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Double domination number of the shadow (2,3)-distance graphs
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Abstract. Let G = (V,E) be a graph with the vertex set V (G) and S be a subset of V (G). If every vertex of V is
dominated by S at least twice, then the set S is called a double domination set of the graph. The number of elements of the
double domination set with the smallest cardinality is called double domination number and denoted by γ×2(G) notation. In
this paper, we discussed the double domination parameter on some types of shadow distance graphs such as cycle, path, star,
complete bipartite and wheel graphs.
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1. Introduction and Background

Many real-life problems can be modeled mathematically by using differential equations, integral equations,
algebraic relations, etc. However, the graphical representation of such problems, showing how the various
components are related, appeals to anyone working on it. Although the beginning of these graphic representations
dates back many years, its emergence as a concrete mathematical structure was shaped by the finding of a new
branch of mathematics, graph theory. As one of the most important characterizations, graph domination, has been
associated with various application areas such as analyzing chemical structures, electrical and communication
networks, and database management. Thus, graph domination has attracted interest from many mathematicians
due to its application potential to apply many problems such as design and analysis of communication networks
as well as defense supervision [4, 14, 19].

Now, we provide some basic information and definitions that will form the basis of this study. In general,
we follow [8, 15]. Let G = (V (G), E(G)) be a graph. The open neighborhood of a vertex v ∈ V (G) is
N(v) = NG(v) = {u ∈ V (G) | uv ∈ E(G)}, and its closed neighborhood N [v] = N(v) ∪ {v}. The degree
of v, denoted by deg(v), is the size of its open neighborhood. One degree vertex is called as a pendant vertex
or a leaf, and its neighbor is called a support vertex. An edge incident to a leaf (or a pendant vertex ) is called a
pendant edge.

Let D be a subgraph of the vertex set of a graph G. If D is a dominating set in a graph G then every vertex
in V (G)\D is adjacent to at least one vertex in D, and the number of elements of the minimum cardinality
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domination set is called the domination number of G, denoted by γ(G) [15]. Many variants of domination
parameter are studied in the literature [1–3, 6, 7, 11, 13, 16, 17].

In this paper, we focused on the double domination parameter. Double dominating set (abbreviated DDS )
is introduced in [12]. A set S ⊆ V is a double dominating set for G if each vertex in V is dominated by at least
two vertices in S. The smallest cardinality of a double dominating set is called the double domination number
γ×2(G). If S is a DDS of G of size as double domination number, then it is called as γ×2(G)-set [12, 13].
Frankly, double domination is defined only for graphs without isolated vertices.

Let D be the set of all distances between distinct pairs of vertices in G and let Ds ⊆ D is called the distance
set. The distance graph of G denoted by D (G,Ds) is the graph having the same vertex set with G and if
d(u, v) ∈ Ds then two vertices u and v are adjacent in D (G,Ds). The shadow distance graph of G, denoted by
Dsd (G,Ds) is formed from G to satisfy the following properties [12, 18, 20] :

P1 : G has two copies say G itself and G′

P2 : if u ∈ V (G) is first copy then the corresponding vertex as u′ ∈ V (G′) is second copy

P3 : the vertex set of shadow distance graph, Dsd (G,Ds), is V (G) ∪ V (G′)

P4 : the edge set of shadow distance graph , Dsd (G,Ds), is E(G) ∪E (G′) ∪Eds where Eds is the set of all
edges between two distinct vertices u ∈ V (G) and v′ ∈ V (G′) that satisfy the condition d(u, v) ∈ Ds in
G.

2. Main Results

We recall the following results related to the double domination number of a graph.

Theorem 2.1. [10] Let G be a graph with no isolated vertices. Then 2 ≤ γ×2(G) ≤ n.

Theorem 2.2. [10] If G is any graph without isolated vertices, then γ(G) ≤ γ×2(G)− 1.

Theorem 2.3. [5, 10, 12]

a) If G ∼= Pn is a path graph for n ≥ 2, then γ×2 (Pn) =
[
2n+2

3

]
b) If G ∼= Cn is a cycle graph for n ≥ 3, then γ×2 (Cn) =

⌈
2n
3

⌉
c) If G ∼= K1,m is a star graph for m > 1, γ×2 (K1,m) = m+ 1.

Observation 2.4. [9] Each DD − set generated for any graph must contain all leaves and support vertices of
the graph.

We begin our results with the some distance shadow graphs.

Theorem 2.5. If G ∼= Pn for n ≥ 8, then

γ×2 (Dsd (G, {2})) =



⌈
4(n+ 1)

5

⌉
, n ≡ 3, 4 (mod 5)⌈

4(n+ 1)

5

⌉
+ 1 , n ≡ 0 , 2 (mod 5)⌈

4(n+ 1)

5

⌉
+ 2 , n ≡ 1 (mod 5)
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Proof. Consider two copies of G, one G itself and the other denoted by G′. Let V1 = {1, 2, . . . , n} be the
vertices of G and let V2 = {n+ 1, n+ 2, . . . , 2n} be the vertices of G′. We first establish upper bounds on
γ×2 (Dsd (G, {2})). Let

D1 =
⌊n

5 ⌋−1⋃
i=0

{(5i+ 2) , (5i+ 3)}, D2 =
⌊n

5 ⌋−1⋃
i=0

{(n+ 5i+ 2) , (n+ 5i+ 3)} and D = D1 ∪D2.

