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Abstract. The purpose of this paper is to derive a viscous sedimentation model from the Navier-Stokes system for
incompressible flows with a free moving boundary. The derivation is based on the different properties of the fluids; thus, we
perform a multiscale analysis in space and time, and a different asymptotic analysis to derive a system coupling two different
models: the sediment transport equation for the lower layer and the shallow water model for the upper one. We finally prove
the existence of global weak solutions in time for model containing some additional terms.
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1. Introduction

Sediment transport models are used to model watercourse beds. They are bilayer models of two immiscible
layers that have a model of the shallow water in the first layer and Reynolds lubrication equation at the second
layer. In the literature, many works has been done on sediment transport, proposing models to stimulate
sediment transport by water. We can quote [6, 7, 22, 24].
Recently in [7], Fernandez and al. are derived a non-viscous sediment model. In their work, they are limited to a
first-order approximation for obtaining the model of shallow water which does not allow to obtain a viscous
model. To carry out our work we relied on the papers [6, 7, 19, 21].

From theoretical point of view, many studies have been done, particularly for the existence of global weak
solutions of shallow-water equations model. As an example, we refer to [5], where such results were given for
an isothemal model of compressible fluids with capillarity.

In [21], only the stability of weak solutions has been proved, since the construction of approximate weak
solutions which preserve the ’mathematical BD entropy’ seems to be an open problem. In the present work this
problem does not exist, as we do not need the multiplier |u|ku to get the ’BD entropy’.

In the analysis we propose in this work, our contribution is twofold. On the one hand, we propose a
constructive approach inspired by [7, 16] to arrive at a viscous sedimentation model. Our purpose is to study the
evolution of this system which consists of two layers of Newtonian viscous fluids with different properties. On
the other hand, our study is concerned with the existence of global weak solutions of a model similar to the one
we obtained. This is done in a bounded domain of R2 with periodic boundary conditions.

In our model we add some additional regularizing terms, namely

−κ∇ · (1 + h2

rh1
)∇(h1 +

1

r
h2), the cold pressure δh1∇h−α

1 and the interface tension κ̄h1∇∆2s+1h1 with

α, κ, κ̄ positive constants and α ̸= 0. Those terms are useful to bound h1 away form zero (see [3, 11, 24]).

Our paper is organized as follows. In the section 2, we did the formal derivation of the model. First of all
we write the equations in non-dimensional variables. Next, we perform the hydrostatic approximation and use
am asymptotic analysis to deduce the shallow water system for the upper layer. Also by an asymptotic analysis,
we deduce the transport equation for the lower layer. In addition in the section 3, we present our final model. To
finish, in Section 3 we study the existence of global weak solutions for a model similar to that obtained in Section
2. We start by giving the definition of global weak solutions, next we establish a classical energy equality and the
’mathematical BD entropy’, which entail some regularities on the unknowns. We also give an existence theorem
of global weak solutions.

2. Formal derivation

2.1. Physical domain and governing equations

This section is devoted to the formal derivation of the model. Thus, we consider a superposition of two immiscible
layers of different materials. The upper layer contains water and the lower layer is formed of sediment. Each
layer is governed by the incompressible three dimensional Navier Stokes equations. We consider a cartesian
coordinate system where x represents the horizontal 2D direction and z the vertical one. Taking into account the
different physical properties for each layer, we derive shallow water model for the upper layer and the Reynolds
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lubrification equation for the lower layer. Let us define the physical domain for the fluid and sediment by Ω1(t)

and Ω2(t) respectively; t being the time variable. Here, we suppose that the sediment domain is composed by a
one layer. We assume that the bottom is defined by the function b(x) and we denote by η(t, x) the interface. The
free surface is given by ξ(t, x). The global domain Ω(t) is defined as

Ω(t) = Ω1(t) ∪ Ω2(t) ∪ Γb(t) ∪ Γ1,2(t) ∪ Γs(t),

Ω1(t) = {(x, z) ∈ R3 : x ∈ ω, η(x, t) < z < ξ(x, t)},

Ω2(t) = {(x, z) ∈ R3 : x ∈ ω, b(x) < z < η(x, t)},

Γ1,2(t) = {(x, z) ∈ R3 : x ∈ ω, z = η(x, t)},

Γs(t) = {(x, z) ∈ R3 : x ∈ ω, z = ξ(x, t)},

and
Γb = {(x, z) ∈ R3 : x ∈ ω, z = b(x)}.

The domain Ω(t) ⊂ R3 is periodic. For each layer (i = 1, 2), we start from the 3D Navier-Stokes equations
for incompressible fluid and sediment components see [6, 7, 15]

div(Ui) = 0, (2.1a)

ρi∂t(Ui) + (ρiUi∇)Ui − div(σi) = −ρige⃗z, (2.1b)

where we denote by Ui =
t(ui, wi) the velocity field with ui = (ui, vi), σi the stress tensor associated to each

layer, ρi the density and g the gravitational vector with e⃗z =t (0, 0, 1).
If we rewrite the equation for each component of the velocity, the previous system is equivalent to the following
one:

divxui + ∂zwi = 0, (2.2a)

ρi∂tui + ρiui∇ui + ρiwi∂z(ui) +∇pi = 2νidiv(D(ui)) + νi∂
2
zui + νi∇x(∂zwi), (2.2b)

ρi∂twi + ρiui∇wi + ρiwi∂zwi = νi∆wi + 2νi∂
2
zwi + νi∂z(divui)− ∂zpi − ρig. (2.2c)

for i = 1, 2,
where ρi is the density, pi the pressure and g the gravity constant.Moreover µi and νi = µi/ρi, denote the
dynamic and kinematic viscosity coefficients respectively. We also introduce the ratio of the densites r,
respectively the stress tensor given by

r =
ρ1
ρ2

, σi(ui) = 2νiD(ui)− piId, where D(ui) =
∇ui +

t ∇ui

2
,

and Id is the identity matrix.
From now on, subscript 1 will correspond to the layer located on the top and subscript 2 to those located belox.
We denote by h1(t, x) = ξ(t, x)− b(x) the tichness of the layer 1 and by h2(t, x) = η(t, x)− b(x) the tichness
of the sediment layer. See Figure 1.
The system (2.2a)-(2.2c) is completed by the following boundaries conditions:
• At the free surface z = ξ(x, t) = b(x) + h2(x, t) + h1(x, t):

- The surface tension condition. Let Ns the unitary outward normal vector to the free surface and k the mean
curvature of the surface with k = −div(Ns). The surface tension is given by the equality

σ1Ns = −δkNs, (2.3)

where Ns =
1√

1 + |∇xξ|2

(
−∇xξ

1

)
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Figure 1: Sediment and water heights

and δ being a constant.

