [S ,S ]]

and [[S ,S ], [[S ,S ],S ]] and so on.

The next lemma follows verbatim as Lemma 3 in [8].
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Lemma 3.7. A higher commutator of S contains S (k), for some k.

An application of the above lemma is

Corollary 3.8. If H is a higher commutator of S , then (H), the ideal generated by H, contains S (k), for some
k.

Lemma 3.9. Let H be a higher commutator of S . Then H is a Lie ideal of S .

Proof. Let H be a higher commutator of S of weight n. We shall prove the result by using induction on n. For
n = 1, clearly S is a Lie ideal of S . Now, we suppose that it is true for n = k−1, that is, H = [P,Q], where P
is a higher commutator of S of weight p and Q is of weight q, with p+ q = k − 1, is a Lie ideal of S . Further,
consider K = [H,S ] is a higher commutator of S of weight k. Then obviously, K is an additive submonoid of
S and [K,S ] = [[H,S ],S ] ⊆ [H,S ] = K, as [H,S ] ⊆ H. Therefore, K is a Lie ideal of S . This finishes
the proof. ■

Theorem 3.10. If u1 is any element of S which satisfies [u1, [S ,S ]] = (0), then u1 ∈ Z (S ).

Proof. For any x1, y ∈ S , we have [u1, [x1, y]] = 0 leading to

u1[x1, y] + [x1, y]u
′
1 + [x1, y]u1 = [x1, y]u1.

Now, by applying A2− condition on this equality, we have

u1[x1, y] + (u1 + u′
1)[x1, y] = [x1, y]u1

which infers that
u1x1y + u1yx

′
1 = x1yu1 + y′x1u1, ∀ x1, y ∈ S . (1)

Again by hypothesis, we have [u1, [x1, x1y]] = 0, ∀ x1, y ∈ S . Thus,

0 = u1(x1x1y + x1y
′x1) + (x1x1y + x1y

′x1)u
′
1

= u1x1(x1y + y′x1) + x1(x1y + y′x1)u
′
1, ∀ x1, y ∈ S .

By equation (1), we obtain that u1x1(x1y + y′x1) + x1u
′
1(x1y + y′x1) = 0, ∀ x1, y ∈ S which is equivalent to

(u1x1 + x1u
′
1)(x1y + y′x1) = 0, ∀ x1, y ∈ S . (2)

Changing y with yu1 in equation (2) and applying A2−condition, we have

0 = (u1x1 + x1u
′
1)(x1yu1 + yu′

1x1) = (u1x1 + x1u
′
1)(x1yu1 + x1y◦u1 + yu′

1x1)

= (u1x1 + x1u
′
1)(x1yu1 + y◦x1u1 + yu′

1x1) = (u1x1 + x1u
′
1)((x1y + y′x1)u1 + y(x1u1 + u′

1x1)).

Moreover, by equation (2), we obtain (u1x1 + x1u
′
1)y(x1u1 + u′

1x1) = 0, ∀ x1, y ∈ S . Equivalently,

(u1x1 + x1u
′
1)S (x1u1 + u′

1x1) = (0), ∀ x1 ∈ S

and in that case (S (x1u1 + u′
1x1))

2 = (0), which is a contradiction, as S does not have any non-zero nilpotent
ideal. Thus, u1x1 + x1u

′
1 = 0, ∀ x1 ∈ S , that is, u1x1 = x1u1,∀x1 ∈ S . Hence u1 ∈ Z (S ). ■

Remark 3.11. Let Z (S ) be the center of S . We define the extended centroid of L by the set ZS (L ) = {s ∈
S : sl = ls, ∀ l ∈ L }. Also, one can easily check that Z (S ) ⊆ ZS (L ).

