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1 Laboratoire de Sciences et Technologie, Université Thomas SANKARA, 12 BP 417 Ouagadougou 12, Burkina Faso.
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Abstract. This work explores some aspects of modeling and controlling narcoterrorism in the Sahel. We examine the
multidimensional factors underlying this dynamic, identifying interactions and recruitment within the narcoterrorist class.
We then develop a preventive model and decision-support tools to optimize resource allocation and formulate more effective
counter-narcotics and brigandage policies. This research will certainly contribute to the fight against narcoterrorism in the
Sahel by proposing solutions based on rigorous scientific approaches and assessing the benefits and limitations of optimal
modeling and control.
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1. Introduction and Background

The African continent offers Latin American and South American drug traffickers an uncontrolled transit
route, with its porous borders, ideal location close to Europe, and fragile, corrupted states. According to the
United Nations Office on Drugs and Crime (UNODC), the market value of cocaine transiting West Africa each
year was estimated at US dollars 1.25 billion in 2013. The map below illustrates drug trafficking and transit zones
from Latin and South America to Europe via West Africa and the Sahel, updated in February 2013 by the United
Nations Office on Drugs and Crime (UNODC).

Figure 1: Map of drug trafficking and transit zones to Europe via West Africa and the Sahel.

In recent years, narcoterrorism has become a major problem in the Sahel. This deadly combination of drug
trafficking and terrorist activity creates a complex and constantly evolving security and humanitarian crisis,
requiring innovative approaches to understanding and controlling the threat. What are the dynamics of
narcoterrorism in the Sahel? What factors have encouraged the development of narcoterrorism in the Sahel over
the last few decades? Are there effective, targeted, and optimal strategies for eradicating narcoterrorism in the
Sahel? It would be interesting to find answers to these questions and develop decision-making tools for political
decision-makers and defense and security forces in the fight against drug trafficking, terrorism, and insecurity in
general. In this spirit, we have decided to tackle this problem using a mathematical approach that is intended to
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be modest, as we do not claim to be able to say that mathematics can answer all these questions.

The rise of narcoterrorism in the Sahel can be explained by several factors. These include geographical and
demographic factors. The Sahel’s vast, sparsely populated territory, porous borders, and proximity to major
drug-producing regions such as Latin America and West Africa make it an attractive transit route for drug
traffickers. Added to this is the weakness of governance and security structures in the Sahel, which is said to
benefit transnational criminal networks transporting illicit drugs, notably cocaine, heroin, and cannabis, across
the region. We also have ideological terrorism and insurgency movements in the Sahel. The Sahel is indeed
experiencing an increase in terrorist and insurgent activity, mainly perpetrated by groups such as Al-Qaeda in
the Islamic Maghreb (AQIM), Boko Haram, and the Islamic State in the Greater Sahara (ISGS). These extremist
groups exploit the region’s socio-economic and political vulnerabilities, including poverty, unemployment, poor
governance, and community tensions, to recruit fighters, finance their activities, and carry out attacks. The
presence of drug-trafficking networks is an additional source of revenue for these terrorist groups. Another
factor would be the financing of terrorism, as terrorist groups engage in a variety of criminal activities, including
protecting drug convoys, taxing drug traffickers, and drug trafficking itself. Profits from the drug trade would
enable these groups to continue their operations, buy weapons and recruit new members. The convergence of
these criminal and terrorist activities creates a complex and dangerous environment that challenges the security
forces and governments of the Sahel countries.

Figure 2: Map of the main cocaine trafficking flows.

The map above shows the scale of the threat. In November 2009, the image of the charred wreckage of a
Boeing 727 found north of Gao in Mali revealed the scale of a hitherto unknown phenomenon. The plane,
coming from Venezuela near the Colombian border, was carrying a cargo of several tonnes of cocaine. The
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media went so far as to popularise the concept of ”air cocaine”, while government intelligence services became
aware of the imminence of the new threat looming on the horizon as a result of the convergence between
extremist movements in the Sahel and drug traffickers in South America.

There is growing interest in the modelling and optimal control of the dynamics of narcoterrorism in the Sahel.
These approaches, which combine mathematical tools, advanced simulation methods, and empirical data, provide
a better understanding of the mechanisms underlying this complex dynamic. They also offer the possibility of
formulating more effective and targeted control strategies. In this study, we seek to explore the different aspects
of modeling and optimal control of narcoterrorism in the Sahel. We examine the multidimensional factors that
drive this dynamic. By identifying the interactions as in evolution studies [3], [11], [6], [5] and recruitment
within the narcoterrorist class we can better understand the mechanisms by which narcoterrorism spreads in
the region. Building on this knowledge and adapting it to the specific context of the Sahel, we are developing a
preventive model and decision-support tools to optimize resource allocation and formulate more effective counter-
narcotics and counter-brigandage policies. This research aims to contribute to the fight against narcoterrorism in
the Sahel by proposing solutions based on rigorous scientific approaches. Finally, by assessing the advantages
and limitations of modelling and optimal control, we hope that this work will be useful to political decision-
makers, security forces, and international players involved in the region. The specifics of the model are described
in more detail in the next paragraph.

2. Model formulation

In order to facilitate the description of this model, we have divided the total population (N), into seven classes.
Thus, we have the class of non-combatant civilians (C), the class of volunteers for the defence of the homeland
and self-defence groups (V ), the class of defence and security forces (A), the class of people discharged from
the ranks of the defence and security forces (R), the class of brigands (B), the class of narcoterrorists (T ), and
the class of prisoners (P ). The sum of the fighting classes (A+ V +B + T ) is also referred to as I .