- The kinematic condition:
∂tξ = U1.Ns. (2.4)

• At the fluid/sediment interface, η(t, x) = b(x) + h2(x, t):

- The kinematic conditions corresponding to both velocities:

∂tη = U1.Nη = U2.Nη (2.5)

where Nη =
1√

1 + |∇xη|2

(
−∇xη

1

)
.

- The continuity of the normal component of the tensors:

(σ1Nη)n − (σ2Nη)n = (δηkηNη), (2.6)

where δη is the interfacial tension coefficient, kη = −divNη is the mean curvature of the interface.

- The friction law (Navier-slip boundary condition) at the fluid-sediment interface asserting that:

(σiNη)τ = fric(U1 − U2)τ . (2.7)

We note that the friction coefficient is denoted by c and the subscript τ is the tangential component of the
vector.
In the sequel we denote by fric(U1 − U2) = Cρ1(U1 − U2) the friction term between the two layers.
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• At the bottom, z = b(x):

- The no penetration condition:
U2.Nb = 0, (2.8)

where the unitary normal vector to the bottom is

Nb =
1√

1 + |∇xb|2

(
−∇xb

1

)
.

Remark 2.1. 1. In [7], a coulomb condition is considered between the static and the moving sediment
particules. Here, we consider this condition at the interface z = η(t, x).

2. To obtain the model, firstly we shall write these equations under a dimensionless. Secondly we shall
develop the vertical integration in each layer to obtain the shallow water system. In addition, we shall
perform the asymptotic analysis studding both, first and second order approximative for the the shallow
water system. Finally, we will find for the sediment layer, the transport equation.

2.2. Dimensionless equations

In order to compare the terms that occur in the equations, we introduce dimensionless variables. For this, we
note by H , and L the characteristic height and length respectively. In the considered flows, we assume that the
characteristic height is very small compared to the characteristic length and we note by ε = H

L the aspect ratio
between the characteristic height and length. The characteristic velocities are U for the layer 1 and U2 for the
sediment layer. Consequently, the characteristic times are respectively T = L

U1
and T2 = L

V for each layer. In
particular we assume that

U2 = ε2U, so consequently, T2 =
L

U2
=

1

ε2
T.

This hypothesis also affects the definitions of the Froude and Reynolds numbers. For the sake of clarity we
indicate separately these variables. We consider the ”asterisk” notation for the dimensionless variables.
General dimensionless variables:

x = Lx̄, z = Hz̄, fric = ρ1U
2 ¯fric

Non-dimensionalization for layer 1:

u1 = U ū1, w1 = εUw̄1, t1 =
L

U
t̄1, p1 = ρ1U

2p̄1

Fr1 =
U√
gH

, Re1 =
UL

ν1
, h1 = Hh̄1

Non-dimensionalization for layer 2:

u2 = ε2U ū2, w2 = ε3Uw̄2, t =
1

ε2
T t̄2, p2 =

ρ2ν2U

εH
p̄2

Fr2 =
ε2U√
gH

, Re2 =
ε2UL

ν2
, h2 = H2h̄2 with H2 = εH.

We also define the ratio of the densities,

r =
ρ1
ρ2

with r < 1.

Remark 2.2. We set C = UC̄.
Assuming that H is the characteristic height for the bottom, b = Hb̄.
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Thus, the equations and the boundary conditions written in dimensionless form read as follows (we omit the
”asterisk” to simplify the notation):
• Layer 1:

divxu1 + ∂zw1 = 0, (2.9a)

∂t1u1 + u1∇xu1 + w1∂zu1 +∇xp1 =
1

Re1
(2divx(Dx(u1)) +

1

ε2
∂2
zu1 +∇x(∂zw1)), (2.9b)

ε2(∂t1w1 + u1∇xw1 + w1∂zw1) =
1

Re1
(ε2∆xw1 + 2∂2

zw1 + ∂z(divxu1))− ∂zp1 −
1

Fr21
. (2.9c)

• Layer 2:

divxu2 + ∂zw2 = 0, (2.10a)

ε8Re2(∂t2u2 + u2∇xu2 + w2∂zu2) +∇xp2 = 2ε4divx(Dx(u2)) + ∂2
z2u2 + ε4∇(∂zw2) (2.10b)

ε8Re2(∂t2w2 + u2∇xw2 + w2∂zw2) = ε4(ε4∆w2 + ∂z(divxu2) + 2∂2
zw2)

− ε4
Re2

Fr22
− ∂zp2. (2.10c)

• Conditions at the free surface

∂t1ξ + u1.∇xξ = w1, (2.11a)(
−2

Re1
Dx(u1) + ρ1p1 − ρ1

ε

Re1
C−1∆ξ

)
∇xξ +

1

Re1
∇xw1 +

1

ε2
1

Re1
∂zu1 = 0, (2.11b)

− 1

Re1
(ε2∇xw1 + ∂zu1)∇xξ +

2

Re1
∂zw1 + ρ1ε

1

Re1
C−1∆ξ − ρ1p1 = 0. (2.11c)

• Conditions at the interface

∂t1η + u1.∇xη = w1, (2.12a)

∂t1η + ε2u2.∇xη = ε3w2, (2.12b)

