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Abstract. In this paper we prove the approximation results for existence and uniqueness of the solution of PBVPs of nonlinear
first order ordinary functional differential equations in a closed subset of the Banach space. We employ the Dhage monotone
iteration method based on a recent hybrid fixed point theorem of Dhage (2022) and Dhage et al. (2022) for the main results
of this paper. Finally an example is indicated to illustrate the abstract ideas involed in the approximation results.
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1. Introduction

The study of periodic boundary value problems (in short PBVPs) and functional PBVPs of first order ordinary
differential equations for existence and approximations using hybrid fixed point theory is initiated by Dhage and
Dhage [9] and Dhage [5] respectively.Then after several results appeared in the literature for different types of
hybrid PBVPs in the partially ordered Banach space. But to the knowledge of the present authors such results
are not proved in the closed subsets of the Banach space. For details of functional differential equations and
their importance, the readers are referred to Hale [15]. In this paper we prove the existence and approximation
results for a PBVP more general than that studied in Dhage and Dhage [9] using the monotone iteration method
of Dhage. This method relies on a recent hybrid fixed point theorem of Dhage et al. [12] in a partially ordered
Banach space. Before stating the proposed PBVP, we give some preliminaries.
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Given the real numbers r > 0 and T > 0, consider the closed and bounded intervals I0 = [−r, 0] and
I = [0, T ] in R and let J = [−r, T ]. By C = C(I0,R) we denote the space of continuous real-valued functions
defined on I0 with he norm ∥ · ∥C defined by

∥x∥C = sup
−r≤θ≤0

|x(θ)|. (1.1)

The Banach space C with this supremum norm is called the history space of the functional differential equation
in question. For any continuous function x : J → R and for any t ∈ I , we denote by xt the element of the space
C defined by

xt(θ) = x(t+ θ), −r ≤ θ ≤ 0. (1.2)

Now, given a history function ϕ ∈ C, we consider the PBVP of nonlinear first order ordinary functional
differential equations (in short functional PBVP),

x′(t) + h(t)x(t) = f(t, x(t), xt), a. e. t ∈ I,

x(0) = ϕ(0) = x(T ),

x0 = ϕ,

 (1.3)

where h : I → R and f : I × R× C are continuous functions.

Definition 1.1. A function x ∈ AC(J,R) is said to be a solution of the functional PBVP (1.3) if

(i) x0 = ϕ,

(ii) xt ∈ C for each t ∈ I , and

(iii) x satisfies the equations in (1.3) on J ,

where AC(J,R) is the space of absolutely continuous real-valued functions defined on J .

In this paper we obtain the existence and approximation theorem for the functional PBVP (1.3) in a closed
subset of the relevant function space. The rest of the paper is organized as follows. Below in Section 2, we give
the auxiliary results needed later in the subsequent part of the paper. The main existence and uniqueness theorems
are proved in Section 3 and a couple of illustrative examples are presented in Section 4.

2. Auxiliary Results

First we convert the functional PBVP (1.3) into an equivalent integral equation, because the integrals are
easier to handle than differentials. We need the following result similar to Nieto [16, 17] and Dhage [2] which
can proved by using the theory of calculus.

Lemma 2.1. For any h ∈ L1(J,R+) and σ ∈ L1(J,R), x is a solution to the differential equation

x′ + h(t)x(t) = σ(t) a. e. t ∈ I,

x(0) = ϕ(0) = x(T ),

x0 = ϕ,

 (2.1)

if and only if it is a solution of the integral equation

x(t) =

∫ T

0

Gh(t, s)σ(s) ds, t ∈ I,

x0 = ϕ,

 (2.2)
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where,

Gh(t, s) =


eH(s)−H(t)

1− e−H(T )
, 0 ≤ s ≤ t ≤ T,

eH(s)−H(t)−H(T )

1− e−H(T )
, 0 ≤ t < s ≤ T,

(2.3)

and H(t) =

∫ t

0

h(s) ds.

Notice that the Green’s function Gh is nonnegative on J × J and the number

Mh := max { |Gh(t, s)| : t, s ∈ [0, T ] },

exists for all L1(J,R+). Note also that H(t) > 0 for all t > 0.