If n ≡ 0 (mod 5), let S = D ∪ {(n− 1) , (2n− 1)}. If n ≡ i (mod 5) where i ∈ {1, 2, 3, 4}, let S =

D ∪ {(n− 1) , (n− 2) , (2n− 1) , (2n− 2)}. In all cases, the set S is a DD − set of Dsd (G, {2}). Further
if n ≡ 0, 2 (mod 5), then |S| =

⌈
4(n+1)

5

⌉
+ 1, while if n ≡ 1 (mod 5), then |S| =

⌈
4(n+1)

5

⌉
+ 2. Finally,

if n ≡ 3, 4 (mod 5), then |S| =
⌈
4(n+1)

5

⌉
. Hence, γ×2 (Dsd (G, {2})) ≤

⌈
4(n+1)

5

⌉
if n ≡ 3, 4 (mod 5),

γ×2 (Dsd (G, {2})) ≤
⌈
4(n+1)

5

⌉
+ 1 if n ≡ 0, 2 (mod 5) and γ×2 (Dsd (G, {2})) ≤

⌈
4(n+1)

5

⌉
+ 2 if n ≡

1 (mod 5).
Now let’s prove the lower bounds on γ×2 (Dsd (G, {2})). Let’s assume that the set

X = {u1, u2, . . . , ui, . . . , um, um+1, . . . , uj , . . . , ux} is a γ×2 − set. Here; ui and uj are any two positive
integers such that u1 < u2 < · · · < ui < · · · < um < um+1 < · · · < uj < · · · < ux , where 1 ≤ ui ≤ n

i ∈ {1, 2, . . . ,m} and n+ 1 ≤ uj ≤ 2n j ∈ {n+ 1, . . . , x}. We have ft = ut+2 − ut for t ∈ {1, 2, . . . , x− 2}
and t ̸= m− 1. To show the inverse of the inequality, we need to show that ft ≤ 5.

Suppose ft ≥ 6 for at least one value of x. Without loss of generality, assume that ft = 6. In accordance
with this claim; the following sets are obtained.

D1
′ = {2, 3, 8, 9} ∪


⌈n−12

5 ⌉−1⋃
i=0

{(5i+ 13) , (5i+ 14)}

 and

D2
′ = {(n+ 2) , (n+ 3) , (n+ 4) , (n+ 8) , (n+ 9) , (n+ 10)}∪


⌈n−12

5 ⌉−1⋃
i=0

{(n+ 5i+ 13) , (n+ 5i+ 14)}


In this case, X = D1

′ ∪ D2
′ and |X| = 10 + 4

⌈
n−12

5

⌉
. If n ≡ 3 (mod 5) , then |X| = 10 + 4

(
n−8
5

)
=

4n+18
5 . However, this value contradicts the upper value we found earlier as |S| = 4n+8

5 for n ≡ 3 (mod 5). A
similar situation can easily be seen that the values obtained for n ≡ 0, 1, 2, 4 (mod 5) according to the X set
contradict the upper limits we obtained earlier. For all values of n according to mod 5, it is easily seen that
u1 + u2 + um+1 + um+2 = 2n+ 10 since u1 = 2 , u2 = 3 , um+1 = n+ 2 and um+2 = n+ 3.

If n ≡ 0 (mod 5), then
m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 ≤ 5 (x− 6) + 4. Thus, we get

m−3∑
t1=1

ft1 +

x−3∑
t2=m+1

ft2 = (um−1 + um−2 + ux−1 + ux−2) − (2n+ 10) + fm−2 + fx−2. For n ≡ 0 (mod 5), um−1 =

n− 2 , um−2 = n− 3 , ux−1 = 2n− 2 and ux−2 = 2n− 3 , fm−2 = fx−2 = 2. So, we have 6n− 10− 2n−
10 + 4 ≤ 5x− 30 + 4 and x ≥

⌈
4n+10

5

⌉
. In this case, |X| = x ≥

⌈
4n+10

5

⌉
=

⌈
4(n+1)

5

⌉
+ 1. This implies

that γ×2 (Dsd (G, {2})) ≥
⌈
4(n+1)

5

⌉
+ 1.

If n ≡ 1 (mod 5), then
m−4∑
t1=1

ft1 +
x−4∑

t2=m+1
ft2 + fm−3 + fm−2 + fx−3 + fx−2 ≤ 5 (x− 8) + 8. Thus, we

get
m−4∑
t1=1

ft1 +
x−4∑

t2=m+1
fx2 = (um−2 + um−3 + ux−2 + ux−3) − (2n+ 10) + fm−3 + fm−2 + fx−3 + fx−2.

For n ≡ 1 (mod 5), um−2 = n − 3, um−3 = n − 4 , ux−2 = 2n − 3, ux−3 = 2n − 4 and fm−3 = fm−2 =

fx−3 = fx−2 = 2. So, we have 6n− 14− 2n− 10 ≤ 5x− 40 and x ≥
⌈
4n+16

5

⌉
. In this case, |X| = x ≥⌈

4n+16
5

⌉
=

⌈
4(n+1)

5

⌉
+ 2. This implies that γ×2 (Dsd (G, {2})) ≥

⌈
4(n+1)