Figure 3: Diagram of the dynamics of narcoterrorism in the Sahel.
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Here Λ denotes the population renewal constant, γi the rate of return to non-combatant civilian life for
individuals in classes A,P,R,B, T, and V respectively for i ranging from 4 to 8. The probability of dying as a
result of combat is denoted by δi, i ranging from 1 to 4 for individuals in classes V,A,B, and T respectively and
ζi the intensity of the combat or nuisance force of individuals in classes B and T over those in classes V and A
for i ranging from 1 to 2 respectively but also those of individuals in classes V and A over individuals in classes
B and T respectively for i ranging from 3 to 4, η is the probability of dying as a result of the conditions of
detention and µ is the natural mortality rate for all individuals in the population. The strength or capacity of
recruitment into the narcoterrorist class of individuals in classes B,A, and R is respectively by ωi, where i
ranges from 1 to 3, and the strength of recruitment into brigandage of individuals in class R by ω4. In the same
way, for individuals in class C, α1 denotes the intensity of the force of determination in defense of the
homeland, α2 that of the force of attraction in brigandage, α3 the intensity of the force of attraction in
narcoterrorism activities, σ1 and σ2 are the rates of recruitment into class A of individuals in classes V and C
respectively. It is assumed that these rates (σ1 and σ2) are fixed by a given State in its defense strategy, but it is
also assumed that a slight disturbance could occur during this recruitment which would mean that individuals
from class B could be recruited with a probability ν1. Furthermore, ν2 designates the rate of radiation or
desertion in class A and ν3 the intensity of the conversion force in the brigandage of individuals in class A. The
parameters, θ1 and θ2 are the capacities of recruitment of prisoners by the narcoterrorists and the brigands
respectively, τ2 and τ3 the operational capacities of the classes V and A to be able to put in prison the
individuals of the classes B and T respectively. It is assumed that these prisoners can be recruited as a result of
prison breaks, prison attacks, or just contacts before the end of their sentence. Last but not least, it should be
noted that recruitment is modelled on a contact or contagion process in epidemiology, taking into account in
some cases the dissuasive presence of defence and security forces as well as self-defence groups and volunteers
for the defence of the homeland. The equation of the model is formulated as follows:

dC

dt
= Λ+ γ4A+ γ5P + γ6R+ γ7B + γ8T + γ9V −

(
α1

T +B

C + I
+ α2

B

C + I
+ α3

T

C + I
+ σ2 + µ

)
C (2.1)

dR

dt
= ν2A−

(
ω3

T

R+ I
+ ω4

B

R+ I
+ γ6 + µ

)
R (2.2)

dA

dt
= σ1V + σ2C + ν1B −

(
ν3

B

I
+ ω2

T

I
+ γ4 + ν2 + µ+ ζ1

T +B

I

)
A (2.3)

dV

dt
= α1C

T +B

C + I
−

(
γ9 + σ1 + µ+ ζ2

T +B

I

)
V (2.4)

dB

dt
= α2

CB

C + I
+ ω4

RB

R+ I
+ ν3

AB

I
+ θ2

PB

P + I
−

(
ω1

T

I
+ τ2

A+ V

I
+ γ7 + ν1 + µ+ ζ3

A+ V

I

)
B (2.5)

dT

dt
= α3C

T

C + I
+ ω1B

T

I
+ ω2A

T

I
+ ω3R

T

R+ I
+ θ1P

T

P + I
−

(
τ3

A+ V

I
+ γ8 + µ+ ζ4

A+ V

I

)
T (2.6)

dP

dt
= τ2B

A+ V

I
+ τ3T

A+ V

I
−

(
θ1

T

P + I
+ θ2

B

P + I
+ γ5 + µ+ η

)
P (2.7)

with non-negative initial conditions given by:

C(0) > 0;V (0) ≥ 0;A(0) > 0;R(0) ≥ 0;B(0) ≥ 0;P (0) ≥ 0;T (0) ≥ 0, N(0) ⩽
Λ

µ
. (2.8)

The parameters of the system (2.1)− (2.7) are assumed to be all non-negative.

3. Mathematical analysis of the model

3.1. Existence and uniqueness of solution

The (2.1)− (2.7) model is described by a system of first order nonlinear differential equations. It is rewritten as
follows:

X ′(t) = f(X(t)) (3.1)
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where X(t) is a column vector of the number of individuals by class, and f : R7 → R7 is a function. More
precisely,

X(t) =



C(t)
R(t)
A(t)
V (t)
B(t)
T (t)
P (t)


(3.2)

and

f(x) =



Λ + γ4x3 + γ5x7 + γ6x2 + γ7x5 + γ8x6 + γ9x4 −
(
α1

x6 + x7

x1 + x8

+ α2
x5

x1 + x8

+ α2
x5

x1 + x8

+ σ2 + µ

)
x1

ν2x3 −
(
ω3

x6

x2 + x8

+ ω4
x5

x2 + x8

+ γ6 + µ

)
x2

σ1x4 + σ2x1 + ν1x5 −
(
ν3

x5

x8

+ ω2
x6

x8

+ γ4 + ν2 + µ + ζ1
x6 + x5

x8

)
x3

α1x1
x6 + x5

x1 + x8

−
(
γ9 + σ1 + µ + ζ2

x6 + x5

x8

)
x4

α2
x1x5

x1 + x8

+ ω4
x2x5

x2 + x8

+ ν3
x3x5

x8

+ θ2
x7x5

x7 + x8

−
(
ω1

x6

x8

+ τ2
x3 + x4

x8

+ γ7 + ν1 + µ + ζ3
x3 + x4

x8

)
x5

α3x1
x6

x1 + x8

+ ω1x5
x6

x8

+ ω2x3
x6

x8

+ ω3x2
x6

x2 + x8

+ θ1x7
x6

x7 + x8

−
(
τ3

x3 + x4

x8

+ γ8 + µ + ζ4
x3 + x4

x8

)
x6

τ2x5
x3 + x4

x8

+ τ3x6
x3 + x4

x8

−
(
θ1

x6

x7 + x8

+ θ2
x5

x7 + x8

+ γ5 + µ + η

)
x7



(3.3)

with

x = (x1, x2, x3, x4, x5, x6, x7) ∈ R7

and {
x8 = x3 + x4 + x5 + x6

x9 = x1 + x2 + x3 + x4 + x5 + x6 + x7.