Theorem 3.12. Let char S ̸= 3 and P be an additive submonoid of S . If [[p, [p,P]], s] = (0), ∀ p ∈ P, s ∈ S ,
then [P, [P,P]] ⊆ Z (S ).
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Proof. The given hypothesis infers that

[[k, [k,m1]], y] = 0, ∀ k,m1 ∈ P, y ∈ S . (1)

Again by hypothesis, [[l1 + k, [l1 + k,m1]], y] = 0, for any l1,m1, k ∈ P, y ∈ S . Then by Lemma 2.4, we
obtain

0 = [[l1 + k, [l1,m1] + [k,m1]], y] = [[l1 + k, [l1,m1]], y] + [[l1 + k, [k,m1]], y]

for any l1,m1, k ∈ P, y ∈ S . Further, by Lemma 2.4 and equation (1), we get that

[[k, [l1,m1]], y] + [[l1, [k,m1]], y] = 0, ∀ l1,m1, k ∈ P, y ∈ S . (2)

By using Jacobi identity, we can substitute [[l1, [k,m1]]+ [[l1, k],m1] in place of [[k, [l1,m1]] in equation (2) and
thus we have

2[[l1, [k,m1]], y] + [[l1, k],m1], y] = 0, ∀ l1,m1, k ∈ P, y ∈ S . (3)

By interchanging l1 and m1 in equation (3), we have

2[[m1, [k, l1]], y] + [[m1, k], l1], y] = 0,∀ l1,m1, k ∈ P, y ∈ S

which is equivalent to

2[[[l1, k],m1], y] + [[l1, [k,m1]], y] = 0, ∀ l1,m1, k ∈ P, y ∈ S . (4)

Further, by adding equations (3) and (4), we get that

3([[[l1, k],m1], y] + [[l1, [k,m1]], y]) = 0, ∀ l1,m1, k ∈ P, y ∈ S .

Again using Jacobi identity, we have 3[[[l1,m1], k], y] = 0, ∀ l1,m1, k ∈ P, y ∈ S . As char S ̸= 3, so we are
left with [[[l1,m1], k], y] = 0, ∀ l1,m1, k ∈ P, y ∈ S . Therefore, [P, [P,P]] ⊆ Z (S ). ■

The next corollary is an important outcome of the previous result.

Corollary 3.13. If char S ̸= 3 and [[l1, [l1,L ]],L ] = (0), for any l1 ∈ L , then [L , [L ,L ]] ⊆ ZS (L ).

Theorem 3.14. If char S ̸= 2 and [[L , [L ,L ]],L ] = (0), then [L , [L ,L ]] ⊆ Z (S ).

Proof. Since L is a Lie ideal of S , therefore [L , [L ,L ]] is also a Lie ideal of S . Thus,
[l1, s1] ∈ [L , [L ,L ]], ∀ l1 ∈ [L , [L ,L ]] and s1 ∈ S . Moreover, by hypothesis [l1, [l1, s1]] = 0, ∀
l1 ∈ [L , [L ,L ]], s1 ∈ S and hence Lemma 3.2, concludes that [L , [L ,L ]] ⊆ Z (S ). ■

4. Lie structure of S

The idea behind the results proved in this section was first brought to the author’s attention during the study of
the Lie structure of rings given by Herstein [7–9]. Throughout this section, L denotes a 2-Lie ideal (that is, a Lie
ideal having property 2l1m1 ∈ L , ∀ l1,m1 ∈ L ) of S . We now begin this section with an example:

Example 4.1. Consider S = Z × Z+ = {(u1, r1) : u1 ∈ Z, r1 ∈ Z+}, where Z+ is the set of all positive
integers with binary operations ⊕ and ⊙ by (u1, r1) ⊕ (v, s) = (u1 + v, lcm(r1, s)) and (u1, r1) ⊙ (v, s) =

(u1v, gcd(r1, s)), ∀ (u1, r1), (v, s) ∈ S . Further, define the pseudo inverse of an element (u1, r1) of S by
(u1, r1)

′ = (−u1, r1). Then clearly, S is an additively regular semiring with A2−condition. Indeed, the set
L = {(0, s) : s ∈ Z+} is a 2-Lie ideal of S .

We now introduce a more general result which is a generalization of [9, Lemma 1.3].
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Theorem 4.2. If char S ̸= 2, then either L is contained in Z (S ) or L contains a non-zero ideal of S .