We need the following definition in the sequel.

Definition 2.2. A mapping β : I × R× C → R is said to be Carathéodory if

(i) t 7→ β(t, x, y) is measurable for each x ∈ R, y ∈ C, and

(ii) (x, y) 7→ β(t, x, y) is jointly continuous almost everywhere for t ∈ I.

Again a Carathéodory function β(t, x, y) is called L1-Carathéodory if

(iii) for each real number r > 0 there exists a function mr ∈ L1(J,R) such that

|β(t, x, y)| ≤ mr(t) a.e. t ∈ J,

for all x ∈ R and y ∈ C with |x| ≤ r and ∥y∥C ≤ r.

The following lemma is proved using the arguments similar to that given in Dhage and Dhage [9]. See also
Dhage [2, 5] and references therein.

Lemma 2.3. Suppose that there exists a function u ∈ AC(J,R) such that

u′(t) + h(t)u(t) ≤ f(t, u(t), ut) a.e. t ∈ I,

u(0) = ϕ(0) ≤ u(T ),

u0 ≤ ϕ.

 (2.4)

Then,

u(t) ≤
∫ T

0

Gh(t, s)σ(s) ds, t ∈ I,

u0 ≤ ϕ.

 (2.5)

Similarly, if there exists a function v ∈ AC(J,R) such that the inequalities in (2.4) are satisfied with reverse sign,
then the inequalities in (2.5) hold with reverse sign.

It is well-known that the fixed point theoretic technique is very much useful in the subject of nonlinear analysis
for dealing with the nonlinear equations. See Granas and Dugundji [14], Zeidler [18] and the references therein.
Here, we employ the Dhage monotone iteration method based on the following two hybrid fixed point theorems
of Dhage [8] and Dhage et al. [12].
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Theorem 2.4 (Dhage [8]). Let S be a non-empty partially compact subset of a regular partially ordered Banach
space

(
E, || · ∥,⪯,

)
with every chain C in S is Janhavi set and let T : S → S be a monotone nondecreasing,

partially continuous mapping. If there exists an element x0 ∈ S such that x0 ⪯ T x0 or x0 ⪰ T x0, then the
hybrid mapping equation T x = x has a solution ξ∗ in S and the sequence {T nx0}∞n=0 of successive iterations
converges monotonically to ξ∗.

Theorem 2.5 (Dhage [8]). Let S be a non-empty partially closed subset of a regular partially ordered Banach
space

(
E, ∥·∥,⪯

)
and let T : S → S be a monotone nondecreasing nonlinear partial contraction. If there exists

an element x0 ∈ S such that x0 ⪯ T x0 or x0 ⪰ T x0, then the hybrid mapping equation T x = x has a unique
comparable solution ξ∗ in S and the sequence {T nx0}∞n=0 of successive iterations converges monotonically to
ξ∗. Moreover, ξ∗ is unique provided every pair of elements in E has a lower bound or an upper bound.

Remark 2.6. We note that every every pair of elements in a partially ordered set (poset) (E,⪯) has a lower or
upper bound if (E,⪯) is a lattice, that is, ⪯ is a lattice order in E. In this case the poset (E, ∥ · ∥,⪯) is called
a partially lattice ordered Banach space. There do exist several lattice partially ordered Banach spaces which
are useful for applications in nonlinear analysis. For example, every Banach lattice is a partially lattice ordered
Banach space. The details of the lattice structure of the Banach spaces appear in Birkhoff [1].

As a consequence of Remark 2.6, we obtain

Theorem 2.7 (Dhage [8]). Let S be a non-empty partially closed subset of a regular partially lattice ordered
Banach space

(
E, ∥ · ∥,⪯

)
and let T : S → S be a monotone nondecreasing nonlinear partial contraction. If

there exists an element x0 ∈ S such that x0 ⪯ T x0 or x0 ⪰ T x0, then the hybrid mapping equation T x = x

has a unique solution ξ∗ in S and the sequence {T nx0}∞n=0 of successive iterations converges monotonically to
ξ∗.