5

⌉
+ 2.
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If n ≡ 2 (mod 5), then
m−4∑
t1=1

ft1 +
x−4∑

t2=m+1
ft2 + fm−3 + fm−2 + fx−3 + fx−2 ≤ 5 (x− 8) + 16. Thus, we

get
m−4∑
t1=1

ft1 +
x−4∑

t2=m+1
ft2 = (um−2 + um−3 + ux−2 + ux−3)− (2n+ 10)+ fm−3 + fm−2 + fx−3 + fx−2. For

n ≡ 2 (mod 5), um−2 = n− 4, um−3 = n− 5, ux−2 = 2n− 4, ux−3 = 2n− 5 and fm−3 = fm−2 =fx−3 =

fx−2 = 4. So, we have 6n − 18 − 2n − 10 ≤ 5x − 40 and x ≥
⌈
4n+12

5

⌉
=

⌈
4(n+1)

5

⌉
+ 1. In this case,

|X| = x ≥
⌈
4n+12

5

⌉
=

⌈
4(n+1)

5

⌉
+ 1. This implies that γ×2 (Dsd (G, {2})) ≥

⌈
4(n+1)

5

⌉
+ 1.

If n ≡ 3 (mod 5), then
m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 ≤ 5 (x− 4). Thus, we get

m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 = (um + um−1 + ux + ux−1) − (2n+ 10). For n ≡ 3 (mod 5),

um = n, um−1 = n − 1, and ux = 2n, ux−1 = 2n − 1. So, we have 6n − 2 − 2n − 10 ≤ 5x − 20 and
x ≥

⌈
4n+8

5

⌉
. In this case, |X| = x ≥

⌈
4n+8

5

⌉
=

⌈
4(n+1)

5

⌉
. This implies that

γ×2 (Dsd (G, {2})) ≥
⌈
4(n+1)

5

⌉
.

If n ≡ 4 (mod 5), then
m−2∑
t1=1

fx1
+

x−2∑
t2=m+1

ft2 ≤ 5 (x− 4). Thus, we get

m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 = (um + um−1 + ux + ux−1) − (2n+ 10). For n ≡ 4 (mod 5),

um = n− 1, um−1 = n− 2, ux = 2n− 1 and ux−1 = 2n− 2 So, we have 6n− 6− 2n− 10 ≤ 5x− 20 and
x ≥

⌈
4n+4

5

⌉
. In this case, |X| = x ≥

⌈
4n+4

5

⌉
=

⌈
4(n+1)

5

⌉
. This implies that

γ×2 (Dsd (G, {2})) ≥
⌈
4(n+1)

5

⌉
. Thus, the desired equality is obtained as a result of the lower and upper

bounds on γ×2 (Dsd (G, {2})) .
This completes the proof.

■

Theorem 2.6. If G ∼= Cn for n ≥ 11, then

γ×2 (Dsd (G, {2})) =



⌈
4n

5

⌉
, n ≡ 0, 4 (mod 5)⌈

4n

5

⌉
+ 1 , n ≡ 1, 3 (mod 5)⌈

4n

5

⌉
+ 2 , n ≡ 2 (mod 5)

Proof. Let the vertices of the Dsd (G, {2}) graph be divided into two sets of V (Dsd (G, {2})) = V1 ∪ V2

where V1 = {1, 2, . . . , n} and V2 = {n+ 1, n+ 2, . . . , 2n}.We first establish upper bounds on
γ×2 (Dsd (G, {2})). Let

D1 = {1, n} ∪


⌈n−6

5 ⌉−1⋃
i=0

{(5i+ 5) , (5i+ 6)}

 ,

D2 = {(n+ 1) , (2n)} ∪

⌈n−6
5 ⌉−1⋃
i=0

{(n+ 5i+ 5) , (n+ 5i+ 6)}

 and D = D1 ∪D2.

If n ≡ 1 (mod 5), let S = D ∪ {(n− 1) , (2n− 1)}, in other cases S = D. In all cases, the set S is a DD − set

of Dsd (G, {2}). Further if n ≡ 0, 4 (mod 5), then |S| =
⌈
4n
5

⌉
, while if n ≡ 1, 3 (mod 5), then |S| =

⌈
4n
5

⌉
+ 1.
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Finally, if n ≡ 2 (mod 5), then |S| =
⌈
4n
5

⌉
+ 2. Hence, γ×2 (Dsd (G, {2})) ≤

⌈
4n
5

⌉
if n ≡ 0, 4 (mod 5),

γ×2 (Dsd (G, {2})) ≤
⌈
4n
5

⌉
+ 1 if n ≡ 1, 3 (mod 5) and γ×2 (Dsd (G, {2})) ≤

⌈
4n
5

⌉
+ 2 if n ≡ 2 (mod 5).

Now let’s prove the lower bounds on γ×2 (Dsd (G, {2})). Let’s assume that the set
X = {u1, u2, . . . , ui, . . . , um, um+1, . . . , uj , . . . , ux} is a γ×2 − set. Here; ui and uj are any two positive
integers such that u1 < u2 < · · · < ui < · · · < um < um+1 < · · · < uj < · · · < ux , where 1 ≤ ui ≤ n

i ∈ {1, 2, . . . ,m} and n + 1 ≤ uj ≤ 2n j ∈ {n+ 1, . . . , x}. We have ft = ut+2 − ut for
t ∈ {1, 2, . . . , x− 2}and t ̸= m− 1. To show the inverse of the inequality, we need to show that ft ≤ 5.
Suppose ft ≥ 6 for at least one value of t. Without loss of generality, assume thatft = 6. In accordance with
this claim; the following sets are obtained.