Proof. In case [L ,L ] = (0), then by Proposition 3.3, we have L ⊆ Z (S ). But, if L ⊈ Z (S ), then again
by Proposition 3.3, [L ,L ] ̸= (0), so we shall prove the containment of the ideal 2S [L ,L ]S of S in L . We
claim that 2S [L ,L ] ⊆ L . For this, let 2s[l1,m1] ∈ 2S [L ,L ], for any l1,m1 ∈ L , s ∈ S . Then

2s[l1,m1] = 2(sl1m1 + sm′
1l1)

= 2(sl1m1 + s◦l1m1 + sm′
1l1), by Lemma 2.1

= 2(sl1m1 + l1s◦m1 + sm′
1l1), by A2−condition

= 2(sl1m1 + l1sm1 + l1s
′m1 + s′m1l1), by Lemma 2.1

= 2((l1sm1 + s′m1l1) + (l1s
′m1 + sl1m1)) = 2[l1, sm1] + 2[l1, s

′]m1 ∈ L .

Hence, 2S [L ,L ] ⊆ L . This infers that

[2r[l1,m1], s] ∈ L ,∀ l1,m1 ∈ L , r, s ∈ S

which is equivalent to
2r[l1,m1]s+ 2s′r[l1,m1] ∈ L . (1)

Also, since 2sr[l1,m1] ∈ L , therefore equation (1) gives

2r[l1,m1]s+ 2s′r[l1,m1] + 2sr[l1,m1] ∈ L .

Equivalently, 2r[l1,m1]s+ 2s◦r[l1,m1] ∈ L . Thus, we obtain

2r(l1m1 +m′
1l1)s+ 2(s+ s′)r(l1m1 +m′

1l1) ∈ L .

In other words, 2r(l1m1 +m′
1l1)s+ 2(s◦rl1m1 + s◦rm

′
1l1) ∈ L . Then, A2−condition yields

2r(l1m1 +m′
1l1)s+ 2r◦l1m1s+ 2r◦m

′
1l1s ∈ L .

Therefore, Lemma 2.1 concludes that 2r(l1m1 + m′
1l1)s ∈ L , ∀ l1,m1 ∈ L , r, s ∈ S which gives

2S [L ,L ]S ⊆ L . The theorem is thereby established. ■

Definition 4.3. [2] A semiring S is called ideal-simple (id-simple for short), if S is non-trivial and I = S ,

whenever I is a non-zero ideal of S such that I contains atleast two elements respectively.

The above result immediately implies the following theorem which is a generalization of [9, Theorem 1.2]

Theorem 4.4. If S is an id-simple semiring with char S ̸= 2, then either L ⊆ Z (S ) or L coincides with
S .

Lemma 4.5. If char S ̸= 2 and L ⊈ Z (S ), then there exists an ideal I of S such that [I ,S ] ⊆ L .

Proof. As proved in the Theorem 4.2, the non-zero ideal 2S [L ,L ]S of S is contained in L , then it follows
easily that [2S [L ,L ]S ,S ] ⊆ L . Hence proved. ■

In the rest of this section, S denotes a prime semiring with char S ̸= 2. It is easy to observe that every
id-simple semiring is a prime semiring. Therefore, all the forthcoming results of this section are also true for an
id-simple semiring.

Lemma 4.6. If L ⊈ Z (S ) and u1, v ∈ S with u1L v = (0), then either u1 = 0 or v = 0.
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Proof. By the above lemma, there exists an ideal J of S with [J ,S ] ⊆ L . Let l1 ∈ L , i ∈ J , s ∈ S .
Then [iu1l1, s] ∈ [J ,S ] ⊆ L . Henceforth,

0 = u1[iu1l1, s]v = u1[iu1, s]l1v + u1iu1[l1, s]v = u1[iu1, s]l1v, as u1L v = (0)

= u1(iu1s+ s′iu1)l1v = u1iu1sl1v, as u1L v = (0).