∂t2η + u2.∇xη = w2, (2.12c)

1

Re1

(
∇w1 +

1

ε2
∂zu1

)
= −r

1

ε
fric(u1 − ε2u2)

√
1 + ε2|∇η|2, (2.12d)

1

Re1

(
ε3∇w2 + ε∂zu2

)
= −1

ε
fric(u1 − ε2u2)

√
1 + ε2|∇η|2, (2.12e)

1

Re1

(
− 2D(u1) · ∇η + (∇w1 +

1

ε2
∂zu1)(1− ε2|∇η|2) + 2∂zw1∇η

)
= r

1

ε
fric

(
(u1 − ε2u2) + ε2(w1 − ε2w2)∇η

)√
1 + ε2|∇η|2, (2.12f)

1

Re2

(
− 2ε3D(u2) · ∇ξε + (ε3∇w2 + ∂zu2)(1− ε2|∇η|2) + 2ε2∂zw2∇η

)
=

1

ε
fric

(
(u1 − ε2u2) + ε2(w1 − ε2w2)∇η

)√
1 + ε2|∇η|2, (2.12g)

ρ1ε
2[

2

Re1
D(u1)− p1]|∇η|2 − 2ρ1(∂zu1 + ε2∇w1)∇η + ρ1(

2

Re1
∂zw1 − p1)

= ε2
ρ2
Re2

(ε4D(u2)− p2)|∇η|2 − 2ρ2
1

Re2
ε3(∂zu2 + ε3∇w2)∇η

+
1

Re2
ρ2(2ε

3∂zw2 − p2)− ερ1
C−1

η

Re1
div(η)(1 + ε2|∇η|2). (2.12h)

312



Formal derivation and existence of global weak solutions of an energetically consistent viscous sedimentation
model

• Condition at the bottom

−u2∇xb+ w2 = 0. (2.13)

2.3. Layer Ω1: Shallow water

To get the Saint-Venant-Exner system, we first take the hydrostatic approximation and then develop the
asymptotic analysis of equations.

2.3.1. Hydrostatic approximation

Since the length of the flow is supposed to be very large compared to the depth of the water, we assume that ε
to be small. Let us take the formal expression of system (2.2a)-(2.8) at O(ε2) (see [1, 9, 10, 12] for the usual
derivations of hydrostatic approximations), and keep the terms of order zero and one. We obtain successively,
• Layer 1:

divxu1 + ∂zw1 = 0, (2.14a)

∂tu1 + u1∇u1 + ∂z(w1u1) +∇p1 =
1

Re1
(2div(D(u1)) +

1

ε2
∂2
zu1 +∇(∂zw1), (2.14b)

∂zp1 = − 1

Fr21
+

1

Re1
(2∂2

zw1 + ∂z(divu1)). (2.14c)

• Layer 2:

divxu2 + ∂zw2 = 0, (2.15a)

∇xp2 = ∂2
zu2, (2.15b)

∂zp2 = O(ε). (2.15c)

• Conditions at the free surface

∂t1ξ + u1.∇xξ = w1, (2.16a)(
−2

Re1
Dx(u1) + ρ1p1 − ρ1

ε

Re1
C−1∇ξ

)
∇xξ +

1

Re1
∇xw1 +

1

ε2
1

Re1
∂zu1 = 0, (2.16b)

− 1

Re1
∂zu1∇xξ +

2

Re1
∂zw1 +

ρ1εC
−1∆ξ

Re1
− ρ1p1 = 0. (2.16c)

313



Yacouba ZONGO, Brahima ROAMBA, Boulaye YIRA and W. W. Jean De Dieu ZABSONRÉ

• Conditions at the interface

∂t1η + u1.∇xη = w1, (2.17a)

∂t1η = O(ε), (2.17b)

∂t2η + u2.∇xη = w2, (2.17c)

1

Re1

(
∇w1 +

1

ε2
∂zu1

)
= −r

1

ε
fric(u1 − ε2u2)

√
1 + ε2|∇η|2, (2.17d)

1

Re1

(
ε4∇w2 + ε∂zu2

)
= −1

ε
fric(u1 − ε2u2)

√
1 + ε2|∇η|2, (2.17e)

1

Re1

(
− 2D(u1) · ∇η + (∇w1 +

1

ε2
∂zu1)(1− ε2|∇η|2) + 2∂zw1∇η

)
= r

1

ε
fric

(
(u1 − ε2u2) + ε2(w1 − ε3w2)∇η

)√
1 + ε2|∇η|2, (2.17f)

1

Re2

(
− 2ε3D(u2) · ∇η + (ε3∇w2 + ∂zu2)(1− ε2|∇η|2) + 2ε2∂zw2∇η

)
=

1

ε
fric

(
(u1 − ε2u2) + ε2(w1 − ε2w2)∇η

)√
1 + ε2|∇η|2, (2.17g)

ε2[
2

Re1
D(u1)− p1]|∇η|2 − 2r(∂zu1 + ε2∇w1)∇η + (

2

Re1
∂z1w1 − p1)

= ε2
r

Re2
(ε4D(u2)− p2)|∇η|2 − 2r

1

Re2
ε3(∂z2u2 + ε3∇w2)∇η

+
r

Re2
(2ε3∂zw2 − p2)− ε

C−1
η

Re1
div(η)(1 + ε2|∇η|2). (2.17h)

• Conditions at the bottom

−u2∇xb+ w2 = 0. (2.18)

2.3.2. Asymptotic analysis and shallow water system

To obtain the shallow water equation, we assume that the height is small with respect to the length of the domain,
that is ε ≪ 1.
We first integrate each equations of (2.14a)-(2.14c) from the layer 1 from η to ξ. For equation (2.14a), by using
(2.11a) (2.17a) and (2.17b), we get

∂t1h1 + div
∫ ξ

η

u1dz = 0. (2.19)