D1
′ = {1 , n} ∪

⌈n−7
5 ⌉−1⋃
i=0

{(5i+ 6) , (5i+ 7)}

 and

D2
′ = {(n+ 1) , (n+ 2) , (n+ 5) , (2n)} ∪

⌈n−7
5 ⌉−1⋃
i=0

{(n+ 5i+ 6) , (n+ 5i+ 7)}

.

In this case, X = D1
′ ∪ D2

′ and |X| = 6 + 4
⌈
n−7
5

⌉
. If n ≡ 0 (mod 5), then |X| = 6 + 4

(
n−5
5

)
= 4n+10

5 .
However, this value contradicts the upper value we found earlier as |S| = 4n

5 for n ≡ 0 ( mod 5). A similar
situation can easily be seen that the values obtained for n ≡ i (mod 5), i ∈ {1, 2, 3, 4} according to the X set
contradict the upper limits we obtained earlier. This contradicts our claim. Thus, it must befx ≤ 5. In this case,

we have
m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 ≤ 5 (x− 4). Furthermore, for all values of n according to mod 5, it is easily

seen that u1 + u2 + um+1 + um+2 = 2n+ 13 since u1 = 1 , u2 = 6 , um+1 = n+ 1 and um+2 = n+ 5.

If n ≡ 0 (mod 5), then
m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 ≤ 5 (x− 6) + 8. Thus, we get

m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 = (um−1 + um−2 + ux−1 + ux−2) − (2n+ 13) + fm−2 + fx−2. For

n ≡ 0 (mod 5), um−1 = n− 4 , um−2 = n− 5 , ux−1 = 2n− 4, and ux−2 = 2n− 5 , fm−2 = fx−2 = 4. So,
we have 6n− 18− 2n− 13 ≤ 5(x− 6) and x ≥

⌈
4n−1

5

⌉
. In this case, |X| = x ≥

⌈
4n−1

5

⌉
=

⌈
4n
5

⌉
. This

implies that γ×2 (Dsd (G, {2})) ≥
⌈
4n
5

⌉
.

If n ≡ 1 (mod 5), then
m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 ≤ 5 (x− 4). Thus, we get

m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 =

(um + um−1 + ux + ux−1) − (2n+ 13). For n ≡ 1 (mod 5), um = n , um−1 = n − 1 , ux = 2n and
ux−1 = 2n − 1. So, we have 6n − 2 − 2n − 13 ≤ 5x − 20 and x ≥

⌈
4n+5

5

⌉
=

⌈
4n
5

⌉
+ 1. In this case,

|X| = x ≥
⌈
4n
5

⌉
+ 1. This implies that γ×2 (Dsd (G, {2})) ≥

⌈
4n
5

⌉
+ 1.

If n ≡ 2 (mod 5), then
m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 ≤ 5 (x− 6) + 4. Thus, we get

m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 = (um−1 + um−2 + ux−1 + ux−2) + fm−2 + fx−2 − (2n+ 13). For

n ≡ 2 (mod 5), um−1 = n − 1 , um−2 = n − 2 , ux−1 = 2n − 1 , ux−2 = 2n − 2. So, we have
6n − 6 − 2n − 13 ≤ 5 (x− 6) and x ≥

⌈
4n+12

5

⌉
=

⌈
4n
5

⌉
+ 2. In this case, |X| = x ≥

⌈
4n
5

⌉
+ 2. This

implies that γ×2 (Dsd (G, {2})) ≥
⌈
4n
5

⌉
+ 2.

If n ≡ 3 (mod 5), then
m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 ≤ 5 (x− 6) + 6. Thus, we get

m−3∑
t1=1

ft1+

x−3∑
t2=m+1

ft2 + fm−2 + fx−2 = (um−1 + um−2 + ux−1 + ux−2) − (2n+ 13) + fm−2 + fx−2. For

n ≡ 3 (mod 5), um−1 = n− 2 , um−2 = n− 3 , ux−1 = 2n− 2 , ux−2 = 2n− 3 and fm−2 = fx−2 = 3. So,
we have 6n− 10− 2n− 13 ≤ 5 (x− 6) and x ≥

⌈
4n+7

5

⌉
=

⌈
4n
5

⌉
+1. In this case, |X| = x ≥

⌈
4n
5

⌉
+1.

This implies that γ×2 (Dsd (G, {2})) ≥
⌈
4n
5

⌉
+ 1.
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If n ≡ 4 (mod 5), then
m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 ≤ 5 (x− 6) + 8. Thus, we get

m−3∑
t1=1

ft1+
x−3∑

t2=m+1
ft2 + fm−2 + fx−2= (um−1 + um−2 + ux−1 + ux−2) − (2n+ 13) + fm−2 + fx−2. For

n ≡ 4 (mod 5), um−1 = n− 3, um−2 = n− 4, ux−1 = 2n− 3, ux−2 = 2n− 4 and fm−2 = fx−2 = 4. So, we
have 6n − 14 − 2n − 13 ≤ 5 (x− 6) and x ≥

⌈
4n+3

5

⌉
=

⌈
4n
5

⌉
. In this case, |X| = x ≥

⌈
4n
5

⌉
. This

implies that γ×2 (Dsd (G, {2})) ≥
⌈
4n
5

⌉
.

Thus, the desired equality is obtained as a result of the lower and upper bounds on γ×2 (Dsd (G, {2})) .
This completes the proof.

■

Theorem 2.7. For m ≥ 1 and n ≥ 2, let G ∼= Km,n be a bipartite complete graph with (m+ n)-vertices. Then,
the double dominance number of the graph (Dsd(G, {2}) is γ×2 (Dsd(G, {2})) = 4.