If a Banach X is partially ordered by an order cone K in X , then in this case we simply say X is an ordered
Banach space which we denote it by (X,K). Similarly, an ordered Banach space (X,K), where partial order
⪯ defined by the con K is a lattice order, then (X,K) is called the lattice ordered Banach space. Clearly,
an ordered Banach space

(
C(J,R),K

)
of continuous real-valued functions defined on the closed and bounded

interval J is lattice ordered Banach space, where the cone K is given by K = {x ∈ CJ,R) | x ⪰ 0}. The details
of the cones and their properties appear in Guo and Lakshmikantham [13]. Then, we have the following useful
results concerning the ordered Banach spaces proved in Dhage [7, 8].

Lemma 2.8 (Dhage [7, 8]). Every ordered Banach space (X,K) is regular.

Lemma 2.9 (Dhage [7, 8]). Every partially compact subset S of an ordered Banach space (X,K) is a Janhavi
set in X .

As a consequence of Lemmas 2.8 and 2.9 we obtain the following hybrid fixed point theorem which we need
in what follows.

Theorem 2.10 (Dhage [8] and Dhage et al. [12]). Let S be a non-empty partially compact subset of an ordered
Banach space

(
X,K

)
and let T : S → S be a partially continuous and monotone nondecreasing operator. If

there exists an element x0 ∈ S such that x0 ⪯ T x0 or x0 ⪰ T x0, then the hybrid operator equation T x = x

has a solution ξ∗ in S and the sequence {T nx0}∞n=0 of successive iterations converges monotonically to ξ∗.

Theorem 2.11 (Dhage [8] and Dhage et al. [12]). Let S be a non-empty partially closed subset of a lattice ordered
complete normed linear space

(
X,K

)
and let T : S → S be a monotone nondecreasing partial contraction. If

there exists an element x0 ∈ S such that x0 ⪯ T x0 or x0 ⪰ T x0, then the hybrid operator equation T x = x

has a unique solution ξ∗ in S and the sequence {T nx0}∞n=0 of successive iterations converges monotonically to
ξ∗.

The details of the notions of partial order, Janhavi set, regularity, monotonicity, partial continuity, partial
closure, partial compactness and nonlinear partial contraction along with their applications may be found in Guo
and Lakshmikatham [13], Dhage [3, 6, 7], Dhage and Dhage [9, 10] and references therein.
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3. Existence and Approximation Results

We place the nonlinear integral equation corresponding to the PBVP (1.3) in the Banach space C(J,R)
equipped with the norm ∥ · ∥ and the order relation ⪯ defined by

∥x∥ = sup
t∈J

|x(t)|, (3.1)

and
x ⪯ y ⇐⇒ y − x ∈ K, (3.2)

where K is a cone in C(J,R) given by

K = {x ∈ C(J,R) | x(t) ≥ 0 ∀ t ∈ J}. (3.3)

It is known that the partially ordered Banach space C(J,R) is regular and lattice with respect to the meet and
join lattice the operations x ∧ y = min

{
x , y

}
and x ∨ y = max

{
x , y

}
. Therefore, every pair of elements

of C(J,R) has a lower and an upper bound. See Dhage [6, 7] and the references therein. The following useful
lemma concerning the partial compactness of the subsets of of C(J,R) follows easily and is often times used in
the theory of nonlinear differential and integral equations.

Lemma 3.1. Let
(
C(J,R),K

)
be a partially ordered Banach space with the norm ∥ · ∥ and the order relation

⪯ defined by (3.1) and (3.2) respectively. Then every compact subset S of C(J,R) is partially compact, but the
converse may not be true.

We introduce an order relation ⪯C in C induced by the order relation ⪯ defined in C(J,R). Thus, for any
x, y ∈ C, x ⪯C y implies x(θ) ≤ y(θ) for all θ ∈ I0. Note that if x, y ∈ C(J,R) and x ⪯ y, then xt ⪯C yt for
all t ∈ I (Cf. Dhage [4, 5]).

Let Ceq(J,R) denote the subset of all equicontinuous functions in C(J,R). Then for a constant M > 0, by
CM

eq (J,R) we denote the class of equicontinuous functions in C(J,R) defined by

CM
eq (J,R) = {x ∈ Ceq(J,R) | ∥x∥ ≤ M}.

