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115 Meiganga, Cameroun.
3 UMI 209 IRD/UPMC UMMISCO, Bondy, Projet MASAIE INRIA Grand Est, France and Projet GRIMCAPE, LIRIMA, Cameroon.

Received 31 August 2023; Accepted 28 September 2023

This paper is dedicated to the occasion of Professor Gaston M. N’Guérékata’s 70th birthday

Abstract. In this work, we study the existence solutions and the dependence continuous with the initial data for some
nondensely nonautonomous partial functional differential equations with state-dependent delay in Banach spaces. We
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1. Introduction

Partial differential equations with delay are important for investigating some problems raised from natural
phenomena. They have been successfully used to study a number of areas of biological, physical, engineering
applications, and such equations have received much attention in recent years. It is generally known that taking
into account the past states of the model, in addition to the present one, makes the model more realistic. This
leads to the so called functional differential equations. In recent years, nonlinear evolution equations with
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state-dependent delay have been studied by several authors and some interesting results have been obtained, see
[9–11, 14, 15, 17, 19].

In 1970, Kato in [12] initiated a study of the evolution family solution of hyperbolic linear evolution equations
of the form {

x′(t) = A(t)x(t), t ≥ s,

x(s) = xs ∈ X.
(1.1)

in a Banach space X. Some fundamental and basic results about the well posedness and dynamical behavior
of equation (1.1) were established under the so called stability condition, ((B2) in Section 2). The autors focus
on the nonautonomous linear case.

In 2011, Belmekki et al investigated in [5] several results on the existence of solutions of the initial value
problem for a new class of abstract evolution equations with state-dependent delay in Banach space X,{

x′(t) = Ax(t) + f(t, x(t− ρ(x(t)))), t ∈ [0; a],

x(t) = φ(t), t ∈ [−r; 0]. (1.2)

where f : [0; +∞) × X −→ X is a suitable nonlinear function, the initial data φ : [−r; 0] −→ X is a
continuous function, ρ is a positive bounded continuous function defined on X and r is the maximal delay given
by r = sup

x∈X
ρ(x). The autors focus on the case where the differential operator in the main part is nondensely

define and independent of time t in [0, a]. Here the equation is autonomous partial functional differential
equations with state-dependent delay. Their approach is based on a nonlinear alternative of Leray-Schauder and
integrated semigroup (S(t))t≥ which is considered to be compact for t > 0.

In 2019, Kpoumie et al. investigated in [15] several results on the existence of solutions of the following
nonautomous equations: {

x′(t) = A(t)x(t) + f(t, x(t− ρ(x(t)))), t ∈ [0; a],

x(t) = φ(t), t ∈ [−r; 0]. (1.3)

in a Banach space (X, ∥.∥), where the family of closed linear operator (A(t))t≥0 on X is not necessarily
densely, satisfying the hyperbolic conditions (B1) through (B3) and φ : [−r; 0] −→ X the continuous function.
Their approach is based on a nonlinear alternative of Leray-Schauder under the assumption of the compactness
of evolution family generated by (A(t))t≥0. They get the existence of mild solution under the Carathéodory
condition on f.

In 2019, Chen and al. investigated in [7] several results on the existence of solutions of the nonautonomous
parabolic evolution equations with non-instantaneous impulses in Banach space E:

x′(t)−A(t)x(t) = f(t, x(t)), t ∈
⋃m

k=0(sk, tk+1],

x(t) = γk(t, x(t)), t ∈
⋃m

k=1(tk, sk],

x(0) = x0).

(1.4)

by introducing the concepts of mild and classical solutions, where A : D(A) ⊂ E −→ E is the generator of a
C0 − semigroup of bounded linear operator T (t)t≥0 defined on E,
u0 ∈ E, 0 < t1 < t2 < · · · < tm < tm+1 := a, a > 0 is a constant, s0 := 0 and sk ∈ (tk, tk+1) for each
k = 1, 2, · · · ,m, f : [0, a] × E −→ E is a suitable nonlinear function, γk : (tk, sk] × E −→ E is continuous
non-instantaneous impulsive function for all k = 1, 2, · · · ,m. Their results are based on Sadovskii fixed point
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Theorem and they consider that evolution family is noncompact.