Proof. Let the vertices of the Dsd (G, {2}) graph be divided into four sets of V (Dsd (G, {2})) = V1∪V2∪V ′
1 ∪

V ′
2 , where V1 = {v1, v2, . . . , vm}, V2 = {v1, v2, . . . , vn}, V ′

1 = {v′1, v′2, . . . , v′m} and V ′
2 = {v′1, v′2, . . . , v′n}.

We first establish upper bounds on γ×2 (Dsd (G, {2})). If S = {v1, v1, v′1, v′1}, then the set S is the DD − set

of the graph Dsd (G, {2}). Thus, γ×2 (Dsd (G, {2})) ≤ 4.
For the lower bound, let the set T be the γ×2 (Dsd (G, {2}))−set. Assume that |T | = 3. This requires that every
vertex in T has at least one neighbor still in T . Taking into account that V1

∼= V ′
1and V2

∼= V ′
2 , the following

cases are obtained.

Case 1. Let ui ∈ V1 , vj ∈ V2 , v′t ∈ V ′
2 . Assume that T = {ui, vj , v

′
t} i ∈ {1, . . . ,m} , j, t ∈ {1, . . . , n}

and j ̸= t. However, in this case, there will be vertices in the graph Dsd (G, {2}) that are not double
dominated.

Case 2. Let ui, uj ∈ V1 , u′
t ∈ V ′

1 . Assume that T = {ui, uj , u
′
t} i, j, t ∈ {1, . . . ,m} and i ̸= j ̸= t. However,

in this case, there will be vertices in the graph Dsd (G, {2}) that are not double dominated.

Case 3. Let vi, vj ∈ V2 , v′t ∈ V ′
2 . Assume that T = {vi, vj , v′t} i, j, t ∈ {1, . . . , n} and i ̸= j ̸= t. However,

in this case, there will be vertices in the graph Dsd (G, {2}) that are not double dominated.

Case 4. Let ui ∈ V1 , u′
j ∈ V ′

1 , v′t ∈ V ′
2 . Assume that T =

{
ui, u

′
j , v

′
t

}
i, j ∈ {1, . . . ,m} , t ∈ {1, . . . , n}

and i ̸= j. However, in this case, there will be vertices in the graph Dsd (G, {2}) that are not double
dominated.

Case 5. Let vj ∈ V2 , v′t ∈ V ′
2 , ui ∈ V ′

1 . Assume that T = {vj , v′t, ui} j, t ∈ {1, . . . , n}, i ∈ {1, . . . ,m}
and j ̸= t. However, in this case, there will be vertices in the graph Dsd (G, {2}) that are not double
dominated.

Case 6. Let ui ∈ V1 , vj ∈ V2 , u′
t ∈ V ′

1 . Assume that T = {ui, vj , u
′
t} i, t ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

and i ̸= t. However, in this case, there will be vertices in the graph Dsd (G, {2}) that are not double
dominated.

In all cases, some vertices of the graph cannot be double dominated. Thus, we get γ×2 (Dsd (G, {2})) =

|T | ≥ 4. Thus, the desired equality is obtained as a result of the lower and upper bounds on γ×2 (Dsd (G, {2})) .
This completes the proof.

■

Corollary 2.8. Let G ∼= S1,n be a star graph with (n+ 1)-vertices. Then, the double dominance number of the
graph (Dsd(G, {2}) is γ×2 (Dsd(G, {2})) = 4.
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Proof. If m = 1 and n ≥ 2, then Km,n
∼= K1,n. Thus, the proof of the result is easily seen from Theorem

2.7. ■

Theorem 2.9. Let G ∼= W1,n be a wheel graph with (n + 1)-vertices. Then, the double dominance number of
the graph (Dsd(G, {2}) is γ×2 (Dsd(G, {2})) = 4.

Proof. Let the vertices of the Dsd (G, {2}) graph be divided into two sets of V (Dsd (G, {2})) = V (G)∪V (G′),
where V (G) = {c1, u1, . . . , un} and V (G′) = {c′1, u′

1, . . . , u
′
n}. Let c1 be the central vertex of the graph G.

We first establish upper bounds on γ×2 (Dsd (G, {2})). If S = {c1, u1, c
′
1, u

′
1}, then the set S is the DD − set

of the graph Dsd (G, {2}). Thus, γ×2 (Dsd (G, {2})) ≤ 4.
To complete the proof, we need to prove the lower bound. Let the set T be the γ×2 (Dsd (G, {2})) − set.

Assume that |T | = 3. For double dominating of vertices in T , at least one neighbor of each vertices must be in
T . Thus, we have the following states.

Case 1. Let every vertex in T be at V (G). Since deg (c1) = n, one of the vertices must be c1 ( or every vertex
in T be at V (G′)). However, in this case, there will be vertices in the graph Dsd (G, {2}) that are not
double dominated.

Case 2. Let two vertices in T be at V (G) and the other at V (G′). Since deg (c1) = n, one of the vertices must
be c1 (or two vertices in T be at V (G′)and the other at V (G)). However, in this case, there will be
vertices in the graph Dsd (G, {2}) that are not double dominated.

In all cases, some vertices of the graph cannot be double dominated. Thus, we get γ×2 (Dsd (G, {2})) =

|T | ≥ 4. The desired bounds are obtained as a result of the upper bounds on γ×2 (Dsd (G, {2})) that were
established earlier.