The function f is clearly locally lipschitzian with respect to x. We then deduce the existence and the uniqueness
of the maximal solution to the Cauchy problem associated to the differential equation (2.1)− (2.7) related to the
initial condition (2.8).

3.2. Positivity of the solutions

For this model of the dynamics of mafia terrorism to be realistic, it is necessary to show that all state variables
remain positive at all times.

Proposition 3.1. (Positivity) The positive orthan R7
≥0 is positively invariant for the system (2.1)− (2.7), and

the initial condition (2.8) ensures the positivity of the solutions of the system (2.1)− (2.7) for any time t > 0.

Proof: We use the barrier theorem [2].

Let us show that the set
{
C ≥ 0

}
is positively invariant. Let x =

(
C,R,A, V,B, T, P

)
and consider L an

application defined by

L(x) = −C (3.4)

The application L thus defined is differentiable and we have:

∇L(x) = (−1, 0, 0, 0, 0, 0, 0) ̸= 0R7 . (3.5)
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The vector field for
{
C = 0

}
is given by

X(x) =



Λ + γ4A + γ5P + γ6R + γ7B + γ8T + γ9V

ν2A −
(
ω3

T

R + I
+ ω4

B

R + I
+ γ6 + µ

)
R

σ1V + ν1B −
(
ν3

B

I
+ ω2

T

I
+ γ4 + ν2 + µ + ζ1

T + B

I

)
A

−
(
γ9 + σ1 + µ + ζ2

T + B

I

)
V

ω4R
B

R + I
+ ν3A

B

I
+ θ2P

B

P + I
−

(
ω1

T

I
+ τ2

A + V

I
+ γ7 + ν1 + µ + ζ3

A + V

I

)
B

ω1B
T

I
+ ω2A

T

I
+ ω3R

T

R + I
+ θ1P

T

P + I
−

(
τ3

A + V

I
+ γ8 + µ + ζ4

A + V

I

)
T

τ2B
A + V

I
+ τ3T

A + V

I
−

(
θ1

T

P + I
+ θ2

B

P + I
+ γ5 + µ + η

)
P



(3.6)

From (3.5) and (3.6), we have

⟨X(x),∇L(x)⟩ = −
(
Λ + γ4A+ γ5P + γ6R+ γ7B + γ8T + γ9V

)
≤ 0 (3.7)

From (3.5) and (3.7) we deduce that
{
C ≥ 0

}
is positively invariant by application of the barrier theorem.

Similarly, we show that
{
R ≥ 0

}
,
{
A ≥ 0

}
,
{
V ≥ 0

}
,
{
B ≥ 0

}
,
{
T ≥ 0

}
, and

{
P ≥ 0

}
are positively

invariant. Therefore, R7
≥0 is positively invariant.

Also by the initial condition (2.8), we have x(0) ∈ R7
≥0. Since R7

≥0 is positively invariant, then this ensures
that all solutions of the system (2.1)− (2.7) stay positive for all time t > 0 □.

3.3. Invariant region

Theorem 3.2. For initial conditions (2.8), the solutions of the system (2.1)−(2.7) are contained in the positively
invariant, compact and attractive region

Ψ =

{(
C,R,A, V,B, T, P

)
∈ R7

≥0 : N(t) ≤ Λ

µ

}
(3.8)

Proof: Summing the equations (2.1) to (2.7), we find :

dN

dt
= Λ− µN − δ1V − δ2A− δ3B − δ4T − ηP,

with δ1 = ζ1
T +B

I
, δ2 = ζ2

T +B

I
, δ3 = ζ3

A+ V

I
, and δ4 = ζ4

A+ V

I
.

Since A, V,B, T, F, P are positive functions and using the positivity of the functions δ1, δ2, δ3, δ4, given that the
constants ζ1, ζ2, ζ3, ζ4 and η are strictly positive as well, we get:

dN

dt
≤ Λ− µN.

Then

d

dt

(
N − Λ

µ

)
≤ −µ

(
N − Λ

µ

)
.
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So the Gromwall inequality gives

N(t)− Λ

µ
≤

(
N(0)− Λ

µ

)
e−µt.

Thus

N(t) ≤ Λ

µ
+

(
N(0)− Λ

µ

)
e−µt.

Since N(0) ≤ Λ

µ
, then 0 ≤ N(t) ≤ Λ

µ
.

Therefore, all feasible solutions of the model (2.1)− (2.7) converge in the region Ψ. □

4. Equilibrium without terrorist, nor brigand (x∗), and basic reproduction rumber R0

4.1. Equilibrium without terrorist, nor brigand x∗

The uninfected compartments are C, R, A, V and the infected compartments are B, T, P. Given that we are at
equilibrium without narcoterrorist nor brigand then we can discard the P compartment and the infected
compartments being B, T, then an equilibrium solution with B=T=0 has the form:

x∗ =

(
C∗, R∗, A∗, 0, 0, 0

)
(4.1)

with 

C∗ =
Λ(γ6 + µ)(γ4 + ν2 + µ)

µ
[
(γ6 + µ)(γ4 + µ+ ν2 + σ2) + σ2ν2

]
R∗ =

Λν2σ2

µ
[
(γ6 + µ)(γ4 + µ+ ν2 + σ2) + σ2ν2

]

A∗ =
Λσ2(γ6 + µ)