Therefore, it is for great significance and interesting to study the nonautonomous evolution equation where the
family of closed linear operator (A(t))t≥0 on X is not necessarily densely define and generates the noncompact
evolution famillies. Driven by the above aspects, we will investigate the existence of mild solutions and the
dependent continuous on the initial data of the following nonautonomous partial functional differential equations
with state-dependent delay governed by noncompact evolution families of the form

{
x′(t) = A(t)x(t) + f(t, x(t− ρ(x(t)))), t ≥ 0,

x(t) = φ(t), t ∈ [−r; 0]. (1.5)

in a Banach space (X, ∥.∥), where the family of closed linear operator (A(t))t≥0 on X is not necessarily
densely and satisfying the hyperbolic conditions (B1) through (B3) introduced by Kato in [12] that will be
specified later. f : [0; +∞) × X −→ X is a suitable nonlinear function satisfying some conditions which will
be specified later. The initial data φ : [−r; 0] −→ X is a continuous function and ρ is a positive bounded
continuous function on X . The constant r is the maximal delay defined by r = sup

x∈X
ρ(x).

We point out that the work of this paper is the following of [5, 7, 12, 15]. But under appropriate circonstances,
evolutionary families are not compact. Our work is organized as follows: First, we recall some preliminary results
about the evolution family generated by (A(t))t≥0 and recall also some preliminary results concern Kuratowski
measure. Second, we use the alternative of Sadovskii fixed point Theorem to prove the existence of at least one
mild solution and the dependent continuous on initial data. Third, we propose an application to illustrate the main
result.

2. Preliminary results

Our notations in this section are the usual in the theory of evolution equations. In particular, we denote by
C(E,F ) the space of continuous functions from E into F and C2(E,F ) denotes the space of twice continuously
differentiable functions from E into F .
We mention here some results on nonautonomous differential equations with nondense domaine. We cite
[12, 13, 16, 18, 19]. We recall some properties and Theorems.

In the whole of this work, we assume the following hyperbolic assumptions:
(B1) D(A(t)) := D independent of t and not necessarily densely defined (D ⊊ X) .
(B2) The family (A(t)t≥0 is stable in the sense that there are constants M ≥ 1 and w ∈ R such that (ω,+∞) ⊂
ϱ(A(t)) (resolvent set of A(t)) for t ∈ [0,+∞) and

∥
k∏

j=1

R(λ,A(tj))∥ ≤M(λ− ω)−k

for λ > ω and every finite sequence {tj}kj=1 with 0 ≤ t1 ≤ t2 ≤ ≤ tk and k = 1, 2, ...

(B3) The mapping t 7−→ A(t)x is continuously differentiable in X for all x ∈ D.
We follow by recall the classical result which gives us the existence and explicit formula of the evolution family
generated by (A(t))t≥0 due to Kato [12]. Let λ > 0, 0 ≤ s ≤ t and x ∈ D,

Uλ(t, s)x =

[
t

λ
]∏

i=[
s

λ
]+1

(I − λA(iλ))−1x.
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Theorem 2.1. [1, 12] Assuming the three conditions (B1)− (B3). Then the limit

U(t, s)x = lim
λ−→0+

Uλ(t, s)x (2.1)

exists for x ∈ D and 0 ≤ s ≤ t, where the convergence is uniform on Γ := {(t, s) : 0 ≤ s ≤ t}. Moreover, the
family {U(t, s) : (t, s) ∈ Γ} satisfies the following properties:

(i) U(t, s)D(s) ⊂ D(t) for all 0 ≤ s ≤ t, where D(t) is defined by

D(t) := {x ∈ D : A(t)x ∈ D}

,

(ii) U(t, s) : D −→ D for (t, s) ∈ Γ

(iii) Uλ(t, t)x = x and Uλ(t, s)x = Uλ(t, r)Uλ(r, s)x for x ∈ D, λ > 0 and 0 ≤ s ≤ r ≤ t

(iv) U(t, t)x = x and U(t, s)x = U(t, r)U(r, s)x for x ∈ D and 0 ≤ s ≤ r ≤ t,

(v) the mapping (t, s) 7−→ U(t, s)x is continuous on Γ for any x ∈ D,

(vi) for all x ∈ D(s) and t ≥ s, the function t 7−→ U(t, s)x is continuously differentiable with
∂

∂t
U(t, s)x = A(t)U(t, s)x, and ∂+

∂s U(t, s)x = −U(t, s)A(s)x.

Corollary 2.2. [1] Assume the condition (B2). Then there exists M ≥ 1 and ω ∈ R such that∥∥∥U(t, s)x
∥∥∥ ≤Meω(t−s)∥x∥, for x ∈ D and 0 ≤ s ≤ t.

Remark 2.3. Since (B2), λ > ω and hence for (2.1), we get that ω is non positive. And by using Corollary 2.2,
we have ∥U(t, s)x∥ ≤M∥x∥ for each x ∈ D and 0 ≤ s ≤ t.