This completes the proof. ■

Theorem 2.10. If G ∼= Pn for n ≥ 10, then

γ×2 (Dsd (G, {3})) =


⌈
4n+ 8

5

⌉
+ 1 , n ≡ 1 (mod 5)⌈

4n+ 8

5

⌉
, otherwise

Proof. We first establish upper bounds on γ×2 (Dsd (G, {3})). We have deg (u1) = deg (un) = deg (un+1) =

deg (u2n) = 2, deg (ui) = 2, i ∈ {2, 3, n− 1, n− 2, n+ 2, n+ 3, 2n− 1, 2n− 2} and deg (uj) = 4 , j ∈
{4 , . . . , n− 3 , n+ 4 , 2n− 3}. Let the set D be a DD− set of the graph Dsd (G, {3}). Therefore, in order
to double dominate the vertex u1, it must have neighbors as well. Similarly, this is valid for the vertex un+1. So,
{u2, u4, un+2, un+4} ∈ D. In order for the vertices in D to be double dominated, u5 and its duplicate, un+5,
must be added to S. In this case the vertices u6 , u7 and similarly the vertices un+6 , un+7 that are copies of
these peaks are double dominated by the set D. For double dominating of the vertices u6 and u7, the vertices
un+9 , un+10 are added to D since D is a DD − set. Add the vertices u9 , u10 for un+6 and un+7. Continuing
in this way, upper limits on γ×2 (Dsd (G, {3})) are obtained. Let

D =

⌊n
5 ⌋−1⋃
i=0

{u5i+4 , u5i+5 , un+5i+4 , un+5i+5} ∪ {u2 , un+2}.

If n ≡ 0 (mod 5 ), let S = D. If n ≡ 1, 2, 3 (mod 5), let S = D ∪ {un, u2n}. Otherwise, n ≡ 4 (mod 5 ),
S = D ∪ {un, un−1, u2n, u2n−1}. In all cases, the set S is a DD − set of Dsd (G, {3}). Further if
n ≡ 1 (mod 5 ), then |S| =

⌈
4n+8

5

⌉
+ 1, while if n ̸= 1 (mod 5), then |S| =

⌈
4n+8

5

⌉
. Hence,

γ×2 (Dsd (G, {3})) ≤
⌈
4n+8

5

⌉
+ 1 if n ≡ 1 (mod 5 ) and otherwiseγ×2 (Dsd (G, {3})) ≤

⌈
4n+8

5

⌉
+ 1.
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Now let’s prove the lower bounds on γ×2 (Dsd (G, {3})). Let’s assume that the set
X = {u1, u2, . . . , ui, . . . , um, um+1, . . . , uj , . . . , ux} is a γ×2 − set. Here; ui and uj are any two positive
integers such that u1 < u2 < . . . < ui < . . . < um < um+1 < . . . < uj < . . . < ux , where 1 ≤ ui ≤ n

i ∈ {1, 2, . . . ,m} and n + 1 ≤ uj ≤ 2n j ∈ {n+ 1, . . . , x}. We have ft = ut+2 − ut for
t ∈ {1, 2, . . . , x− 2} and t ̸= m− 1, m. To show the inverse of the inequality, we need to show that ft ≤ 5.
Suppose ft ≥ 6 for at least one value of t. Without loss of generality, assume thatft = 6. In accordance with
this claim; the following sets are obtained.

D′ = {2, 4, 5, (n+ 2) , (n+ 4) , (n+ 6) , (n+ 9)}∪
⌈n−9

5 ⌉−1⋃
i=0

{(5i+ 10) , (5i+ 11) , (n+ 5i+ 10) , (n+ 5i+ 11)}


In this case, X = D′ and |X| = 8 + 4

⌈
n−9
5

⌉
. If n ≡ 0 (mod 5), then |X| = 8 + 4

(
n−5
5

)
= 4n+20

5 .
However, this value contradicts the upper value we found earlier as |S| = 4n+10

5 for n ≡ 0 (mod 5). A similar
situation can easily be seen that the values obtained for n ≡ i (mod 5), i ∈ { 1, 2, 3, 4 } according to the X

set contradict the upper limits we obtained earlier. This contradicts our claim. It must be ft ≤ 5. So, we have
m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 ≤ 5 (x− 4). For all values of n according to mod 5, it is easily seen that u1 + u2 + um +

um+1 = 2n+ 12 since u1 = 2 , u2 = 4 , um = n+ 2 , um+1 = n+ 4.

If n ≡ 0 (mod 5), then
m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 = (um + um−1 + ux + ux−1) − (2n+ 12). For n ≡ 0 (mod 5),

um = n , um−1 = n − 1 , ux = 2n and ux−1 = 2n − 1. So, we have 6n − 2 − 2n − 12 ≤ 5 (x− 4) and
x ≥

⌈
4n+6

5

⌉
. In this case, |X| = x ≥

⌈
4n+6

5

⌉
=

⌈
4n+8

5

⌉
. This implies that γ×2 (Dsd (G, {3})) ≥

⌈
4n+8

5

⌉
.

If n ≡ 1, 2, 3, 4 (mod 5), then
m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 ≤ 5 (x− 6) + fm−2 + fx−2. Moreover,

m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 = (um−2 + um−1 + ux−2 + ux−1)− (2n+ 12) + fm−2 + fx−2.

If n ≡ 1 (mod 5), then we have 4n − 18 ≤ 5 (x− 6) and x ≥
⌈
4n+12

5

⌉
since um−2 = n − 2 , um−1 = n −

1 , ux−2 = 2n−2 , ux−1 = 2n−1 and fm−2 = fx−2 = 2. In this case, |X| = x ≥
⌈
4n+12

5

⌉
=

⌈
4n+8

5

⌉
+1.