The condition (2.17a) allows us by integrating the equation (2.14b) to get

∂t1

∫ ξ

η

u1dz + div
∫ ξ

η

u1 ⊗ u1dz +∇x

∫ ξ

η

p1 −
2

Re1
div

∫ ξ

η

D(u1)dz

=
1

ε2Re1
∂zu1|z=ξ

− 1

ε2Re1
∂zu1|z=η

+
1

Re1
∇xw1|z=ξ

− 1

Re1
∇xw1|z=η

+ (w1u1)|z=ξ − (w1u1)|z=η − u1∂t1ξ|z=ξ + u1∂t1η|z=η − (u1.∇ξ)u1|z=ξ

+ (u1.∇η)u1|z=η + p1∇xξ|z=ξ
− p1∇xη||z=η

− 2

Re1
D(u1)∇xξ|z=ξ +

2

Re1
D(u1)∇xη|z=η (2.20a)

The expression of the pressure in (2.14c) is given by

∂zp1 = − 1

Fr21
+

1

Re1
(2∂2

zw1 + ∂z(divu1)).
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By integrating this equation from z to ξ for z ∈ [η, ξ], to obtain,

p1 = p1|z=ξ −
1

Fr2
(z − ξ) +

1

Re1
[2∂zw1 + div(u1)]−

1

Re1
[2∂zw1 + div(u1)]|z=ξ.

We use the divergence free condition, we get the following expression for P1:

p1 = p1|z=ξ −
1

Fr2
(z − ξ)− 1

Re1
[div(u1)− div(u1)|z=ξ]. (2.21)

Due to conditions (2.16a), (2.17a), we can write

(∂t1ξ + u1.∇xξ − w1)u1|z=ξ = 0 and (∂t1η + u1.∇xη − w1)u1|z=η = 0.

Thanks to conditions (2.16b), (2.16c), we have

1

Re1

[
− 2Dx(u1)∇ξ + (∇xw1 +

1

ε2
∂zu1)

]
= − 1

Re1

[
ρ1p1 − ρ1C

−1∆ξ

]
∇ξ,

= − 1

Re1

[
∂zu1 − 2∂zw1

]
.∇ξ. (2.22a)

By using (2.17f), we have

1

Re1

[
− 2Dx(u1)∇η + (∇xw1 +

1

ε2
∂zu1)

]
=

1

Re1

[
∂zu1∇η − 2∂zw1

]
.∇η − r

1

ε
u1fric. (2.23)

So, for the first layer, we get the equation

∂t1

∫ ξ

η

u1dz + div
∫ ξ

η

u1 ⊗ u1dz +∇x

∫ ξ

η

p1 −
2

Re1
div

∫ ξ

η

D(u1)dz

−p1∇xη|z=η
+ p1∇xξ|z=ξ

− 1

Re1
(∂zu1∇η − 2∂zw1)|z=η.∇η

= − 1

Re1

(
∂zu1∇ξ − 2∂zw1

)
|z=ξ.∇ξ − ru1

1

ε
fric (2.24)

2.3.3. Asymptotic analysis

We assume the problem to be in an asymptotic regime by supposing the following hypotheses on the data

1

Rei
= εµ01, fric = εfric0, ν2 = ε−1ν̄2. (2.25)

Thanks to the definition of the dimensionless variables for the layer 2, we have Re2 =
ε2UL

ν2
,

Re2 =
ε3

ν02
, where ν02 =

ν̄02
UL

= O(1).

Since we look for a second-order approximation, we develop the unknowns at order 1 and define

u1 = u0
1 + εu1

1 +O(ε2), w1 = w0
1 + εw1

1 +O(ε2), p1 = p01 + εp11 +O(ε2),

η = η0 + εη1 +O(ε2), ξ = ξ0 + εξ1 +O(ε2), u2 = u0
2 + εu1

2 +O(ε2),

w2 = w0
2 + εw1

2 +O(ε2), p2 = p02 + εp12 +O(ε2).

(2.26)
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For the development of h2, we take into account that η = h2 + b, so we can write

h2 = h0
2 + εh1

2 +O(ε2), (2.27)

where h0
2 = η0 − b and h1

2 = η1 − b. In the some way, we can write

h1 = h0
1 + εh1

1 +O(ε2), (2.28)

with h0
1 = ξ0 − η0 and h1

1 = ξ1 − η1 (remember that ξ = η + h1).

(a) First approximation
If we consider the terms of principal order (ε0), we deduce from (2.9b), (2.11b) and (2.12f) the following
expressions:

∂2
zu1 = O(ε), ∂zu1|z=ξ

= O(ε), ∂zu1|z=η
= O(ε). (2.29)

Then u1 does not depend on z at first order, so we can write u0
1(t, x, z) = u0

1(t, x). This implies that we can
rewrite the expressions above up to order one, to obtain the final equation for layer 1 at the first order. To begin
with, by using the conditions (2.16a), (2.17a) and (2.17b), we write (2.19) as

∂t1h
0
1 + div(h0

1u0
1) = 0. (2.30)

To get the momentum equation, we simplify (2.21) by using the free surface condition (2.16a)-(2.16c) to have

p01(z) = − 1

Fr21
(z − ξ0)− 2εν01divxu0

1 +O(ε2). (2.31)

Therefore, computing the integral appearing in (2.24) yields

∇
∫ ξ0

η

p01dz = h0
1∇(p01(ξ

0)) + p01(ξ
0)∇h1 +

1

2

1

Fr21
∇(h0

1)
2. (2.32)

If we inject this expression into (2.24) and consider only the principal order terms, we obtain

∂t1(h1u0
1) + div(h1u0

1 ⊗ u0
1)

= −h1∇(p01(ξ
0))− p01(ξ

0)∇h1

−1

2

1

Fr21
∇(h1)

2 − p01∇η|z=η
+ p01∇ξ|z=ξ0 + fric0. (2.33)

Therefore, the final equation reads

∂t1(h
0
1u0

1) + div(h0
1u0

1 ⊗ u0
1) =

−h0
1∇(p01(ξ

0))− 1

2

1

Fr21
∇(h0

1)
2 − 1

Fr21
h0
1∇η + fric0, (2.34)

where the friction term fric0 (see [7]) is given by

fric0 =
1

r

1

Fr21
h0
2

(
(1− r)sgn(u2)tanδ0 +

(
r∇xh

0
1 +∇xη

0
))

. (2.35)

Remark 2.3. Notice that the equation (2.34) does not contain the viscous effect. To recover it, we will derive
the second-order approximation. To do so, we must take into account the terms of order ε ignored before and
perform a parabolic correction of the velocity.
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(b) Approximation de Saint-Venant au second ordre
Let us define the average of the velocity u1 as u1 =

1

h1

∫ ξ

η

u1dz.