µ
[
(γ6 + µ)(γ4 + µ+ ν2 + σ2) + σ2ν2

]
4.2. Matrix of next generation K, and basic reproduction number R0

The Jacobian matrix of the system (2.1)− (2.7) is decomposed into Jx(x
∗) = DF(x∗) +DV(x∗) with

F =



0

0

0

0

α2C
B

C + I
+ ω4R

B

R + I
+ ν3A

B

I

α3C
T

C + I
+ ω1B

T

I
+ ω2A

T

I
+ ω3R

T

R + I
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and

V =



Λ + γ4A + γ6R + γ7B + γ8T + γ9V −
(
α3

T

C + I
+ α1

T + B

C + I
+ α2

B

C + I
+ σ2 + µ

)
C

ν2A −
(
ω3

T

R + I
+ ω4

B

R + I
+ γ6 + µ

)
R

σ1V + σ2C + ν1B −
(
ν3

B

I
+ ω2

T

I
+ γ4 + ν2 + µ + ζ1

T + B

I

)
A

α1C
T + B

C + I
−

(
γ9 + σ1 + µ + ζ2

T + B

I

)
V

−
(
ω1

T

I
+ τ2

A + V

I
+ γ7 + ν1 + µ + ζ3

A + V

I

)
B

−
(
τ3

A + V

I
+ γ8 + µ + ζ4

A + V

I

)
T



DF(x∗) =

[
0 0

0 F

]
; DV(x∗) =

[
J1 J2
0 V

]
with F =

[
∂Fi(x

∗)

∂xj

]
5≤i,j≤6

;

J1 =

[
∂Vi(x

∗)

∂xj

]
1≤i,j≤4

; J2 =

[
∂Vi(x

∗)

∂xj

]
1 ≤ i ≤ 4; 5 ≤ j ≤ 6

and V =

[
∂Vi(x

∗)

∂xj

]
5≤i,j≤6

.

Let:

g = α2
C∗

C∗ +A∗ + ω4
R∗

R∗ +A∗ + ν3;

h = α3
C∗

C∗ +A∗ + ω2 + ω3
R∗

R∗ +A∗ .

We get

F =

[
g 0

0 h

]
;

J1 =


−(σ2 + µ) γ6 γ4 γ9

0 −(γ6 + µ) ν2 0

σ2 0 −(γ4 + µ+ ν2) σ1

0 0 0 −(γ9 + µ+ σ1)



and

J2 =


ϖ1 ϖ2

−ω4
R∗

R∗ +A∗ ϖ3

ν1 − ν3 −ω2

α1
C∗

C∗ +A∗ α1
C∗

C∗ +A∗

 ,
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with

ϖ1 = γ7 − α1
C∗

C∗ +A∗ − α2
C∗

C∗ +A∗

ϖ2 = γ8 − α3
C∗

C∗ +A∗ − α1
C∗

C∗ +A∗

ϖ3 = −ω3
R∗

R∗ +A∗

Note that J1 is a non-singular Metzler matrix (see [1]).

V =

[
−d 0

0 −e

]
with

d = γ7 + µ+ τ2 + ν1 + ζ3

e = γ8 + µ+ τ3 + ζ4

We also note that V is a Metzler-Hurwitz matrix and

V−1 =

−1

d
0

0 −1

e



V−1 =

−1

d
0

0 −1

e

 ⇒ K = −FV−1 =

g

d
0

0
h

e


where 

g

d
=

(
1

γ7 + τ2 + ν1 + µ+ ζ3

)(
α2

γ4 + ν2 + µ

γ4 + ν2 + σ2 + µ
+ ω4

ν2
γ6 + ν2 + µ

+ ν3

)

h

e
=

(
1

γ8 + τ3 + µ+ ζ4

)(
α3

γ4 + ν2 + µ

γ4 + ν2 + σ2 + µ
+ ω2 + ω3

ν2
γ6 + ν2 + µ

)
and

R0 = ρ(K) = max

{
g

d
;
h

e

}
(4.2)

Theorem 4.1. The equilibrium without terrorist, nor brigand x∗, is locally asymptotically stable if R0 < 1 and
is unstable if R0 > 1.
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See [14, 16].

Theorem 4.2. The equilibrium without terrorist, nor brigand x∗, is globally asymptotically stable if R0 < 1 and
is unstable if R0 > 1.

Proof: From Theorem 4.1 when R0 < 1 the states B, T → 0 when t → ∞. Identifying B and T with zero,
it comes that (C,R,A, V,B, T, P ) → x∗ when t → ∞ since x∗ is the unique point in the positively invariant,
compact and attractive solution region Ψ, such that B = T = 0. □

5. Global thresholds

5.1. A sufficient condition for the eradication of narcoterrorism

The result we set out in this section highlights the fact that, when the recruitment capacity or the sum of the
forces of association with individuals in the narcoterrorist class is lower than the forces of exit from this class,
then we will see an eradication of narcoterrorism. It’s worth noting that when we talk about the forces of
attraction in narcoterrorism activities, we’re alluding in this study to the ability of narcoterrorists to offer a certain
improvement in living conditions in financial terms.

Theorem 5.1. Let λ2 = α3 + ω1 + ω2 + ω3 + θ1 , λ3 = (τ3 + ζ4)κ+ γ8 with κ the infimum of
A+ V

I
. So for

all R2 =
λ2

λ3
< 1, we have lim

t→∞
T (t) = 0.