This implies that γ×2 (Dsd (G, {3})) ≥
⌈
4n+8

5

⌉
+ 1.

If n ≡ 2 (mod 5), then we have 6n− 10− 2n− 12 ≤ 5 (x− 6) and x ≥
⌈
4n+8

5

⌉
since um−2 = n− 3 , um−1 =

n−2 , ux−2 = 2n−3 , ux−1 = 2n−2 and fm−2 = fx−2 = 3. In this case, |X| = x ≥
⌈
4n+8

5

⌉
. This implies

that γ×2 (Dsd (G, {3})) ≥
⌈
4n+8

5

⌉
.

If n ≡ 3 (mod 5), then we have 6n− 14− 2n− 12 ≤ 5 (x− 6) and x ≥
⌈
4n+4

5

⌉
since um−2 = n− 4 , um−1 =

n− 3 , ux−2 = 2n− 4 , ux−1 = 2n− 3 and fm−2 = fx−2 = 4. In this case, |X| = x ≥
⌈
4n+5

5

⌉
=

⌈
4n+8

5

⌉
.

This implies that γ×2 (Dsd (G, {3})) ≥
⌈
4n+8

5

⌉
.

If n ≡ 4 (mod 5), then

m−4∑
t1=1

ft1 +

x−4∑
t2=m+1

ft2 + fm−3 + fm−2 + fx−3 + fx−2

≤ 5 (x− 8) + fm−3 + fm−2+fx−3 + fx−2

Moreover,
m−4∑
t1=1

ft1 +
x−4∑

t2=m+1
ft2 = (um−2 + um−3 + ux−2 + ux−3) − (2n+ 12). For n ≡ 4 (mod 5), we

have 6n − 18 − 2n − 12 ≤ 5x − 40 and x ≥
⌈
4n+10

5

⌉
since um−2 = n − 4, um−3 = n − 5, ux−2 = 2n − 4,
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ux−3 = 2n − 5 and fm−3 = fm−2 = fx−3 = fx−2 = 4. In this case, |X| = x ≥
⌈
4n+10

5

⌉
=

⌈
4n+8

5

⌉
. This

implies that γ×2 (Dsd (G, {3})) ≥
⌈
4n+8

5

⌉
.

Thus, the desired equality is obtained as a result of the lower and upper bounds on γ×2 (Dsd (G, {3})).
This completes the proof. ■

Theorem 2.11. If G ∼= Cn for n ≥ 10, then

γ×2 (Dsd (G, {3})) =



⌈
4n+ 10

5

⌉
− 1 , n ≡ 1 (mod 5)⌈

4n+ 10

5

⌉
+ 1 , n ≡ 3 (mod 5)⌈

4n+ 10

5

⌉
, otherwise

Proof. Let the vertices of the Dsd (G, {3}) graph be divided into two sets of V (Dsd (G, {3})) = V1 ∪ V2

whereV1 = {1, 2, . . . , n} and V2 = {n+ 1, n+ 2, . . . , 2n}. We first establish upper bounds on
γ×2 (Dsd (G, {3})). Let

D1 = {n, (n− 1) , (n− 2)} ∪


⌈n−7

5 ⌉−1⋃
i=0

{(5i+ 4) , (5i+ 5)}

 ,

D2 = {2n , 2n− 1 , 2n− 2} ∪

⌈n−7
5 ⌉−1⋃
i=0

{(n+ 5i+ 4) , (n+ 5i+ 5)}

 and D = D1 ∪D2.

If n ≡ 0, 1, 3, 4 (mod 5), let S = D. If n ≡ 2 (mod 5), let S = D ∪ {n− 3 , 2n− 3}. Otherwise,
n ≡ 4 (mod 5), S = D ∪ {un, un−1, u2n, u2n−1}. In all cases, the set S is a DD − set of Dsd (G, {3}).
Further if n ≡ 1 (mod 5), then |S| =

⌈
4n+10

5

⌉
− 1, while if n ≡ 3 (mod 5), then |S| =

⌈
4n+10

5

⌉
+ 1 and

otherwise |S| =
⌈
4n+10

5

⌉
. Hence, γ×2 (Dsd (G, {3})) ≤

⌈
4n+10

5

⌉
− 1 if n ≡ 1 (mod 5), γ×2 (Dsd (G, {3})) ≤⌈

4n+10
5

⌉
+ 1 if n ≡ 3 (mod 5) and otherwise γ×2 (Dsd (G, {3})) ≤

⌈
4n+10

5

⌉
.