We go back to (2.24) to write

∂t1(h1u1) + div(h1u1 ⊗ u1)

=
2

Re1
divh1D(u1)−

∫ ξ

η

∇xp1 −
1

Re1
(∂zu1∇η − 2∂zw1)|z=η.∇η

− ru1
1

ε
fric − 1

Re1
(∂zu1∇ξ − 2∂zw1)|z=ξ.∇ξ. (2.36a)

We have u2
1 = u2

1 +O(ε2), and u1 ⊗ u1 = u1 ⊗ u1 +O(ε2). See [22] for details.
Now we consider the approximation up to order 2 for unknowns

ũ1 = u0
1 + εu1

1, p̃1 = p01 + εp11, ξ̃1 = ξ01 + εξ11 , h̃1 = h0
1 + εh1

1, (2.37)

We consider equations defined in (2.14a)-(2.14c) and write them up to second order. For (2.14a), we get

∂t1 h̃1 + div(h̃1ũ1) = O(ε2). (2.38)

Now, we use the asymptotic hypothesis (2.26) and previous calculations to simplify (2.36a). Using the pressure
expression (2.32), gives

∇
∫ ξ

η

p1dz − p1|z=ξ
∇ξ + p1|z=η

∇η =
1

2

1

Fr21
∇(h2

1) +
1

Fr21
h1∇η + h1∇p1|z=ξ

. (2.39)

Thanks to condition (2.16c), we can write:

h1∇p1|z=ξ
= −2εµ01∇(h1div(u0

1)) +O(ε2). (2.40)

Finally, we insert (2.39) and (2.40) into (2.36a) and simplify the terms on the bottom and on the interface ξ. Thus,
we get the second-order approximation of the momentum equation for layer 1 as follows:

∂t1(h1u1) + div(h1u1 ⊗ u1)

= 2εµ01div[h1D(u1)]−
1

2

1

Fr21
∇(h2

1)

− 1

Fr21
h1∇η + 2εµ01∇(h1div(u1)). (2.41)

2.4. Layer Ω2: Reynolds

As for the first layer, we look for a second-order approximation, so we develop each unknown at the first order. We
set h̃2 = h0

2 + εh1
2, ũ2 = u0

2 + εu1
2, p̃2 = p02 + εp12. The asymptotic regime for layer 2 affects the viscosity

and capillary constants. When the surface tension effects are strong, it is essential to have them at the leading
order, thus we assume

ν2 = O(ε), δ = O(ε−2). (2.42)

Consequently, Re2 =
εUH

ν2
= O(1) and C−1 =

δ

ε2Uρ2ν2
= O(ε−5) and for simplicity we write

C−1 = ε−5C−1
0 .

Now, we study the velocity equation in (2.15a)-(2.15c), which can be written as follows:

∂2
zu2 −∇p2 = O(ε4), (2.43)
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∂zp2 = −ε4
Re2
Fr22

+O(ε4). (2.44)

From the definitions of Re2 and Fr2, we have ε2
Re2
Fr22

=
gLH

Uν2
= O(ε), so for the simplicity we introduce

β0 = ε
Re2
Fr22

= ε
1

ν02Fr21
. (2.45)

.
The equation for the pressure reads

∂zp2 = −εβ0 = o(ε4). (2.46)

The next step is to find the transport equation for the sediment. To do so, we start to look for ũ2 in (2.43), after
we compute p̃2 and ũ2|z=η that appear into the expression of ũ2.
Integrating the divergence-free equation, we obtain

∇ ·
∫ η

b

ũ2dz − ũ2|z=η
∇η + ũ2|z=b

∇b+w̃2|z=η
− w̃2|z=b

= 0.

If we take into account the conditions (2.17c), (2.18), the mass equation for the second layer is

∂t2 h̃2 +∇.

∫ η

b

ũ2dz = 0. (2.47)

We integrate (2.46) from z to η to obtain

p̃2(z) = p̃2(η)− εβ0(z − η)

We use the condition at the interface (2.12h) and the condition (2.45) to write

p̃2|η = ε
r

ν02Fr21
h0
1.

Thus, p̃2(z) = ε
r

ν02Fr21
h0
1 − εβ0(z − η) and ∇xp̃2 = ε

r

ν02Fr21
∇h0

1 + εβ0∇η

does not depend on z.
Integrating now (2.43) from z to η, we get

∂zũ2 = ∂zũ2|z=η
+∇p̃2(z − η) = ∂zũ2|z=η

+O(ε).

We use a generalized law based on the work [15], that reads

fric = C(u1 − u2)|z=η (2.48)

We must also take into account the adimensionalization for this friction term. Thus we assume the following
dimension and asymptotic to the coefficient C:

C = UC̄; C̄ = εC0.

Then, we have
fric0 = C0(u0

1 − ε2u0
2|z=η) (2.49)

From this expression, we get the value of u0
2

u0
2 = u2|z=η =

1

ε2
u0
1 −

1

ε2C0
fric0

=
1

ε2
u0
1 −

1

rε2C0

h0
2

Fr21

(
(1− r)sgn(u2)tanδ0 +

(
r∇xh

0
1 +∇xη

0
))

.