Clearly, CM
eq (J,R) is a closed and uniformly bounded subset of the set of equicontinuous functions of the

Banach space C(J,R) which is compact in view of Arzelá-Ascoli theorem.

We need the following definition in what follows.

Definition 3.2. A function u ∈ CM
eq (J,R) is said to be a lower solution of the PBVP (1.3) if the conditions (i)

and (ii) of Definition 1.1 hold and u satisfies the inequalities

u′(t) + h(t)u(t) ≤ f(t, u(t), ut) a.e. t ∈ I,

u(0) = ϕ(0) ≤ u(T ),

u0 ≤ ϕ.

 (3.4)

Similarly, a function v ∈ CM
eq (J,R) is called an upper solution of the functional PBVP (1.3) if the above

inequality is satisfied with reverse sign. By a solution of the PBVP (1.3) in a subset CM
eq (J,R) of the Banach

space C(J,R) we mean a function x ∈ CM
eq (J,R) which is both lower and upper solution of the functional PBVP

(1.3) defined on J .

We consider the following set of hypotheses in what follows:

201



J. B. Dhage, S. B. Dhage, B. C. Dhage

(H1) There exist constants ℓ1 > 0, ℓ2 > 0 such that

0 ≤ f(t, x1, x2)− f(t, y1, y2) ≤ ℓ1(x1 − y2) + ℓ2∥x2 − y2∥C ,

for all t ∈ J , where x1, y1 ∈ R and x2, y2 ∈ C with x1 ≥ y1, x2 ⪰C y2.

(H2) The function f is L1-Carathéodory on I × R× C → R.

(H3) f(t, x, y) is monotone nondecreasing in x and y for each t ∈ I .

(H4) The functional PBVP (1.3) has a lower solution u ∈ CM
eq (J,R).

(H5) The functional PBVP (1.3) has an upper solution v ∈ CM
eq (J,R).

Theorem 3.3. Suppose that hypotheses (H2) through (H4) hold. Furthermore, if the inequality

∥ϕ∥C +Mh ∥mM∥L1 ≤ M, (3.5)

holds, then the PBVP (1.3) has a solution x∗ defined on J and the sequence {xn}∞n=0 of successive
approximations defined by

x0(t) = u(t), t ∈ J,

xn+1(t) =


∫ T

0

Gh(t, s)f(s, xn(s), x
n
s ) ds, t ∈ I,

ϕ(t), t ∈ I0,


(3.6)

where xn
s (θ) = xn(s+ θ), θ ∈ I0, is monotone nondecreasing and converges to x∗.

Proof. Set S = CM
eq (J,R). Then, S is a uniformly bounded and equicontinuous subset of the ordered Banach

space (X,K). Hence S is compact in view of Arzellá-Ascoli theorem. Consequently, S is partially compact
subset of (X,K). Define an operator T : S → C(J,R) by

T x(t) =


∫ T

0

Gh(t, s)f(s, x(s), xs) ds, t ∈ I,

ϕ(t), t ∈ I0.

(3.7)

We shall show that the operator T satisfies all the conditions of Theorem 2.7 in a series of following steps.

Step I: T is well defined and T : S → S.

Clearly, T is well defined in view of continuity of the functions k and f on J × J and J ×R×R receptively.
We show that T (S) ⊂ S. Let x ∈ S be arbitrary. Now by hypothesis (H2),

|T x(t)| ≤


∫ T

0

Gh(t, s)|f(s, x(s), xs)| ds, t ∈ I,

|ϕ(t)|, t ∈ I0,

≤


∫ T

0

Mh mM (s) ds, t ∈ I,

|ϕ(t)|, t ∈ I0,

≤ ∥ϕ∥C +Mh ∥mM∥L1

= M,
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for all t ∈ J . Taking the supremum over t, we obtain ∥T x∥ ≤ M for all x ∈ CM
eq (J,R).