Proof: From the equation (2.6) we have:

dT

dt
= α3

C

C + I
T + ω1B

T

I
+ ω2A

T

I
+ ω3R

T

R+ I
+ θ1P

T

P + I
−
(
τ3

A+ V

I
+ γ8 + ζ4

A+ V

I

)
T

=
(
α3

C

C + I
+ ω1

B

I
+ ω2

A

I
+ ω3

R

R+ I
+ θ1

P

P + I

)
T −

(
τ3

A+ V

I
+ γ8 + ζ4

A+ V

I

)
T

≤
(
α3

C

C + I
+ ω1

B

I
+ ω2

A

I
+ ω3

R

R+ I
+ θ1

P

P + I

)
T −

(
τ3κ+ γ8 + ζ4κ

)
T

≤
(
α3 + ω1 + ω2 + ω3 + θ1

)
T −

(
(τ3 + ζ4)κ+ γ8

)
T = (λ2 − λ3)T.

It follows from the last inequality that T decreases exponentially to zero as soon as λ2 < λ3.□

Thus R2 =
λ2

λ3
< 1, gives a sufficient condition of the stabilization or eradication of narcoterrorism. This

result reflects the fact that the greater the nuisance capacity of the defense and security forces, as well as their
attractiveness in other legal activities, the more the narcoterrorist class tends towards elimination.

5.2. A sufficient condition of the eradication of brigandage.

The result that we also present in this section highlights the fact that, when the recruitment capacity or the sum of
the forces of association with individuals in the bandit class is less than the forces of exit from this class, banditry
is eradicated or stabilized.

Theorem 5.2. Let λ5 = α2 + ω4 + ν3 + θ2 and λ6 = τ2κ+ γ7 + ν1 + ζ3κ with κ respective infimum of
A+ V

I

and of. So for all R4 =
λ5

λ6
< 1, we have lim

t→∞
B(t) = 0.
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Proof: From the equation (2.5) we have:

dB

dt
= α2C

B

C + I
+ ω4R

B

R+ I
+ ν3A

B

I
+ θ2P

B

P + I
−

(
τ2

A+ V

I
+ γ7 + ν1 + ζ3

A+ V

I

)
B

≤
(
α2 + ω4 + ν3 + θ2

)
B −

(
τ2κ+ γ7 + ν1 + ζ3κ

)
B

≤
(
λ5 − λ6

)
B.

6. Numerical simulation

To highlight the results of our analysis, we carry out a numerical simulation in this section. This simulation is
carried out in Matlab using the difference method, in particular an explicit Euler scheme. Figure 4 shows that for
a value of R0 less than 1 we have a complete elimination or stabilization at zero of classes T, B, and P but also
of class V. The latter result can be explained by the fact that, in this model, class V is linked to classes T and B.
On the other hand, Figure 5 shows the persistence of narcoterrorism and brigandage for a value of R0 strictly
greater than 1. For this simulation, we consider the initial states C(0)=100000, R(0)=80, A(0)=1000, V(0)=2000,
B(0)=110, T(0)=110, P(0)=80 and the parameter values defined in the table below:

Table 1: Parameter values estimeted

Parameters value for extinction value for persistence
Λ 36900 36900
γ4 0.047 0.047
γ5 0.0016 0.0016
γ6 0.00149 0.00149
γ7 0.0046 0.00046
γ8 0.0000011 0.0000011
γ9 0.011 0.011
θ1 0.0032 0.22
θ2 0.0032 0.24
η 0.19 0.19
ζ1 0.27 0.27
ζ2 0.27 0.27
ζ3 0.37 0.37
ζ4 0.37 0.37
µ 0.148 0.148
ν1 0.02 0.02
ν2 0.01 0.001
ν3 0.02 0.02
τ1 0.2 0.02
τ2 0.125 0.0125
τ3 0.125 0.125
σ1 0.012 0.012
σ2 0.006 0.006
α1 0.2 0.2
α2 0.31 0.78
α3 0.31 0.48
ω1 0.02 0.1
ω2 0.02 0.147
ω3 0.02 0.58
ω4 0.04 0.5
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Figure 4: Evolution of the different classes of the model (2.1)− (2.7) with the extinction values. We get R0 = 0.7656, which is less than
unity.
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Figure 5: Evolution of the different classes of the model (2.1) − (2.7) with persistence values. We obtain R0 = 1.4966, which is greater
than unity.
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7. Optimal control analysis

7.1. Strategy to fight against narcoterrorism and brigandage

In light of the results of the analysis, optimal control theory is applied to the (2.1) − (2.7) model to fight
narcoterrorism and banditry. Thus, two time-dependent control variables are introduced: u1(t) and u2(t), which
are several strategies described in detail as follows:

(i) u1(t) is a strategy to fight against drug trafficking, organized crime, brigandage, and corruption. It also
integrates all police actions of proximity, investigation, and protection. By ensuring a better territorial network
and better training and equipment for the defense and security forces, as well as for volunteers for the defense of
the country. In addition to these actions, this strategy could also integrate all the actions of accompaniment and
reintegration of the accused or prisoners into active life. Note that the closer the u2 strategy is to 1, the more
efficient it is.

(ii) u2(t) is a strategy to combat narcoterrorism. It places particular emphasis on the fight against drug
trafficking, which is the main source of funding for this type of terrorism. In addition, this strategy integrates all
actions aimed at increasing the firepower of defense and security forces, while developing operational intelligence
that is better adapted and better than that of narco-terrorists, so as to be able to carry out well-coordinated and
well-calculated actions to minimize narco-terrorist attacks. Note that the closer u2 is to 1, the more efficient it is.