Considering the equation (2.47) we have

∂t2h
0
2 + divx

(
1

ε2
h0
2u0

1 −
1

rε2C0

(h0
2)

2

Fr21

(
(1− r)sgn(u2)tanδ0 +

(
r∇xh

0
1 +∇xη

0
)))

= 0 (2.50)
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2.5. Final model

In this section, we expose the final model obtained in the previous section as a formal second-order approximation
of the initial problem (2.2a)-(2.8). For that, we write this system in dimensional variables.
The final model is given in non-dimensional variables by (2.35), (2.38), (2.41) and (2.50). The model is composed
of three equations, mass and momentum for the shallow water flow and lubrification Reynolds equation for the
sediment layer. We recover the system in dimensional variables

∂th1 + div(h1u1) = 0,

∂t(h1u1) + div(h1u1 ⊗ u1) +
1
2g∇(h2

1) + gh1∇(b+ h2)− 2ν1div[h1D(u1)]

−2ν1∇(h1div(u1)) +
gh2

r
P = 0,

∂th2 + divx(h2vb

√
( 1r − 1)gds) = 0,

(2.51)

with P = ∇x(rh1 + h2 + b) + (1− r)sgn(u0
2)tanδ0

and
vb =

1√
( 1r − 1)gds

u1 −
v

1− r
P .

We note that we were inspired by [6] for the expression of vb. Note that in this paper, we do not decompose the
sediment layer into two entities. We suppose it one. We refer the readers to [6] for the meaning of ds, v and vb.

3. Existence of weak solutions

In this section we assume that bottom vanish in the model (i.e b(x, y) = 0)and that the velocities of the sediment

and the water are identical. We also needed a regularizing term of the form −κ∇ · (1 + h2

rh1
)∇(h1 +

1

r
h2) on

the transport equation. The model studied is as follow:

∂th1 + div(h1u1) = 0, (3.1)

∂t(h1u1) + div(h1u1 ⊗ u1) + gh1∇h1 + gh1∇h2 − 2ν1div(h1D(u1)) + gh2∇(h1 +
1

r
h2)

−βh1∇∆h1 + δh1∇h−α
1 + κ̄h1∇∆2s+1h1 = 0, (3.2)

∂th2 + div(h2u1)− κ∇ ·
[
(1 +

h2

rh1
)∇(h1 +

1

r
h2)

]
= 0, (3.3)

where α, κ, κ̄ are a positive constants α ̸= 0.The term δh1∇h−α
1 represente the cold presure, while

κ̄h1∇∆2s+1h1 is the interface tension.
The initial data are

h1(0, x) = h10 , h2(0, x) = h20 , (h1u1)(0, x) = m0(x) in Ω, (3.4)

and we assume that h10 , h20 and m0 are such that

h10 ∈ L2(Ω), h20 ∈ L2(Ω), 0 < h10 , 0 ≤ h20 , ∇(
√

h10) ∈ L2(Ω),

∇∆sh10 ∈ L2(Ω), h
1−α
2

10
∈ L2(Ω), ∇m0 ∈ L2(Ω), m0 = 0 if h10 = 0, (3.5)

m0

h10

∈ L2(Ω)
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3.1. Mains results

Definition 3.1. We say that (h1, h2, u1) is weak solutions of (3.1) − (3.3), with the initial condition (3.4)

satisfying (3.5), if
• the initial condition (3.4) hold in D′((0, T )× Ω),
• the energy inequalities defined in the Proposition 3.2 and Proposition 3.4 are satisfied, and the regularities
properties obtained in Corollary 3.3 and Corollary 3.5 hold,
• for all smooth test functions φ = φ(t, x) with φ(T, ·) = 0, we have:

−h10φ(0, ·)−
∫ T

0

∫
Ω

h1∂tφ− m0(x)φ(0, ·)−
∫ T

0

∫
Ω

h1u1 div (φ) = 0, (3.6)

h20φ(0, ·)−
∫ T

0

∫
Ω

h2u1∇φ+ κ

∫ T

0

∫
Ω

(
1 +

h1

rh2

)
∇(h1 + h2/r)∇φ = 0, (3.7)

−h10u10φ(0, ·)−
∫ T

0

∫
Ω

(h1u1)∂tφ−
∫ T

0

∫
Ω

√
h1u1 ⊗

√
h1u1 : D(φ) + 2ν1

∫ T

0

∫
Ω

h1[D(u1) : D(φ)]

−g

∫ T

0

∫
Ω

h2
1div(φ)− g

∫ T

0

∫
Ω

h1h2 div(φ)− g

2r

∫ T

0

∫
Ω

h2
2div(φ) + δ

∫ T

0

∫
Ω

h1∇h−α
1 φ

−β

∫ T

0

∫
Ω

[
h1∆h1

]
div(φ)− β

∫ T

0

∫
Ω

[
∆h1∇h1

]
φ+ κ̄

∫ T

0

∫
Ω

[
h1∇∆2s+1h1

]
φ = 0. (3.8)

3.2. Estimates.

Proposition 3.2. Let (h1, h2, u1) be a smooth solution of (3.1) − (3.3). then the following energy inequality
holds

1

2

d

dt

∫
Ω

[
h1|u1|2 + g|h1 + h2|2 + g(

1− r

r
)|h2|2 +

1

2
β|∇h1|2 +

δ

α− 1
|h

1−α
2

1 |2 + κ̄

2
|∇∆sh1|2

]

+
ν1
2

∫
Ω

h1|∇u1 +
t ∇u1|2 + gκ

∫
Ω

(1 +
h2

rh1
)|∇(h1 + r−1h2)|2 = 0 (3.9)

Proof. First, we multiply the momentum equation (3.2) by u1 and we integrate on Ω. We use the mass
conservation equation for simplification. Then, we obtain