Next, we prove that T (S) ⊂ S. Let y ∈ T (S) be arbitrary. Then there is an x ∈ S such that y = T x. Now
we consider the following three cases:

Case I : Suppose that t1, t2 ∈ I . Then, we have

|y(t1)− y(t2)| =
∣∣T x(t1)− T x(t2)

∣∣
≤

∫ T

0

∣∣Gh(t1, s)−Gh(t2, s)
∣∣ |f(s, x(s), xs)| ds

≤
[
(ℓ1 + ℓ2)L+ F0

] ∫ T

0

|Gh(t1, s)−Gh(t2, s)| ds. (*)

Since k is continuous on compact J × J , it is uniformly continuous there. Therefore, for each fixed s ∈ J ,
we have

|k(t1, s)− k(t2, s)| → 0 as t1 → t2

uniformly. This further in view of inequality (*) implies that∣∣T x(t1)− T x(t2)
∣∣ → 0 as t1 → t2, (i)

uniformly for all x ∈ S.

Case II : Suppose that t1, t2 ∈ I0. Then, we have

|y(t1)− y(t2)| =
∣∣T x(t1)− T x(t2)

∣∣ = |ϕ(t1)− ϕ(t2)| → 0 as t1 → t2,

uniformly for x ∈ S.

Case III : Let t1 ∈ I) and t2 ∈ I . Then we obtain

|y(t1)− y(t2)| =
∣∣T x(t1)− T x(t2)

∣∣ ≤ ∣∣T x(t1)− T x(0)
∣∣+ ∣∣T x(0)− T x(t2)

∣∣.
If t1 → t2, that is, |t1 − t2| → 0, then t1 → 0 and t2 → 0 which in view of inequalities (i) and (ii) implies

that
|y(t1)− y(t2)| → 0 as t1 → t2 (iii)

uniformly for all y ∈ T (S). From above three cases (i)-(iii) it follows that T x ∈ S for all x ∈ S. As a result
T (S) ⊆ S.

Step II: T is a monotone nondereasing operator on S.

Let x, y ∈ S be such that x ⪰ y. Then, xt ⪰ yt for each t ∈ I . Therefore, by hypothesis (H2), we get

T x(t) =


∫ T

0

Gh(t, s)f(s, x(s), xs) ds, , t ∈ I,

ϕ(t), t ∈ I0,

≥


∫ T

0

Gh(t, s)f(s, y(s), ys) ds, , t ∈ I,

ϕ(t), t ∈ I0,

= T y(t),

for all t ∈ J . This shows that T x ⪰ T y and consequently the operator T is monotone nondecreasing on S.

Step III: T is partially continuous on S.
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Let C be a chain in the closed and bounded subset CM
eq (J,R) of the ordered Banach space

(
C(J,R),K

)
and

let {xn} be a sequence of points in C such that xn → x as n → ∞. Then, by definition of the operator T , we
obtain

lim
n→∞

T xn = lim
n→∞


∫ T

0

Gh(t, s)f(s, xn(s), x
n
s ) ds, , t ∈ I,

ϕ(t), t ∈ I0,

=


∫ T

0

Gh(t, s)
[
lim
n→∞

f(s, xn(s), x
n
s )
]
ds, , t ∈ I,

ϕ(t), t ∈ I0,

=


∫ T

0

Gh(t, s)f(s, x(s), xs) ds, , t ∈ I,

ϕ(t), t ∈ I0,

= T x(t),

for all t ∈ J . This shows that T xn → T x pointwise on J . Next, by following the arguments asin Step II, it is
proved that {T xn} is an equicontinuous sequence of points in S. This shows that T xn → T x uniformly on J .
Consequently T is a partially continuous operator on S into itself.

Thus T satisfies all the conditions of Theorem 2.7 on a partially compact subset S of the Banach space
C(J,R). Hence T has a fixed point x∗ ∈ S and the sequence {T nx0}∞n=0 of successive iterations converges
monotone nondecreasingly to x∗. This further implies that the PBVP (1.3) has a solution x∗ on J and the
sequence {xn}∞n=0 successive approximations defined by (3.6) converges monotone nondecreasingly to x∗. This
completes the proof. □

Theorem 3.4. Suppose that the hypotheses (H1) and (H4) hold. Furthermore, if MhT (ℓ1 + ℓ2) < 1, then the
PBVP (1.3) has a unique solution x∗ defined on J and the sequence {xn}∞n=0 of successive approximations
defined by (3.6) is monotone nondecreasing and converges to x∗.