This shows that u1J u1S L v = (0). If u1 ̸= 0 and by using the fact that S is prime, we obtain L v = (0),

then by Lemma 3.5, v = 0. ■

Theorem 4.7. If [u1, [L ,L ]] = (0), for any u1 ∈ S , then either L ⊆ Z (S ) or [u1,L ] = (0).

Proof. Assume that L ⊈ Z (S ). For any l1,m1 ∈ L , hypothesis gives that [u1, [l1,m1]] = 0 which leads to

u1(l1m1 +m′
1l1) + (l1m1 +m′

1l1)u
′
1 + (l1m1 +m′

1l1)u1 = (l1m1 +m′
1l1)u1.

This infers that
u1(l1m1 +m′

1l1) = (l1m1 +m′
1l1)u1. (1)

Again by hypothesis, we have
[u1, [l1, 2l1m1]] = 0,∀ l1,m1 ∈ L .

Since char S ̸= 2, therefore [u1, [l1, l1m1]] = 0, ∀ l1,m1 ∈ L which is equivalent to

u1l1(l1m1 +m′
1l1) + l1(l1m1 +m′

1l1)u
′
1 = 0,∀ l1,m1 ∈ L .

Then by using equation (1), we get

u1l1(l1m1 +m′
1l1) + l1u

′
1(l1m1 +m′

1l1) = 0

which concludes that
(u1l1 + l1u

′
1)(l1m1 +m′

1l1) = 0, ∀ l1,m1 ∈ L . (2)

The replacement of m1 with 2m1n, where n ∈ L , in equation (2) gives

2(u1l1 + l1u
′
1)(l1m1n+m′

1nl1) = 0.

But char S ̸= 2 gives

0 = (u1l1 + l1u
′
1)(l1m1n+m′

1nl1) = (u1l1 + l1u
′
1)(l1m1n+m1◦nl1 +m1n

′l1)

= (u1l1 + l1u
′
1)((l1m1 +m′

1l1)n+m1(l1n+ n′l1))

= (u1l1 + l1u
′
1)(l1m1 +m′

1l1)n+ (u1l1 + l1u
′
1)m1(l1n+ n′l1),

then equation (2) yields (u1l1 + l1u
′
1)m1(l1n+ n′l1) = 0, ∀ l1,m1, n ∈ L . In other words,

(u1l1 + l1u
′
1)L (l1n+ n′l1) = (0), ∀ l1, n ∈ L .

By the above lemma, for any l1 ∈ L , we obtain either u1l1 + l1u
′
1 = 0 or l1n + n′l1 = 0, ∀ n ∈ L . Now, if

[l1,L ] = (0), ∀ l1 ∈ L , then [L ,L ] = (0) and hence Proposition 3.3 yields L ⊆ Z (S ), which is absurd.
Therefore, there exists some k ∈ L with [k,L ] ̸= (0), then [u1, k] = 0. We now claim that [u1,L ] = (0).

For this, if possible, let j( ̸= k) ∈ L with [u1, j] ̸= 0. Thus, [j,L ] = (0). This infers that [j + k,L ] ̸= (0) and
[u1, j + k] ̸= 0 hold simultaneously, which is not true. Hence, [u1,L ] = (0). ■

An application of the above theorem is as follows:
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Corollary 4.8. If u1 ∈ S satisfies [u1, [L ,L ]] = (0), then either L ⊆ Z (S ) or u1 commutes with every
element of L .

The upcoming theorem is a partial extension of [8, Theorem 1].

Theorem 4.9. If [u1, [u1,L ]] = (0), for any u1 ∈ S , then either L ⊆ Z (S ) or [u1,L ] = (0).