Now let’s prove the lower bounds on γ×2 (Dsd (G, {3})). Let’s assume that the set
X = {u1, u2, . . . , ui, . . . , um, um+1, . . . , uj , . . . , ux} is a γ×2 − set. Here; ui and uj are any two positive
integers such that u1 < u2 < . . . < ui < . . . < um < um+1 < . . . < uj < . . . < ux , where 1 ≤ ui ≤ n

i ∈ {1, 2, . . . ,m} and n+1 ≤ uj ≤ 2n j ∈ {n+ 1, . . . , x}. We have ft = ut+2−ut for t ∈ {1, 2, . . . , x− 2}
and t ̸= m , m− 1 , m− 2. To show the inverse of the inequality, we need to show that ft ≤ 5.
Suppose ft ≥ 6 for at least one value of t. Without loss of generality, assume thatft = 6. In accordance with
this claim; the following sets are obtained. Let

D′ = {n, (n− 1) , (n− 2) , 2n, 2n− 1, 2n− 2}∪
⌈n−7

6 ⌉−1⋃
i=0

{(6i+ 4) , (6i+ 5) , (n+ 6i+ 4) , (n+ 6i+ 5)}


However, the vertices (6i+ 6) , (n+ 6i+ 6) cannot be double dominated with this set. In this case, some

vertices must be added to the set D′. This contradicts the upper bound we found earlier. Hence, it must be ft ≤ 5.
So, we get

m−5∑
t1=1

ft1 +

x−5∑
t2=m+1

ft2 + fm−4 + fm−3 + fm−2 + fx−4+ fx−3 + fx−2

≤ 5 (x− 10) + fm−4 + fm−3 + fm−2 + fx−4 + fx−3 + fx−2.
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Also, the right-hand side of the inequality is equal to (um−4 +um−3 +ux−4 +ux−3) +fm−4 +fm−3 +fm−2

+fx−4 +fx−3 +fx−2. For all values of n according to mod 5, it is easily seen that u1 + u2 + um+1 + um+2 =

2n+ 18 since u1 = 4 , u2 = 5 , um+1 = n+ 4 , um+2 = n+ 5.
For n ≡ 0 (mod 5), we have 6n − 22 − 2n − 18 ≤ 5x − 50 and x ≥

⌈
4n+10

5

⌉
since um−4 = n − 6 ,

um−3 = n− 5 , ux−4 = 2n− 6 , ux−3 = 2n− 5 and fm−4 = fx−4 = fm−3 = fx−3 = 4, fm−2 = fx−2 = 2.
In this case, |X| = x ≥

⌈
4n+10

5

⌉
. This implies that γ×2 (Dsd (G, {3})) ≥

⌈
4n+10

5

⌉
.

For n ≡ 1 (mod 5), we have 6n − 26 − 2n − 18 ≤ 5 (x− 10) and x ≥
⌈
4n+6
10

⌉
since um−4 = n − 7 ,

um−3 = n− 6 , ux−4 = 2n− 7 , ux−3 = 2n− 6 and fm−4 = fx−4 = fm−3 = fx−3 = 3, fm−2 = fx−2 = 2.
In this case, |X| = x ≥

⌈
4n+6
10

⌉
=

⌈
4n+10

6

⌉
− 1. This implies that γ×2 (Dsd (G, {3})) ≥

⌈
4n+10

5

⌉
+ 1.

If n ≡ 2 (mod 5) , then
m−4∑
t1=1

ft1 +
x−4∑

t2=m+1
ft2 + fm−3 + fm−2 + fx−3 + fx−2 ≤ 5 (x− 8) + fm−3 + fm−2

+fx−3 + fx−2. For n ≡ 2 (mod 5), fm−3 = fm−2 = fx−3 = fx−2 = 2 . Then, we have
m−4∑
t1=1

ft1+
x−4∑

t2=m+1
ft2 +

28 =(um−3 + um−2 + ux−3 + ux−2) − (2n+ 18) + 8. Furthermore, we get 6n − 10 − 2n −18 ≤ 5x − 40

and x ≥
⌈
4n+12

5

⌉
since um−3 = n − 3, um−2 = n − 2, ux−3 = 2n − 3 ux−2 = 2n − 2. In this case,

|X| = x ≥
⌈
4n+12

5

⌉
=

⌈
4n+10

5

⌉
. This implies that γ×2 (Dsd (G, {3})) ≥

⌈
4n+10

5

⌉
.

If n ≡ 3 (mod 5), then the formula in n ≡ 0, 1 (mod 5) is valid. For n ≡ 3 (mod 5), we have 6n−14−2n−18 ≤
5 (x− 10) and x ≥

⌈
4n+18

5

⌉
since um−4 = n − 4, um−3 = n − 3, ux−4 = 2n − 4, ux−3 = 2n − 3 and

fm−4 = fm−3 = fm−2 = fx−4 = fx−3 = fx−2 = 2. In this case, |X| = x ≥
⌈
4n+18

5

⌉
=

⌈
4n+10

5

⌉
+ 1.

This implies that γ×2 (Dsd (G, {3})) ≥
⌈
4n+10

5

⌉
+ 1.

If n ≡ 4 (mod 5), then the formula in n ≡ 0, 1, 3 (mod 5) is valid. For n ≡ 4 (mod 5), we have 6n− 18− 2n−
18 ≤ 5 (x− 10) and x ≥

⌈
4n+14

5

⌉
=

⌈
4n+10

5

⌉
since um−4 = n− 5, um−3 = n− 4, ux−4 = 2n− 5, ux−3 =

2n − 4 and fm−4 = fm−3 = fx−4 = fx−3 = 3 and fm−2 = fx−2 = 2. In this case, |X| = x ≥
⌈
4n+10

5

⌉
.

This implies that γ×2 (Dsd (G, {3})) ≥
⌈
4n+10

5

⌉
.

Thus, the desired equality is obtained as a result of the lower and upper bounds on γ×2 (Dsd (G, {3})).
This completes the proof. ■
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[6] C. ÇIFTÇI AND A. AYTAÇ, Porous exponential domination number of some graphs, Numer. Methods Partial
Differential Equations, 37(2021), 1385–1396, https://doi.org/10.1002/num.22585.

237
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