Proof. Set S = CM
eq (J,R). Then S = CM

eq (J,R) is a closed subset of an ordered Banach space (X,K) and soo
it is partially closed set in (X,K). Define an operator T on S by (3.7). Then T is well defined. We shall show
that T is a partial contraction on S.

Let x, y ∈ S be such that x ⪰ y. Then, by hypothesis (H1), we have∣∣T x(t)− T y(t)
∣∣ = ∣∣∣ ∫ T

0

Gh(t, s)
[
f(s, x(s), xs)− f(s, y(s), ys)

]
ds
∣∣∣

≤
∫ T

0

Gh(t, s)
∣∣f(s, x(s), xs)− f(s, y(s), ys)

∣∣ ds
≤

∫ T

0

Gh(t, s)
[
f(s, x(s), xs)− f(s, y(s), ys)

]
ds

≤
∫ T

0

Gh(t, s)
[
ℓ1|x(s)− y(s))|+ ℓ2∥xs − ys∥C

]
ds

≤
∫ T

0

Gh(t, s)(ℓ1 + ℓ2)∥x− y∥ ds

≤ MhT (ℓ1 + ℓ2)∥x− y∥,

for all t ∈ J . Taking the supremum over t, we obtain

∥T x− T y∥ ≤ MhT (ℓ1 + ℓ2)∥x− y∥
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for all comparable elements x, y ∈ S. This shows that T is a partial contraction on S. We know that every
partially Lipschitz operator is partially continuous, so T is a partially continuous operator on S. Now, we apply
Theorem ?? to the operator T and conclude that T has a unique fixed point x∗ ∈ S and the sequence {T nu}∞n=0

of successive iterations converges to x∗. This further implies that functional PBVP (1.3) has a unique solution
x∗ and the sequence {xn}∞n=0 of successive approximations defined by (3.6) is monotone nondecreasing and
converges to x∗. □

Remark 3.5. The conclusion of existence and uniqueness theorems, Theorems 3.3 and 3.4 for the problem (1.3)
also remains true if we replace the hypothesis (H4) by (H5). In this case the sequence {yn}∞n=0 defined similar
to (3.6) converges monotone nonincreasingly to the solution x∗ of the functional PBVP (1.3) defined on J .

4. An Example

Example 4.1. Let I0 =
[
−π

2
, 0
]

and I ==
[
0, 1

]
be two closed and bounded intervals in R, the set of real

number and let J =
[
−π

2
, 0
]⋃

[0, 1] =
[
−π

2
, 1
]
. Given a history function ϕ(t) = sin t, t ∈

[
−π

2
, 0
]
, consider

the nonlinear two point functional BVP

x′(t) + x(t) = f1(t, x(t), xt), t ∈ [0, 1],

x(0) = ϕ(0) = 0 = x(1),

x0 = ϕ,

 (4.1)

for all t ∈ [0, 1], where xt(θ) = x(t+ θ), θ ∈
[
−π

2 , 0
]

and the function f2 is given by

f1(t, x, y) =



0, if x ≤ 0, y ⪯C 0,

1

4

x

1 + x
, if x > 0, y ⪯C 0,

1

4

∥y∥C
1 + ∥y∥C

, if x ≤ 0, y ⪰C 0, y ̸= 0,

1

4

[
x

1 + x
+

∥y∥C
1 + ∥y∥C

]
, if x > 0, y ⪰C 0, y ̸= 0,

for all t ∈ [0, 1].
Here, h = 1 = T and f1 defines a continuous function f : [0, 1] × R × C → R. We shall show that f1

satisfies all the conditions of Theorem 3.4. Now, let x1, y1 ∈ R and x2, y2 ∈ C be such that x1 ≥ y1 ≥ 0 and
x2 ⪰C y2 ⪰ 0. Therefore, we have