Proof. Let L ⊈ Z (S ). By given hypothesis, [u1, [u1, x1]] = 0, ∀ x1 ∈ L . This infers that u1[u1, x1] +

[u1, x1]u
′
1 + [u1, x1]u1 = [u1, x1]u1, ∀ x1 ∈ L . Further, A2−condition implies that

u1(u1x1 + x′
1u1) = (u1x1 + x′

1u1)u1, ∀ x1 ∈ L . (1)

Again by using hypothesis, we obtain [u1, [u1, 2l1m1]] = 0, for any l1,m1 ∈ L . Then char S ̸= 2 gives that
[u1, [u1, l1m1]] = 0, for any l1,m1 ∈ L . Thus,

0 = u1(u1l1m1 + l′1m1u1) + (u1l1m1 + l′1m1u1)u
′
1

= u1(u1l1m1 + l1◦m1u1 + l1m
′
1u1) + (u1l1m1 + l1◦m1u1 + l′1m1u1)u

′
1

= u1(u1l1m1 + l1◦u1m1 + l1m
′
1u1) + (u1l1m1 + l1◦u1m1 + l′1m1u1)u

′
1

which gives that

u1((u1l1+ l′1u1)m1+ l1(u1m1+m′
1u1))+((u1l1+ l′1u1)m1+ l1(u1m1+m′

1u1))u
′
1 = 0, for any l1,m1 ∈ L .

By using equation (1), we are left with 2(u1l1 + l′1u1)(u1m1 +m′
1u1) = 0, ∀ l1,m1 ∈ L . Since char S ̸= 2,

so we obtain
(u1l1 + l′1u1)(u1m1 +m′

1u1) = 0, ∀ l1,m1 ∈ L

or

[u1, l1][u1,m1] = 0, ∀ l1,m1 ∈ L . (2)

Further, by replacing l1 by 2l1w, for any w ∈ L in the above equation, we have

2[u1, l1w][u1,m1] = 0, ∀ l1,m1 ∈ L .

Again, since char S ̸= 2, so we left with [u1, l1w][u1,m1] = 0, ∀ l1,m1 ∈ L . By Lemma 2.4 and
equation (2), we deduce that [u1, l1]w[u1,m1] = 0, ∀ l1,m1, w ∈ L . Equivalently, [u1, l1]L [u1,m1] = (0), ∀
l1,m1 ∈ L . Lemma 4.6, infers that either [u1, l1] = 0 or [u1,m1] = 0, ∀ l1,m1 ∈ L . Both cases implies that
[u1,L ] = (0). ■

Corollary 4.10. Let [u1, [u1,L ]] = (0), for any u1 ∈ S . Then either L ⊆ Z (S ) or u1 commutes with every
element of L .

Now, we divert our attention to the study of the Lie structure of higher commutators as a Lie ideal of S and
hence as a Lie subsemiring of S .

Theorem 4.11. If a ∈ S satisfies [a, [a, (H)]] = (0), where (H) is an ideal generated by H, for some higher
commutator H of S , then either (H) ⊆ Z (S ) or a ∈ Z (S ).

Proof. Let H be a higher commutator of S . Then clearly (H) is a Lie ideal of S . Suppose that (H) ⊈ Z (S ).
Thus, by Theorem 4.9, we have

[a, (H)] = (0). (1)

By Corollary 3.8, (H) ⊇ S (k), for some k. Thus, equation (1) implies that [a,S (k)] = (0), that is,
[a, [S (k−1),S (k−1)]] = (0). By Theorem 4.7 and the same argument as above we can say that [a,S (k−1)] =

(0). Now, repeating the same process and using Theorem 3.10, we end up with a ∈ Z (S ). ■
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5. Derivations in semirings

Throughout this section, S represents a prime semiring with char S ̸= 2.

Definition 5.1. [4] An additive map d : S → S is called a derivation of S , if (xy)d = xdy+xyd, ∀ x, y ∈ S .

Definition 5.2. Let T be any arbitrary subset of S . Then the centralizer of T in S is CS (T ) = {x ∈ S :

[x, T ] = (0)}.

Lemma 5.3. CS (L ) is a Lie ideal and subsemiring of S .