Definition 2.4. [4, 7] An evolution family {U(t, s) : 0 ≤ s ≤ t ≤ a} is said to be equicontinuous if for any
s ≥ 0, the function t 7−→ U(t, s) is continuous by operator norm for t ∈ (s; +∞).

In the following, we give some results on the existence of solutions for the following nondensely nonautonomous
partial functional differential equation

{
x′(t) = A(t)x(t) + f(t), t ∈ [0; a],

x(0) = x0.
(2.2)

where f : [0, a] −→ X is a function. The following Theorem gives us the generalized variation of constants
formula of equation (2.2).

Theorem 2.5. [9] Let x0 ∈ D and f ∈ L1([0, a];X). Then the limit

x(t) := U(t, 0)x0 + lim
λ−→0+

∫ t

0

Uλ(t, r)f(r)dr (2.3)

exists uniformly for t ∈ [0; a], x is a continuous function on [0, a] and

∥x(t)∥ ≤Meωt∥x0∥+
∫ t

0

Meω(t−s)∥f(s)∥ds ≤M∥x0∥+
∫ t

0

M∥f(s)∥ds (2.4)

.
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Definition 2.6. [12] For x0 ∈ D, a continuous function x : [0, a] −→ X is called a mild solution of equation
(2.2) if it satisfies the equation (2.3).

We introduce some basic definitions and properties of the Kuratowski noncompactness measure, this will be
used to demonstrate our main result.

Definition 2.7. [4, 7] The Kuratowski measure of noncoampactness µ(.) defined on bounded set V of Banach
space E is

µ(V ) := inf{δ > 0 : V =
⋃m

i=1 Vi and diam(Vi) ≤ δ for i = 1, 2, ...,m}.

Definition 2.8. [4, 7] Consider a Banach space X , and a nonempty subset E of X . A continuous operator
G : E −→ X is called to be λ−set-contractive if there exists a constant λ ∈ [0; 1) such that, for every bounded
set B ⊂ E,

µ
(
G(B)

)
≤ λµ(B).

Theorem 2.9. [4, 7] LetE be a Banach space and U, V ⊆ E be bounded. The following properties are satisfied:

(a) µ(V ) = 0, if and only if V is compact, where V means the closure hull of V ;

(b) µ(U) = µ(U) = µ(convU), where convU means the convex hull of U ;

(c) µ(λU) = |λ|µ(U) for any λ ∈ R;

(d) U ⊂ V implies µ(U) ≤ µ(V );

(e) µ(U
⋃
V ) = max{µ(U), µ(V )};

(f) µ(U + V ) ≤ µ(U) + µ(V ), where U + V = {x/x = u+ v, u ∈ U, v ∈ V };

(g) IfG : D(G) ⊂ E −→ X is Lipschitz continuous with constant λ, then µ(G(V )) ≤ λµ(V ) for any bounded
subset V ⊂ D(G), where X is another Banach space.

For more details about properties of the Kuratowski measure of noncompactness, we refer to the monographs
of Bana’s and Goebel [4] and Deimling [7].

Theorem 2.10. [4, 7] Consider a Banach space E, and B ⊂ E bounded. Then, there exists a countable set
B0 ⊂ B, such that µ(B) < 2µ(B0).

Theorem 2.11. [4, 7] Let E be a Banach space and B = {un : n ∈ N} ⊂ C([α;β], E) be a bounded and
countable set for constants −∞ < α < β < +∞. Then, t 7−→ µ(B(t)) is Lebesgue integral on [α;β], and

µ
({ ∫ β

α
un(t)dt | n ∈ N

})
≤ 2

∫ β

α
µ(B(t))dt.

Theorem 2.12. [4, 7] Consider E a Banach space, and B ⊂ C([α;β], E) a bounded and equicontinuous. Then,
the mapping t 7−→ µ(B(t)) is continuous on [α;β], and µ(B) = max

t∈[α;β]
µ(B(t)).

The following Sadovskii fixed point theorem plays a key role in the proof of our main results.

Theorem 2.13. [4, 7] Consider a Banach space E and suppose that, Ω ⊂ E is bounded, closed and convex. If
the operator G : Ω −→ Ω is condensing, which means that µ(G(Ω)) < µ(Ω), then G has at least one fixed point
in Ω.
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3. Existence of mild solution

In this section, we try our self to prove the existence of global mild solutions for
equation (1.5) using the equicontinuity of {U(t, s) : 0 ≤ s ≤ t < +∞}. We begin by define the mild solution
that correspond to the definition in (1.5) and denote Cr := C[−r, 0] with r > 0.