•
∫
Ω

(∂th1u1)u1 +

∫
Ω

div(h1u1 ⊗ u1)u1 = −
∫
Ω

div(h1u1)u
2
1 +

∫
Ω

h1u1∂tu1 +

∫
Ω

(h1u1 · ∇)u1 · u1

=
1

2

d

dt

∫
Ω

h1|u1|2,

• g

∫
Ω

(h1u1∇(h1 + h2) + g

∫
Ω

h2u1∇(h1 +
1

r
h2) = g

∫
Ω

(h1 + h2)∂th1 − g

∫
Ω

(h1 +
1

r
h2)div(h2u1)

=
1

2
g
d

dt

∫
Ω

h2
1 + g

∫
Ω

h2∂th1 − g

∫
Ω

(h1 +
1

r
h2)div(h2u1)

• −
∫
Ω

2ν1div(h1D(u1)u1 = 2ν1

∫
Ω

h1D(u1) : ∇u1 =
ν1
2

∫
Ω

h1|∇u1 +
t ∇u1|2

• − δ

∫
Ω

(h1∇h−α
1 )u1 =

δ

α− 1

d

dt

∫
Ω

|h
1−α
2

1 |2
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• −
∫
Ω

h1u1∇∆2s+1h1 =

∫
Ω

∂t∆
2s+1h1 =

1

2

d

dt

∫
Ω

|∇∆sh1|2

• β

∫
Ω

h1u1∇∆h1 = β

∫
Ω

∂th1∆h1 = −1

2
β
d

dt

∫
Ω

|∇h1|2

We get the following equality:
1

2

d

dt

∫
Ω

h1|u1|2 +
1

2
g
d

dt

∫
Ω

h2
1 +

ν1
2

∫
Ω

h1|∇u1 +
t ∇u1|2 +

1

2
g
d

dt

∫
Ω

h2
1

+g

∫
Ω

h2∂th1 +
δ

α− 1

d

dt

∫
Ω

|h
1−α
2

1 |2

+
1

2

d

dt

∫
Ω

|∇∆sh1|2 −
1

2
β
d

dt

∫
Ω

|∇h1|2 − g

∫
Ω

(h1 +
1

r
h2)div(h2u1) = 0 (3.10)

Now, we multiply the transport equation by g(h1 +
1
rh2) to have:

1

2r

d

dt

∫
Ω

gh2
2 +

∫
Ω

gh1∂th2 −
∫
Ω

h2u1∇(h1 + r−1h2)

+gκ

∫
(1 +

h2

rh1
)|∇(h1 + r−1h2)|2 = 0. (3.11)

To end, we add the equations (3.10) and (3.11) and with a simple calculation, we have the proclamed equality.
■

Corollary 3.3. For (h1, h2, u1) solution of the system (3.1)− (3.3) the following bound holds:√
h1u1

is bounded in L∞(0, T ;L2(Ω)),
√
h1|∇u1 +

t ∇u1| is bounded in L2(0, T ;L2(Ω)),

h1 is bounded in L∞(0, T ;L2(Ω)), h2 is bounded in L∞(0, T ;L2(Ω)),√
1 + h2/rh1|∇(h1 + r−1h2| is bounded in L2(0, T ;L2(Ω)),

∇h1 is bounded in L∞(0, T ; (L2(Ω))2), h
1−α
2

1 is bounded in L∞(0, T ;L2(Ω)),

∇∆sh1 is bounded in L∞(0, T ; (L2(Ω))3).

Proposition 3.4. For (h1, h2, u1) solution of model (3.1)− (3.3), we show the following relation :

1

2

d

dt

∫
Ω

[
h1|u1 + 2ν1∇logh1|2 + g|h1 + h2|2 + g(r−1 − 1)|h2|2 + β|∇h1|2 +

2δ

α− 1
|h

1−α
2

1 |2
]

+2ν1

∫
Ω

h1(A(u1) : A(u1)) + ν1β

∫
Ω

|∆h1|2 +
κ̄

2

∫
Ω

|∇∆sh1|2 + 2ν1κ̄

∫
Ω

|∆s+1h1|2

+
8ν1δα

(α− 1)2

∫
Ω

|∇h
1−α
2

1 |2 + 2ν1g

∫
Ω

(1 + h2/rh1)|∇h1|2

≤ rν1g

∫
Ω

(1 + h2/rh1)|∇(h1 + r−1h2|2. (3.12)
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Proof. Proposition 3.4
The proof of the Proposition 3.4 follows the techniques used in [2, 4, 5, 17, 21].

We consider the mass equation:
∂th1 + div(h1u) = 0.

We derive this equation with respect to x, y and we make the sum. We have:

∂t∇h1 + div(ht
1∇u1) + div(u1 ⊗∇h1) = 0.

By Remplacing ∇h1 by h1∇ log h1 and multiply by the viscoity 2ν1,we get:

2ν1∂t(h1∇ log h1) + 2ν1div(ht
1∇u1) + 2ν1div(h1u1 ⊗∇ log h1) = 0.

Next, we add this equation to the momentum equation to have:

∂t[h1(u1 + 2ν1∇ log h1)] + div[h1u1 ⊗ (u+ 2ν1∇ log h1)]− 2ν1div(h1(D(u1)−∇tu1)

+gh1∇(h1 + h2) + gh2∇(h1 + r−1h2) = 0.

We multiply the above equation by (u+ 2ν1∇ log h1) and we integrate the result obtained on Ω. We will now
transform each term in the previous equation.
We have : ∫

Ω

[∂t[h1(u1 + 2ν1∇ log h1)] + div[h1u1 ⊗ (u1 + 2ν1∇ log h1)]](u1 + 2ν1∇ log h1)

=
1

2

d

dt

∫
Ω

h1|u1 + 2ν1∇ log h1|2.

Using the definition of the tensor of contraint, we get:

−2ν1

∫
Ω

div(h1(D(u1)−∇tu1)(u+ 2ν1∇ log h1) = 2ν1

∫
Ω

h1(A(u1) : A(u1)),

where A(u1) =
∇u1 −t ∇u1

2
.