7.2. Mathematical analysis of strategy optimality

Let’s put

ci(t) = 1− ui(t), ∀i ∈ {1, 2}. (7.1)

Consequently, the optimal control model with the two aforementioned time-dependent variables is given by the
following differential equations

dC

dt
= Λ+ γ4A+ γ5P + γ6R+ γ7B + γ8T + γ9V −

(
α1

T +B

C + I
+ c1α2

B

C + I
+ c2α3

T

C + I
+ σ2 + µ

)
C

dR

dt
= ν2A−

(
c2ω3

T

R+ I
+ c1ω4

B

R+ I
+ γ6 + µ

)
R

dA

dt
= σ1V + σ2C + ν1B −

(
c1ν3

B

I
+ c2ω2

T

I
+ γ4 + ν2 + µ+ ζ1

T +B

I

)
A

dV

dt
= α1C

T +B

C + I
−

(
γ9 + σ1 + µ+ ζ2

T +B

I

)
V

dB

dt
= c1

(
α2

CB

C + I
+ ω4

RB

R+ I
+ ν3

AB

I
+ θ2

PB

P + I

)
−

(
c2ω1

T

I
+ τ2

A+ V

I
+ γ7 + ν1 + µ+ ζ3

A+ V

I

)
B

dT

dt
= c2

(
α3C

T

C + I
+ ω1B

T

I
+ ω2A

T

I
+ ω3R

T

R+ I
+ θ1P

T

P + I

)
−

(
τ3

A+ V

I
+ γ8 + µ+ ζ4

A+ V

I

)
T

dP

dt
= τ2B

A+ V

I
+ τ3T

A+ V

I
−

(
c2θ1

T

P + I
+ c1θ2

B

P + I
+ γ5 + µ+ η

)
P

(7.2)

with initial conditions given by (2.8). This system can be rewritten in matrix form as follows:

X ′(t) = g(t,X, c) (7.3)

where X is defined in (3.2), c = (c1(t), c2(t)) ∈ R2 verifies (7.1), and g : R ×7 ×R2 → R7 is a non-linear
function written as in (3.3) but introducing the control c in order to verify (7.2). The purpose of introducing the
two control variables is to find the optimal solution required to minimize the number of individuals in both the
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narcoterrorists class and the brigands class. Consequently, the objective function for this control problem is given
by

J (u1, u2) = min
0⩽u1,u2⩽1

∫ Tf

0

(
j(t) +

1

2
k(t)

)
dt (7.4)

where

j(t) = w1B(t) + w2T (t) + w3P (t)

k(t) =

[
w4u

2
1(t) + w5u

2
2(t)

]
where the constants wi, i = 1, 2, ..., 5 are positive weights required to balance the corresponding terms of

the objective function. We choose quadratic costs on the controls, where
1

2
w4u

2
1(t),

1

2
w5u

2
2(t), are the total

costs of implementing the preventive measure and the military-police response to manage the active cases of
narcoterrorism and brigands over the time interval [0, Tf ]. More precisely, we are looking for the optimal dual

control u∗ =

(
u∗
1, u

∗
2

)
such that

J
(
u∗
1, u

∗
2

)
= min

{
J

(
u1, u2

)
: u1, u2 ∈ U

}
, (7.5)

where, U is the non-empty control set defined by

U =

{(
u1, u2

) ∣∣∣∣ui(t) is a piecewise continuous function on [0, Tf ]

and 0 ⩽ ui ⩽ 1, ∀ ∈ t ∈ [0, Tf ], i = 1, 2

}
(7.6)

Thus, to determine the necessary conditions that the optimal control must satisfy, we use the Pontryagin maximum
principle [12], which transforms the control problem (7.5) subject to the model (7.2) into a problem of pointwise
minimization of a Hamiltonian H. This Hamiltonian is given by

H = w1B + w2T + w3P +
1

2

[
w4u

2
1(t) + w5u

2
2(t)

]

+ λ1

[
Λ + γ4A+ γ5P + γ6R+ γ7B + γ8T + γ9V −

(
α1

T +B

C + I
+ c1α2

B

C + I
+ c2α3

T

C + I
+ σ2 + µ

)
C

]
+ λ2

[
ν2A−

(
c2ω3

T

R+ I
+ c1ω4

B

R+ I
+ γ6 + µ

)
R

]

+ λ3

[
σ1V + σ2C + ν1B −

(
c1ν3

B

I
+ c2ω2

T

I
+ γ4 + ν2 + µ+ ζ1

T +B

I

)
A

]

+ λ4

[
α1C

T +B

C + I
−

(
γ9 + σ1 + µ+ ζ2

T +B

I

)
V

]

+ λ5

[
c1

(
α2

CB

C + I
+ ω4

RB

R+ I
+ ν3

AB

I
+ θ2

PB

P + I

)
−

(
c2ω1

T

I
+ τ2

A+ V

I
+ γ7 + ν1 + µ+ ζ3

A+ V

I

)
B

]

+ λ6

[
c2

(
α3C

T

C + I
+ ω1B

T

I
+ ω2A

T

I
+ ω3R

T

R+ I
+ θ1P

T

P + I

)
−

(
τ3

A+ V

I
+ γ8 + µ+ ζ4

A+ V

I

)
T

]

+ λ7

[
τ2B

A+ V

I
+ τ3T

A+ V

I
−

(
c2θ1

T

P + I
+ c1θ2

B

P + I
+ γ5 + µ+ η

)
P

]

(7.7)
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where λi, i = 1, 2, ..., 7, represent the adjoint variables associated with the state variables of the model (7.2). The
standard existence results for the minimizing control problem, as they appeared in [7] are adapted as follows.

Theorem 7.1. There exists an optimal control
(
u∗
1, u

∗
2

)
∈ U satisfying (7.4) subject to the control system (7.2)

with non-negative initial conditions given by (2.8).