Definition 3.1. Let φ ∈ Cr such that φ(0) ∈ D. We say that a continuous function x : (−r; +∞) −→ X is a
mild solution of the equation (1.5), if it satisfies the following equation

x(t) =

U(t, 0)φ(0) + lim
λ→0+

∫ t

0

Uλ(t, s)f(s, x(t− ρ(s, x(s))))ds, for t ≥ 0,

φ(t) − r < t ≤ 0.
(3.1)

Firstly we study the local mild solution of equation (1.5).
To obtain our result, we consider the following assumptions :

(H1) The nonlinear function f : [0;∞) × X −→ X is continuous; and for some r > 0 there exist a constant
δ1 > 0 and ϕr ∈ L1([0, a],R+) such that for all t ∈ [0, a] and u ∈ C([−r, a], X) satisfying ∥u∥ ≤

r, ∥f(t, u)∥ ≤ ϕr(t) and lim sup
r→+∞

∥ϕr∥L1([0,a],R+)

r
= δ1 < +∞.

(H2) There exists positive constant L1 such that for any countable set D ⊂ X ,

µ(f(t,D)) ≤ L1µ(D), t ∈ [0; a].

(H3) We assume that the evolution family
(
U(t, s)

)
t≥s≥0

is equicontinuous i.e for any s ≥ 0, the function

t 7−→ U(t, s) is continuous by operator norm for t ∈ (s; +∞).

Theorem 3.2. Let a > 0 and assume that the family of linear operators
(
A(t)

)
t≥0

satisfies the hyperbolic

conditions (B1)-(B3), the assumptions (H1) - (H3) and φ(0) ∈ D. Then the problem (1.5) has at least one local
mild solution defined on [−r, a]. Moreover, the mild solution depends continuously on the initial data.

Proof. Our proof is based on Sadoskii’s fixed Point Theorem.

Let (G1u)(t) = U(t, 0)φ(0) and (G2u)(t) = lim
λ−→0+

∫ t

0

Uλ(t, s)f(s, u(s − ρ(u(s))))ds for each

u ∈ C([−r; a];X) and 0 ≤ s ≤ t ≤ a.
We claim that G = G1 + G2 is well defined on C([0; a];X) to itself. Let u ∈ C([0; a];X), we show that
Gu ∈ C([0; a];X). By the strongly continuity of the evolution family {U(t, s) : 0 ≤ s ≤ t ≤ a}, we get for
0 ≤ s ≤ t ≤ a that:

∥(Gu)(t) − (Gu)(s)∥ ≤ ∥U(t, 0)φ(0)− U(s, 0)φ(0)∥

+ ∥ lim
λ−→0+

∫ t

0

Uλ(t, r)f(r, u(r − ρ(u(r))))dr − lim
λ−→0+

∫ s

0

Uλ(s, r)f(r, u(r − ρ(u(r))))dr∥

≤ ∥U(t, 0)φ(0)− U(s, 0)φ(0)∥+ ∥ lim
λ−→0+

∫ s

0

(
Uλ(t, r)− Uλ(s, r)

)
(f(r, u(r − ρ(u(r))))dr∥

+ ∥ lim
λ−→0+

∫ t

s

Uλ(t, r)f(r, u(r − ρ(u(r))))dr∥.
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By (H3), we get that: lim
s→t

∥U(t, 0)φ(0) − U(s, 0)φ(0)∥ = 0 and using (H1) we deduce from the Lebesgue
dominated convergence theorem that:

lim
s→t

∥ lim
λ−→0+

∫ t

s

Uλ(t, r)f(r, u(r − ρ(u(r))))dr∥ = 0

and

lim
s→t

∥ lim
λ−→0+

∫ s

0

(
Uλ(t, r)− Uλ(s, r)

)
(f(r, u(r − ρ(u(r))))dr∥ = 0.

Thus
lim
s→t

∥(Gu)(t)− (Gu)(s)∥ = 0.

Therefore, our operator Gu ∈ C([0; a];X) for any u ∈ C([−r; a];X).