Proof. Let t1 ∈ CS (L ). For any s ∈ S , [[t1, s], l1] = [t1, [s, l1]] + [s, [l1, t1]], by Jacobi identity. This gives
that [[t1, s], l1] = 0, as [t1,L ] = (0). Thus, [t1, s] ∈ CS (L ). This concludes that CS (L ) is a Lie ideal of S .
Now, let t1, t2 ∈ CS (L ). Then [t1t2, l1] = t1[t2, l1] + [t1, l1]t2 = 0, ∀ l1 ∈ L which yields t1t2 ∈ CS (L ).
This proves the lemma. ■

Observe that the centralizer of a Lie ideal of S is a 2-Lie ideal of S .

Theorem 5.4. If L ⊈ Z (S ), then CS (L ) ⊆ Z (S ).

Proof. By the above lemma, CS (L ) is a Lie ideal and subsemiring of S . We now claim that CS (L ) can
not contain a non-zero ideal of S . On contrary, let I be a non-zero ideal of S such that I ⊆ CS (L ), i.e.,
[I ,L ] = (0). This concludes that [S I ,L ] = (0) which implies that [si, l1] = 0, ∀ s ∈ S , i ∈ I , l1 ∈ L .
Thus, s[i, l1] + [s, l1]i = 0 leading to [s, l1]i = 0, ∀ s ∈ S , i ∈ I , l1 ∈ L . Hence, [s, l1]I = (0), ∀
s ∈ S , l1 ∈ L . This deduces that [s, l1]S I = (0), ∀ s ∈ S , l1 ∈ L . Primeness of S yields [s, l1] = 0, ∀
s ∈ S , l1 ∈ L . Therefore, L ⊆ Z (S ), which is absurd. This concludes that CS (L ) does not contain any
non-zero ideal of S . By Theorem 4.2, we get that CS (L ) ⊆ Z (S ). ■

The next result can be directly deduced as an outcome of Theorem 4.7.

Theorem 5.5. If L is a 2-Lie ideal of S such that L ⊈ Z (S ) , then CS ([L ,L ]) = CS (L ).

Theorem 5.6. If d is a derivation of S such that L d = (0), then either L ⊆ Z (S ) or d = 0.

Proof. As L d = (0), therefore 0 = [l1, s]
d = (l1s + s′l1)

d = ld1s + l1s
d + (s′)dl1 + s′ld1 , ∀ l1 ∈ L , s ∈ S .

This infers
l1s

d + (s′)dl1 = 0, ∀ l1 ∈ L , s ∈ S . (1)

In equation (1), the replacement of s with sm1, where m1 ∈ L , gives l1(sdm1+smd
1)+((s′)dm1+s′md

1)l1 = 0,
∀ l1 ∈ L , s ∈ S . The given hypothesis concludes that

l1s
dm1 + (s′)dm1l1 = 0, ∀ l1,m1 ∈ L , s ∈ S . (2)

By applying Lemma 2.1 on equation (1), we get l1sd = sdl1 and then using this in equation (2), we have
sdl1m1 + (s′)dm1l1 = 0, ∀ l1,m1 ∈ L , s ∈ S . In other words,

sd[l1,m1] = 0, ∀ l1,m1 ∈ L , s ∈ S . (3)

By putting st in place of s, with t ∈ S , we get that (sdt + std)[l1,m1] = 0. Then equation (3) yields
sdS [l1,m1] = (0). By the primeness of S , either d = 0 or [l1,m1] = 0, ∀ l1,m1 ∈ L . By Proposition 3.3, we
get the desired conclusion. ■

Proposition 5.7. If L is a 2-Lie ideal of S and d is a non-zero derivation of S with L ⊈ Z (S ). Suppose
that aL d = (0) or L da = (0), then a = 0.
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Proof. As d ̸= 0 and L ⊈ Z (S ), so by the above theorem, L d ̸= (0). Since [l1, s]l1 = l1(sl1) + (s′l1)l1 ∈
[L ,S ] ⊆ L , for any l1 ∈ L , s ∈ S , therefore 0 = a([l1, s]l1)

d = a([l1, s]
dl1 + [l1, s]l

d
1). The given

hypothesis infers that a[l1, s]ld1 = 0, ∀ l1 ∈ L , s ∈ S . Replacing s by md
1r, with m1 ∈ L , r ∈ S , we get that