Proof: The existence of optimal control is obtained thanks to Fleming and Rishel [7]. Thanks to a result of
Lukes’s [10] which ensures the existence of solutions for the state system (7.2) with constant coefficients, the set
of controls and corresponding solutions is non-empty. In addition, the set of controls U is a closed convex set by
definition, and the vector field of the system (7.2) is bounded. Also, the integrand of the objective function is
convex, and g(t,X, c) in (7.3) is convex concerning c. On the other hand, there exist a1, a2 > 0 and β > 1 such
that

w1B + w2T + w3P +
1

2

[
w4u

2
1(t) + w5u

2
2(t)

]
≥ a1

(
|u1|2 + |u2|2

)β

2 − a2

since the state variables are bounded. Then, we deduce the existence of an optimal control (u∗
1, u

∗
2) that

minimizes the objective function J (u1, u2). □

Theorem 7.2. Given that
(
u∗
1, u

∗
2

)
minimizes the objective functional (7.4) subject to the corresponding state

system (7.2), then the adjoint variables λi, i = 1, 2, ..., 7, satisfy the following system:

dλ1

dt
= (λ1 − λ4)α1

(T +B)I

(C + I)2
+ (λ1 − λ5)c1α2

BI

(C + I)2
+ (λ1 − λ6)c2α3

TI

(C + I)2
+ (λ1 − λ3)σ2 + λ1µ

dλ2

dt
= (λ2 − λ5)c1ω4

BI

(R+ I)2
+ (λ2 − λ6)c2ω3

TI

(R+ I)2
+ (λ2 − λ1)γ6 + λ2µ

dλ3

dt
= (λ3 − λ1)γ4 + (λ4 − λ1)α1

(T +B)C

(C + I)2
+ (λ5 − λ1)c1α2

BC

(C + I)2
+ (λ6 − λ1)c2α3

TC

(C + I)2

+(λ6 − λ2)c2ω3
TR

(R+ I)2
+ (λ5 − λ2)c1ω4

BR

(R+ I)2
+ (λ3 − λ5)c1ν3

B(V + T +B)

I2

+(λ3 − λ6)c2ω2
T (V + T +B)

I2
+ λ3ζ1

(T +B)(V + T +B)

I2
+ λ3µ− λ4ζ2

(T +B)V

I2

+(λ5 − λ7)c1θ2
PB

(P + I)2
+ (λ5 − λ7)τ2

B(T +B)

I2
+ (λ6 − λ5)c2ω1

TB

I2
+ (λ3 − λ2)ν2

+λ5ζ3
B(T +B)

I2
+ (λ6 − λ7)θ1

TP

(P + I)2
+ (λ6 − λ7)τ3

T (T +B)

I2
+ λ6ζ4

T (T +B)

I2

(7.8)
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dλ4

dt
= (λ3 − λ1)γ9 + (λ4 − λ1)α1

(T +B)C

(C + I)2
+ (λ5 − λ1)c1α2

BC

(C + I)2
+ (λ6 − λ1)c2α3

TC

(C + I)2

+(λ6 − λ2)c2ω3
TR

(R+ I)2
+ (λ5 − λ2)c1ω4

BR

(R+ I)2
+ (λ5 − λ3)c1ν3

BA

I2
+ (λ4 − λ3)σ1

+(λ6 − λ3)c2ω2
TA

I2
− λ3ζ1

(T +B)A

I2
+ λ4µ+ λ4ζ2

(T +B)(A+ T +B)

I2

+(λ5 − λ7)c1θ2
PB

(P + I)2
+ (λ5 − λ7)τ2

B(T +B)

I2
+ (λ6 − λ5)c2ω1

TB

I2

+λ5ζ3
B(T +B)

I2
+ (λ6 − λ7)θ1

TP

(P + I)2
+ (λ6 − λ7)τ3

T (T +B)

I2
+ λ6ζ4

T (T +B)

I2

dλ5

dt
= −w1 + (λ5 − λ1)γ7 + (λ6 − λ2)c2ω3

TR

(R+ I)2
+ (λ6 − λ1)c2α3

TC

(C + I)2
+ (λ5 − λ3)ν1

+(λ1 − λ4)α1
C(C +A+ V )

(C + I)2
+ (λ1 − λ5)c1α2

C(C +A+ V + T )

(C + I)2
+ (λ2 − λ5)c1ω4

R(R+A+ V + T )

(R+ I)2

+λ5µ+ (λ3 − λ6)c2ω2
TA

I2
+ (λ3 − λ5)c1ν3

A(A+ V + T )

I2
+ λ3ζ1

A(A+ V )

I2
+ λ4ζ2

V (A+ V )

I2

+(λ5 − λ7)τ2
(A+ V )(A+ V + T )

I2
+ λ5ζ3

(A+ V )(A+ V + T )

I2
+ (λ5 − λ7)c1θ2

P (P +A+ V + T )

(P + I)2

+(λ6 − λ5)c2ω1
TB

I2
+ (λ6 − λ7)θ1

TP

(P + I)2
+ (λ7 − λ6)τ3

T (A+ V )

I2
− λ6ζ4

T (A+ V )

I2

+(λ5 − λ6)c2ω1
T (A+ V + T )

I2

dλ6

dt
= −w2 + (λ6 − λ1)γ8 + (λ1 − λ4)α1

C(C +A+ V )

(C + I)2
+ (λ5 − λ1)c1α2

BC

(C + I)2
+ (λ5 − λ2)c1ω4

BR

(R+ I)2

+(λ2 − λ9)c2ω3
R(R+A+ V +B)

(R+ I)2
+ (λ5 − λ3)c1ν3

BA

I2
+ (λ3 − λ6)c2ω2

A(A+ V +B)

I2
+ λ3ζ1

A(A+ V )

I2

+λ4ζ2
V (A+ V )

I2
+ (λ5 − λ7)c1θ2

PB

(P + I)2
+ (λ5 − λ6)c2ω1

B(A+ V +B)

I2
− λ5ζ3

B(A+ V )

I2

+(λ7 − λ5)τ2
B(A+ V )

I2
+ (λ7 − λ6)c2θ1

P (P +A+ V +B)

(P + I)2
+ (λ6 − λ7)τ3

(A+ V )(A+ V +B)

I2
+ λ6µ

+λ6ζ4
(A+ V )(A+ V +B)

I2
+ (λ1 − λ6)c2α3

C(C +A+ V +B)

(C + I)2

dλ7

dt
= −w3 + (λ7 − λ1)γ5 + (λ7 − λ5)c1θ2

BI

(P + I)2
+ (λ7 − λ6)c2θ1

TI

(P + I)2
+ λ7µ+ λ7η

with transversality conditions

λi(Tf ) = 0, i = 1, 2, ..., 7.