Case 1: Assume that

Mamax{δ1, 4L1} < 1 (3.2)

We claim that there exists a constant R > 0 such that G(BR) ⊂ BR where

BR = {u ∈ C([0, a], X), ∥u∥ ≤ R}

By virtue of (3.2), we choose R such that R ≥ M∥φ(0)∥
1−Mδ1a

. Let u ∈ BR and (H1) hypothesis , we get that

∥(Gu)(t)∥ ≤ ∥U(t, 0)φ(0)∥+ ∥ lim
λ−→0+

∫ t

0

Uλ(t, s)f(s, u(s− ρ(u(s))))ds∥

≤ M∥φ(0)∥+
∫ t

0

M∥f(s, u(s− ρ(u(s))))∥ds

≤ M∥φ(0)∥+
∫ t

0

Mϕr(s)ds

≤ M∥φ(0)∥+
∫ t

0

MRδ1ds

≤ M∥φ(0)∥+MRδ1t

Then, max
s∈[0;t]

∥(Gu)(s)∥ ≤M∥φ(0)∥+MRδ1a ≤ R.

Therefore G(BR) ⊂ BR.
We claim that G : BR −→ BR is continuous.
Let (un)n∈N be a sequence in BR such that un → u ∈ BR as n → +∞. From (H1), we consider the definition
of the operator G, the continuity of ρ and (H2) hypothesis. We get for any t ∈ [0; a] that:

∥(Gun)(t)− (Gu)(t)∥ ≤
∫ t

0

M∥f(s, un(s− ρ(un(s))))− f(s, u(s− ρ(u(s))))∥ds

≤
∫ t

0

M∥f(s, un(s− ρ(un(s))))− f(s, un(s− ρ(u(s))))∥ds

+

∫ t

0

M∥f(s, un(s− ρ(u(s))))− f(s, u(s− ρ(u(s))))∥ds

Since (un)n∈N ⊂ BR, then for each n ∈ N, un is continuous on [−r, a]. And by using (H1) we have:
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∥f
(
s, un(s− ρ(un(s)))

)
− f

(
s, un(s− ρ(u(s)))

)
∥ → 0 as n→ +∞

and
∥f

(
s, un(s− ρ(u(s)))

)
− f

(
s, u(s− ρ(u(s)))

)
∥ → 0 as n→ +∞

By using the Lebesgue dominated convergence theorem, we get that:

lim
n→+∞

∥(Gun)(t)− (Gu)(t)∥ = 0 for each t ∈ [0, a].

Consequently, Gun → Gu as n→ +∞. So the operator G is continuous in BR.
We claim that the operator G : BR −→ BR is equicontinuous. For all u ∈ BR, 0 < t1 < t2 ≤ a and ε > 0

small enough, by using (H3) , we get that:

∥(Gu)(t2) − (Gu)(t1)∥ ≤ ∥U(t2, 0)φ(0)− U(t1, 0)φ(0)∥

+ ∥ lim
λ−→0+

[ ∫ t2

0

Uλ(t2, s)f(s, u(s− ρ(u(s))))ds−
∫ t1

0

Uλ(t1, s)f(s, u(s− ρ(u(s))))ds
]
∥

≤ ∥[U(t2, 0)− U(t1, 0)]φ(0)∥+ ∥ lim
λ−→0+

∫ t2

t1

Uλ(t2, s)f(s, u(s− ρ(u(s))))ds∥

+ ∥ lim
λ−→0+

∫ t1−ε

0

[Uλ(t2, s)− Uλ(t1, s)]f(s, u(s− ρ(u(s))))ds∥

+ ∥ lim
λ−→0+

∫ t1

t1−ε

[Uλ(t2, s)− Uλ(t1, s)]f(s, u(s− ρ(u(s))))ds∥

≤ ∥U(t2, 0)− U(t1, 0)∥L(X)∥φ(0)∥+M

∫ t2

t1

∥f(s, u(s− ρ(u(s))))∥ds

+ sup
s∈[0,t1−ε]

∥ lim
λ−→0+

[Uλ(t2, s)− Uλ(t1, s)]∥L(X)

∫ t1−ε

0

∥f(s, u(s− ρ(u(s))))∥ds

+ sup
s∈[t1−ε,t1]

∥ lim
λ−→0+

[Uλ(t2, s)− Uλ(t1, s)]∥L(X)

∫ t1

t1−ε

∥f(s, u(s− ρ(u(s))))∥ds

→ 0 as t2 → t1 and ε→ 0.

We claim that the operator G : BR −→ BR is condensing.
For any B ⊂ BR, B is bounded. By using Theorem 2.10, there exists a countable set A = {vn : n ∈ N} ⊂ B

such that

µ(G(B)) ≤ 2µ(G(A)). (3.3)

Because A ⊂ B ⊂ BR, we get that G(A) ⊂ G(BR) then G(A) is bounded. And since the operator
G : BR −→ BR is equicontinuous, by the Theorem 2.12 we get that

µ(G(A)) = max
t∈[0;a]

µ(G(A)(t)). (3.4)

By using the definition of the operator G1, we get that (G1u)(t) = U(t, 0)φ(0) for all u ∈ B and 0 ≤ t ≤ a.