0 = a[l1,m
d
1r]l

d
1 = amd

1[l1, r]l
d
1+a[l1,m

d
1]rl

d
1 , ∀ l1,m1 ∈ L , r ∈ S . This concludes that a(l1md

1+md
1l

′
1)rl

d
1 =

0, ∀ l1,m1 ∈ L , r ∈ S , as amd
1 = 0. This implies that al1md

1rl
d
1 = 0, ∀ l1,m1 ∈ L , r ∈ S . Equivalently,

al1L dS ld1 = (0), ∀ l1 ∈ L . Primeness of S gives that for any l1 ∈ L , either al1L d = (0) or ld1 = 0.
But L d ̸= (0), so there exists some n ∈ L such that nd ̸= 0 and anL d = (0). We further claim that
apL d = (0), ∀ p ∈ L . If possible, let p(̸= n) ∈ L with apL d ̸= (0). This deduces that pd = 0. Thus,
a(p+n)L d = apL d+anL d ̸= (0) and (p+n)d = nd ̸= 0 hold simultaneously and it leads to a contradiction.
Hence, apL d = (0), ∀ p ∈ L , equivalently aL L d = (0). In view of Lemma 4.6, we obtain a = 0. ■

Finally, we give an extension of [3, Theorem 1].

Theorem 5.8. If d is a non-zero derivation of S and L is a 2-Lie ideal of S with L d2

= (0), then L ⊆ Z (S ).

Proof. As we have proved earlier in Theorem 4.2, the ideal 2S [L ,L ]S ⊆ L , therefore

(2s[l1,m1]n)
d2

= 0, ∀ l1,m1, n ∈ L , s ∈ S .

This gives that

0 = ((2s[l1,m1])
dn+ 2s[l1,m1]n

d)d = (2s[l1,m1])
d2

n+ (2s[l1,m1])
dnd + (2s[l1,m1])

dnd + 2s[l1,m1]n
d2

.

Since 2S [L ,L ] ⊆ L , n ∈ L and char S ̸= 2, therefore given hypothesis leads to

(s[l1,m1])
dnd = 0, ∀ l1,m1, n ∈ L , s ∈ S .

This infers that
sd[l1,m1]n

d + s[l1,m1]
dnd = 0, ∀ l1,m1, n ∈ L , s ∈ S . (1)

Replacing s by sr, with r ∈ S and obtain

sdr[l1,m1]n
d + s(rd[l1,m1]n

d + r[l1,m1]
dnd) = 0.

Then equation (1) implies that sdr[l1,m1]n
d = 0 which is equivalent to sdS [l1,m1]n

d = (0), ∀ l1,m1, n ∈
L , s ∈ S . By primeness of S , we get that

[l1,m1]n
d = 0, ∀ l1,m1, n ∈ L . (2)

Further, replacing m1 by 2m1t, with t ∈ L , we have 2([l1,m1]tn
d +m1[l1, t]n

d) = 0. By using char S ̸= 2

and equation (2), we are left with [l1,m1]L nd = (0), ∀ l1,m1, n ∈ L . Then Lemma 4.6 gives either [l1,m1] =

0 or nd = 0, ∀ l1,m1, n ∈ L . Then Proposition 3.3 and Theorem 5.6 concludes that L ⊆ Z (S ). ■

6. Conclusions

This paper characterized the Lie structure of semirings and action of derivations on Lie ideals of semirings. It
is observed that for a prime semiring S , with char S ̸= 2 and [a, [L ,L ]] = (0), for any Lie ideal L of S
and a ∈ S , either L ⊆ Z (S ) or [a,L ] = (0) and thereby partially generalized Herstein’s theorems in the
framework of additively regular semirings and their higher commutators. Moreover, an extension to Herstein’s
result: “For a ring R with char R ≠ 2, any Lie ideal L is either contained in the center of R or contains a
non-zero ideal of R” is established which also enable us to extend Bergen’s theorem for derivations.
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