Further, the optimal control
(
u∗
1, u

∗
2

)
is given as follows
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u∗
1 = max

{
0,min

{
1,

(λ5 − λ1)α2
BC

C + I
+ (λ5 − λ2)ω4

BR

R + I
+ (λ5 − λ3)ν3

BA

I
+ (λ5 − λ7)θ2

BP

P + I

w4

}}

u∗
2 = max

{
0,min

{
1,

(λ6 − λ1)α3
TC

C + I
+ (λ6 − λ2)ω3

TR

R + I
+ (λ6 − λ3)ω2

TA

I
+ (λ6 − λ5)ω1

TB

I
+ (λ6 − λ7)θ1

TP

P + I

w5

}}(7.9)

Proof:
As mentioned earlier, the characterization of the optimal solution is obtained by applying the Pontryagin’s
maximum principle to the Hamiltonian of the system H. The system of ordinary differential equations (7.8)

governing the adjoint variables is derived by differentiating the Hamiltonian. Further, the control
characterizations in (7.9) are derived by solving, on the interior of the control set U , the partial differentials of
the Hamiltonian H with respect to each of the controls u1 and u2. Hence, by standard arguments involving
control bounds, it follows that:

u∗
1 =


0 if r∗1 ≤ 0

r∗1 if 0 < r∗1 < 1

1 if r∗1 ≥ 1

u∗
2 =


0 if r∗2 ≤ 0

r∗2 if 0 < r∗2 < 1

1 if r∗2 ≥ 1

where,



r∗1 =
(λ5 − λ1)α2

BC

C + I
+ (λ5 − λ2)ω4

BR

R+ I
+ (λ5 − λ3)ν3

BA

I
+ (λ5 − λ7)θ2

BP

P + I
w4

r∗2 =
(λ6 − λ1)α3

TC

C + I
+ (λ6 − λ2)ω3

TR

R+ I
+ (λ6 − λ3)ω2

TA

I
+ (λ6 − λ5)ω1

TB

I
+ (λ6 − λ7)θ1

TP

P + I
w5

This puts an end to the proof. □

7.3. Numerical simulation

In this section, we use numerical simulation to illustrate the effect of control on the dynamics of the controlled
compartments, in particular compartments B and T respectively. For reasons of clarity, the color red has been
chosen for the curves of the classes with no control over the persistence parameters of brigandage and
narcoterrorism, while the color blue has been chosen for the curves with control. Figure 6 shows that if u1

control is very weak and u2 control is effective, banditry persists and narcoterrorism stabilizes. Figure 7 shows
that when u1 control is effective and u2 control is weak, banditry and narcoterrorism stabilize. Finally, there is a
very quick stabilization in classes B and T when the u1 and u2 controls approach 1, as shown in Figure 8.
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Figure 6: Dynamics of evolution of classes B and T illustrating the effect of control with u1 = 0.25, and u2 = 0.75
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Figure 7: Dynamics of classes B and T illustrating the effect of control with u1 = 0.75, and u2 = 0.25
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Figure 8: Dynamics of classes B and T illustrating the effect of control with u1 = 0.75, and u2 = 0.75

8. Conclusion

In this study, we first designed a mathematical model to illustrate the dynamics of narcoterrorism, based on the
situation in certain Sahelian countries. The proposed mathematical model focused on the dynamics of recruitment
into the narcoterrorist and brigand classes, showing the importance of contact and the deterrent presence of certain
classes. We then carried out a rigorous mathematical analysis of the model. We then defined a first threshold R0

for this model, which designates the number of basic reproductions in the brigand or narcoterrorist class. In other
words, the average number of people that a brigand or narcoterrorist manages to recruit into his class. From
this threshold, we give asymptotic stability conditions for the equilibrium without brigands or terrorists. We
also define two global thresholds, which are sufficient conditions for the eradication of narcoterrorism. Based
on the results of the analysis, a strategy for combating narcoterrorism and banditry was proposed through a
model check. The effectiveness of the strategy was then assessed using an optimality study based essentially on
the Pontryagin maxima principle and Fleming’s theorem. To make this study more readable, we carried out a
numerical simulation of the analysis and control results. On the strength of some of the results of this study, we
are convinced that to fight narcoterrorism and banditry more effectively, the Sahel and West African states must
work to strengthen their systems of governance adapted to their realities. This strengthening of governance could
be achieved through a better administrative and security network, as well as the development of local production
activities and the promotion of local products. It is still time for the countries of the Sahel to take their destiny
into their own hands. They will need to strengthen their cooperation on security, economic and social issues.
There is still time for the Sahel countries to apply measures of good governance and virtuous governance adapted
to their reality, all within a framework of faultless social cohesion and a local security system that is effective
against violent extremism, narcoterrorism, and all forms of organized crime.

183



Mathieu Romaric POODA, Yacouba SIMPORE and Oumar TRAORE

9. Acknowledgement

The authors express their gratitude to the World Bank and the Higher Education Support Project in Burkina
Faso for their valuable support. They also thank all those whose suggestions have contributed to improving this
document.

References

[1] A. BERMAN, R. J. PLEMMONS, Nonnegative matrices in the mathematical science, SIAM, (1994),
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