Therefore G1(B)(t) = {U(t, 0)φ(0)} for t ∈ [0; a]. From the definition of µ, we have
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µ(G1(B)(t)) = 0 for all t ∈ [0; a] and according to the Theorem 2.12, we get µ(G1(B)) = 0.

By using Theorem 2.9, Theorem 2.11, the assumptions (H1) and the definition of G2, we have

µ(G2(A)(t)) = µ({ lim
λ−→0+

∫ t

0

Uλ(t, s)f(s, un(s− ρ(un(s))))ds | n ∈ N})

≤ Mµ({
∫ t

0

f(s, un(s− ρ(un(s))))ds | n ∈ N})

≤ Mµ({
∫ t

0

f(s, un(s))ds | n ∈ N})

≤ 2M

∫ t

0

µ(f(s,A(s))ds

≤ 2ML1

∫ t

0

µ(A(s))ds

≤ 2ML1

∫ t

0

µ(A)ds

≤ 2ML1tµ(A)

≤ 2ML1aµ(A). (3.5)

We know that A ⊂ B, and using Theorem 2.9,

µ(A) ≤ µ(B). (3.6)

µ(G(A)) = µ(G1(A) +G2(A)) ≤ µ(G1(A)) + µ(G2(A)) = µ(G2(A)). (3.7)

By using (3.3)-(3.7), we have

µ(G(B)) ≤ 4ML1aµ(B). (3.8)

Since (3.2) and (3.8), we have

µ(G(B)) < µ(B). (3.9)

The inequality (3.9) proves that the operator G : BR −→ BR is condensing. From the
Theorem 2.13, the problem (1.5) has at least one local mild solution defined on [−r, a].

Case 2: We assume that Mamax{δ1, 4L1} ≥ 1.

We know that 4ML1a
k → 0 as k → +∞ and Mδ1a

k → 0 as k → +∞. Then there exists a constance
n ∈ N\{0, 1} such that 4ML1a

n < 1 and Mδ1a
n < 1. Let b = a

n , hence nb = a and 4ML1b < 1 and Mδ1b < 1.
We deduce from Case 1 that there exists at least one local mild solution x1 : [−r; b] −→ X of the problem (1.5).

We denote φ1 ∈ C([−r; 0], X) such that φ1(t) = x1(t+ b) for any t ∈ [−r − b; 0] and
Cφ1

([b, 2b], X) := {y ∈ C([b, 2b], X) : y(b) = φ1(0)}. We consider the following problem{
x′(t) = A(t)x(t) + f(t, x(t− ρ(x(t)))), t ∈ [b; 2b],

x(t) = x1(t), t ∈ [−r; b]. (3.10)

The problem (3.10) is equivalent to the following problem{
y′(s) = B(s)y(s) + f1(s, y(s− ρ(y(s)))), s ∈ [0; b],

y(s) = φ1(s), s ∈ [−r; 0]. (3.11)
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where s = t− b, y(s) = x(s+ b), B(s) = A(b+ s) and f1(s, .) = f(b+ s, .).
In this case, f1 satisfies (H1) and (H2). And the family of linear operator {B(t) : 0 ≤ t ≤ b} satisfies (B1)−(B3)

and its evolution family satisfies all condition that the evolution family generated by {A(t) : 0 ≤ t ≤ a} does.
It follows from Case 1 that there exists at least one local mild solution y : [−r; b] −→ X of the problem (3.11).
Then the problem (1.5) has at least one local solution in [b, 2b] defined by x2(t) = y(t) for t ∈ [b; 2b].

By use the inductive reasoning, we get that the problem (1.5) has at least one local solution xk in [(k −
1)b, kb], k = 1, 2, · · · , n. Hence, the problem (1.5) has at least one local solution defined by:

x(t) = xk(t) for t ∈ [(k − 1)b; kb], k = 1, 2, · · · , n.

Therefore, the problem (1.5) has at least one local mild solution on [−r, a].