0 ≤ f(t, x1, x2)− f(t, y1, y2)

≤ 1

4
· x1

1 + x1
− y1

1 + y1
+

∥x2∥C
1 + ∥x2∥C

− ∥y2∥C
1 + ∥y2∥C

≤ 1

4
· x1 − y1
1 + x1 − y1

+
1

4
· ∥x2∥C − ∥y2∥C
1 + ∥x2∥C − ∥y2∥C

(∵ |x1 − y1| ≤ |x1|+ |y1|)

≤ 1

4
· |x1 − y1|
1 + |x1 − y1|

+
1

4
·

∣∣ ∥x2∥C − ∥y2∥C
∣∣

1 +
∣∣ ∥x2∥C − ∥y2∥C

≤ 1

4
· |x1 − y1|
1 + |x1 − y1|

+
1

4
· ∥x2 − y2∥C
1 + ∥x2 − y2∥C

≤ 1

4
· |x1 − y1|+

1

4
· ∥x2 − y2∥C ,
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for all t ∈ [0, 1]. Similarly, we get the same estimate for other values of the function f1. So the hypothesis (H1)
holds with ℓ1 = 1

4 and ℓ2 = 1
4 . Again, the Green’s function G is continuous and nonnegative on [0, 1] × [0, 1]

with bound M1 ≈ 1.6, so that the hypothesis (H3) holds. Moreover, here we have

Mh T (ℓ1 + ℓ2) ≊ 1.6

(
1

4
+

1

4

)
= 0.8 < 1,

and so all the conditions of Theorem 3.4 are satisfied for M = 9
5 . Finally, the functions u and v defined by

u(t) =


−
∫ 1

0

G1(t, s) ds, t ∈ [0, 1],

sin t, t ∈
[
−π

2
, 0
]
,

and

v(t) =


1

2

∫ 1

0

G1(t, s) ds, t ∈ [0, 1],

sin t, t ∈
[
−π

2
, 0
]
,

satisfy respectively the inequalities of the lower solution and upper solution of the functional PBVP (4.1) with
u ⪯ v on J . Hence the functional PBVP (4.1) has a unique solution x∗ ∈ C

9/5
eq (J,R) defined on J =

[
−π

2 , 1
]
.

Moreover, the sequence {xn}∞n=0 defined by

x0(t) = u(t), t ∈
[
−π

2
, 1
]
,

xn+1(t) =


∫ 1

0

G1(t, s)f(s, xn(s), x
n
s )) ds, t ∈ [0, 1],

sin t, t ∈
[
−π

2
, 0
]
,

is monotone nondecreasing and converges to x∗. Similarly, the sequence {yn}∞n=0 defined by

y0(t) = v(t), t ∈
[
−π

2
, 1
]
,

yn+1(t) =


∫ 1

0

G1(t, s)f(s, yn(s), y
n
s )) ds, t ∈ [0, 1],

sin t, t ∈
[
−π

2
, 0
]
,

is monotone nonincreasing and converges to the unique dolution x∗ ∈ C
9/5
eq (J,R). Thus, we have

x0 ⪯ x1 ⪯ · · · ⪯ xn ⪯ x∗ ⪯ yn ⪯ · · · ⪯ y1 ⪯ y0.

5. Remarks and Conclusion

We observe that the existence of solutions of the PBVP (1.3) can also be obtained by an application of
topological Schauder fixed point principle under the hypothesis (H2), but in that case we do not get any sequence
of successive approximations that converges to the solution. Again, we can not apply analytical or geometric
Banach contraction mapping principle to the problem (3.1) under the considered hypotheses (H1) and (H3) in
order to get the desired conclusion, because here the nonlinear function f does not satisfy the usual Lipschitz
condition on the domain I × R× C. Similarly, we can not apply algebraic Knaster-Tarski fixed point theorem to
PBVP (1.3) for proving the existence of solution, because C(J,R) is not a complete lattice. Therefore, all these
arguments show that our hybrid fixed point principle, Theorem 2.4 has more advantages than classical fixed point
theorems to get more information about the solution of nonlinear equations in the subject of nonlinear analysis.
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