Let y = y(., φ) and z = z(., ψ) be two solutions of equation (1.5) corresponding respectively to initial data
φ,ψ ∈ B with φ(0), ψ(0) ∈ D. Then

∥y(t)− z(t)∥ ≤ ∥U(t, 0)
[
φ(0)− ψ(0)

]
∥

+ ∥ lim
λ−→0+

∫ t

0

Uλ(t, s)
[
f(s, y(s− ρ(y(s))))− f(s, z(s− ρ(z(s))))

]
ds∥

≤ M∥φ(0)− ψ(0)∥+M

∫ t

0

∥f(s, y(s− ρ(y(s))))− f(s, z(s− ρ(z(s))))∥ds

≤ M∥φ− ψ∥∞ +M

∫ t

0

∥f(s, y(s− ρ(y(s))))− f(s, y(s− ρ(z(s))))∥ds

+ M

∫ t

0

∥f(s, y(s− ρ(z(s))))− f(s, z(s− ρ(z(s))))∥ds.

For all ϵ > 0, we find δ > 0 such that ∥φ− ψ∥∞ < δ ⇒ max
0≤s≤a

∥y(s)− z(s)∥ < ϵ.

ρ is continuous function, then there exists δ1 > 0 such that:

∥y(s)− z(s)∥ < ϵ⇒ ∥ρ(y(s))− ρ(z(s))∥ < δ1, s ∈ [0, a].

y is continuous function, then there exists δ2 > 0 such that:

∥ρ(y(s))− ρ(z(s))∥ < δ1 ⇒ ∥y(s− ρ(y(s)))− y(s− ρ(z(s)))∥ < δ2, s ∈ [0, a].

f is continuous function, then there exists δ3 > 0 such that

∥y(s− ρ(y(s)))− y(s− ρ(z(s)))∥ < δ2 ⇒

∥f(s, y(s− ρ(y(s))))− f(s, y(s− ρ(z(s))))∥ < δ3
2aM

and

∥f(s, y(s− ρ(z(s))))− f(s, z(s− ρ(z(s))))∥ < δ3
2aM

, s ∈ [0, a].
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Consequently,

∥φ− ψ∥∞ < δ ⇒ max
0≤s≤a

∥f(s, y(s− ρ(y(s))))− f(s, y(s− ρ(z(s))))∥ < δ3
2aM

and
max
0≤s≤a

∥f(s, y(s− ρ(z(s))))− f(s, z(s− ρ(z(s))))∥ < δ3
2aM

.

Therefore

M∥φ− ψ∥∞ + M

∫ t

0

∥f(s, y(s− ρ(y(s))))− f(s, y(s− ρ(z(s))))∥ds

+ M

∫ t

0

∥f(s, y(s− ρ(z(s))))− f(s, z(s− ρ(z(s))))∥ds < ϵ. (3.12)

Relation (3.12) implies that:

Mδ + δ3 < ϵ. Then, δ <
ϵ− δ3
M

.

Choose ϵ and δ3 such that ϵ > δ3 and take δ = ϵ−δ3
2M .

Therefore, the mild solution of (1.5) depends continuously on the initial data.
■

Our subsequent objective is to establish the global mild solution of problem (1.5).

(H4) The nonlinear function f : [0;∞) × X −→ X is continuous; and for some R > 0 there exist a constant
δ0 > 0 and ϕr ∈ L1([0,+∞),R+) such that for all t ≥ 0 and u ∈ C([−r,+∞), X) satisfying ∥u∥ ≤

R, ∥f(t, u)∥ ≤ ϕR(t) and lim sup
R→+∞

∥ϕR∥L1([0,+∞),R+)

R
= δ0 < +∞.

(H5) There exists positive constant L0 such that for any countable set D ⊂ X ,

µ(f(t,D)) ≤ L0µ(D), t ≥ 0.

Theorem 3.3. Assume that the family of linear operators
(
A(t)

)
t≥0

satisfies the hyperbolic conditions (B1)-

(B3), the evolution family
(
U(t, s)

)
t≥s≥0

is equicontinuous, (H3)− (H5) hold. Then problem (1.5) has at least

one global mild solution on [−r; +∞).

Proof. Using Theorem 3.2, We deduce that there exists an unique local mild solution xn of problem (1.5) defined
on [−r;n] for each n ∈ N. It is clear that xn+1|[−r;n] = xn for each n ∈ N. Hence the problem (1.5) has at least
one global mild solution x(.) on [−r; +∞) and it is defined by x(t) = xn(t) for each − r ≤ t ≤ n and for
all n ∈ N. ■

4. Application

In this section, we apply our results to the following non-autonomous partial differential equation of evolution.
∂u(t, x)

∂t
= θ(t)

∂2

∂x2
u(t, x) +

t

6(t+ 1)3+ | u(t− ψ(u(t, x), x) |
, for (t, x) ∈ [0; +∞)× Ω,

u(t, x) = 0, for (t, x) ∈ [0; +∞)× ∂Ω,

u(t, x) = ϕ(t, x), for (t, x) ∈ [−T ; 0]× Ω.

(4.1)
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where Ω ⊂ R is a bounded and closed domain with smooth boundary ∂Ω and the function θ ∈ C1([0;+∞),R).
The delay function ψ is a bounded positive continuous function in R and let T be its upper bound element in R
and the function ϕ ∈ C2([−T ; 0]× Ω;R).

Theorem 4.1. The problem (4.1) has at least one mild solution.

Proof. We consider X , the Banach space defined by X = C(Ω;R) and the operator A : D ⊂ X −→ X defined
by D = D(A) = {z ∈ C2(Ω;R) : z(x) = 0, x ∈ ∂Ω},

Az(t, x) =
∂2

∂x2
z(t, x), (t, x) ∈ [0;∞)× Ω.

We have D = {z ∈ C(Ω;R) : z(x) = 0, x ∈ ∂Ω} ≠ X. We know from [? ] that

(0,+∞) ⊂ ϱ(A) and ∥R(λ,A)∥ ≤ 1

λ
for λ > 0. (4.2)

Let (A(t))t≥0 be a family of operators defined by A(t) = θ(t)
∂2

∂x2
.

For any t ≥ 0, we have D(A(t)) = D independent of t.
Then it is well know that for every t ≥ 0

R(λ,A(t)) =
1

θ(t)
R(

λ

θ(t)
, A) (4.3)

Since (4.2), we have ∥R(λ,A)∥ ≤ 1

λ
for each λ ∈ (0,+∞) ∩ ϱ(A).

Then, by adding the (4.3) and for 0 ≤ t1 ≤ t2 ≤ ... ≤ tk < +∞ we get

∥
k∏

j=1

R(λ,A(tj))∥ ≤ 1

λk

Using the definition of the function θ and Banach’s space X , the mapping t 7−→ A(t)x is continuously
differentiable in X for all x ∈ D.
Hence, the family of linear operator (A(t))t≥0 on X satisfies the assumptions (B1)− (B3).

Since [2], the operator A0(.) of A(.) in D(A) generates an evolution family
(
U(s, t)

)
t≥s≥0

given by

U(s, t) = T0

(∫ t

s

θ(r)dr
)

which is equicontinuous for each t ≥ s ≥ 0. where the operator △0 of △ in D(△) give by

{
D(△0) = {x ∈ D(△) : △x ∈ D(△)},
△0x = △x,

generates the semigroup
(
T0(t)

)
t≥0

such that

∥T0(t)∥ ≤ e−t for each t ≥ 0.

Hence,

∥U(t, s)∥ ≤ 1 for each t ≥ s ≥ 0.
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We get that M = 1.

Let f : [0;+∞)×X −→ X defined by f(t, z)x =
t

6(t+ 1)3+ | z(x) |
for x ∈ Ω and t ≥ 0. The initial data φ

is defined by φ(t)x = ϕ(t, x) for x ∈ Ω and t ≥ 0.

and z(t)x = u(t, x).

Therefore (4.1) becomes {
z′(t) = A(t)z(t) + f(t, z(t− ψ(z(t)))), for t ≥ 0,

z(t) = φ(t), for t ∈ [−T ; 0]. (4.4)

For every t ≥ 0 and z, y ∈ X ,

|f(t, z)− f(t, y)| = t

[6(t+ 1)3 + |z|][6(t+ 1)3 + |y|]
||y| − |z||

≤ t

[6(t+ 1)3 + |z|][6(t+ 1)3 + |y|]
|z − y|

≤ t

36(t+ 1)6
|z − y|

≤ 1

36
|z − y|

we get that L0 =
1

36
. Thus (H5) is verified.

Let r > 0, for every t ≥ 0, u ∈ Br, we get that:

∥f(t, u)∥ ≤ t

6(t+ 1)3
≤ (t+ 1)

6(t+ 1)3
≤ r + 1

(t+ 1)2
= ϕr(t), ϕr ∈ L1([0,+∞),R+)

∥ϕr∥L1([0,+∞),R+) = r + 1

and

lim
r→+∞

∥ϕr∥L1([0,+∞),R+)

r
= 1.

Then (H4) is verified and we take δ0 = 1. Therefore, by using Theorem 3.3, we get that the problem (4.4)
has at least one global mild solution u : [−T ; +∞) −→ X . ■
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