For the terms pressure, surface tension and friction, we only look at those that do not appear in the Proposition
3.2. We modify their expressions essentially using integrations by parts. We have:

• 1

2
g

∫
Ω

h1∇(h1 + h2)(2ν1∇ log h1) = ν1g

∫
Ω

|∇h1|2 + ν1g

∫
Ω

∇h1∇h2,

• g
∫
Ω

h2(∇(h1 + r−1h2)(2ν1∇ log h1) = 2ν1g

∫
Ω

h2

h1
|∇h1|2 +

2ν1
r

∫
Ω

h2

h1
∇h1∇h2.

The sum of these two terms gives:

1

2
g

∫
Ω

h1∇(h1 + h2)(2ν1∇ log h1) + g

∫
Ω

h2(∇(h1 + r−1h2)(2ν1∇ log h1)

= 2ν1g

∫
Ω

(1 +
h2

h1
)|∇h1|2

+2ν1g

∫
Ω

(1 +
h2

rh1
)∇h1∇h2.

Now, we change the tension term as follows:

• − β

∫
Ω

h1∇∆h1(2ν1∇ log h1) = 2ν1β

∫
Ω

|∆h1|2.
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For the cold presure term:

• ,−δ

∫
Ω

h1∇(h−α
1 )[2ν1∇ log h1] =

8ν1δα

(α− 1)2

∫
Ω

|∇h
1−α
2

1 |2.

Also we have
• − κ̄

∫
Ω

[h1∇∆2s+1h1][2ν1∇ log h1] = 2ν1κ̄

∫
Ω

|∆s+1h1|2.

By bringing these results together and integrating between 0 and T , we deduce the stated inequality. Which
completes the proof. ■

Corollary 3.5. For (h1, h2, u1) solution of the system (3.1)− (3.3) the following bound holds:

∇
√
h1 is bounded in L∞(0, T ;L2(Ω)),

√
h1A(u1) is bounded in L2(0, T ;L2(Ω)),

∆h1 is bounded in L2(0, T ;L2(Ω)), ∇h2 is bounded in L2(0, T ; (L2(Ω))2),

∆s+1h1 is bounded in L2(0, T ;L2(Ω)), ∇h
1−α
2

1 is bounded in L2(0, T ; (L2(Ω))2).

Proposition 3.6. If h1 has the regularities established in Corollaire 3.3 and Corollaire 3.5, then there exist
constants c and c̄ dependent on δ, κ̄ such that

c ≤ h1(t, x) ≤ c̄ (3.13)

Remark 3.7. This result was first proved in [23] and also used in [11],[16].

Remark 3.8. In this paper, we impose a physical condition that is

h2

h1
≤ C, where C ∈ [0, 1], see[24].

It implies that the tickness of the sediment layer is small compared to that of the fluid. Using this physical
condition, proposition 3.6 and the results in [16], we can prove the existence of solutions of our model.

Remark 3.9. Sobolev’s injections give us thanks to the estimentions of the Corollary 3.9 and corollairy 3.12 that

h1 and u1 are bounded in L∞(0, T ;Lp(Ω)) for p ≥ 2. (3.14)

Theorem 3.10. There exists a global weak solutions to system (3.1) − (3.3) with initial data (3.4) − (3.5) and
satisfying the inequalities denined in the Proposition 3.2 and Proposition3.4.

3.3. Proof of Theorem 3.10

This section is devoted to the proof of theorem 3.10, in six steps. We can, thanks to the preceding estimations,
the convergence of the various terms which intervene in the equation. We exploit the ideas presented in [16].

3.4. Step 1: Convergence of the sequences (
√

h1n)n≥1, (h1n)n≥1, u1n and (h2n)n≥1

From the mass equation, we derive:

d

dt

∫
Ω

∣∣∣∣√h1n

∣∣∣∣2 = −
∫
Ω

h1n∇u1n −
∫
Ω

u1n∇h1n ,

which allows us to have
(
√
h1n)n≥1 bounded in L∞(0, T ;L2(Ω)).
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Corollary 3.5 gives us that ∥ ∇
√
h1n ∥L+∞ (0, T ; (L2(Ω))2) ≤ c, so we obtain:

(
√

h1n)n≥1 is bounded in L∞(0, T ;H1(Ω)). (3.15)

We still use the mass equation to have:

∂t
√

h1n =
1

2

√
h1ndivu1n − div(

√
h1nu1n),

which gives that ∂t
√
h1n is bounded in L2(0, T ;H−1(Ω)).

Applying Aubin-Simon lemma, we can extract a subsequence, still denoted (h1n)n≥1, such that√
h1n converges strongly to

√
h1 in C0(0, T ;L2(Ω)).

Thanks to the Remark 3.9 and Sobolev embeddings, we know that, for all finite p,
√
h1n is bounded in

L∞(0, T ;Lp(Ω)) with p ≥ 4, and this to ensure that (h1n)n is in L∞(0, T ;L2(Ω)).

Equality ∇h1n = 2
√
h1n∇

√
h1n enables us to bound the sequence (∇h1n)n in L∞(0, T ; (L

2p
2+P (Ω))2) and

consequently, we have:
(h1n)n is bounded in L∞(0, T ;W 1, 2p

P+2 (Ω)).

Let us now look at some properties of the derivative in time of h1n . The mass equation reads:

∂thn = −div(hnun) = −
√

h1nu1n∇
√
h1n −

√
h1ndiv

√
h1nu1n .

So, we get
(h1nu1n)n bounded in L∞(0, T ; (L

2p
p+2 (Ω))2) and (∂th1n)n bounded in

L∞(0, T ;W−1, 2p
P+2 (Ω))

Thanks to Aubin-Simon lemma again, we find:

h1n −→ h1 dans C0(0, T ;L
2p

2+P (Ω)).

Last, we consider the bottom term h2n : with Corollary 3.5 and the bound on (
√
h2n)n in L∞(0, T ;L2(Ω)), we

know that the sequence (∇h2n)n is bounded in L2(0;T ; (L2(Ω))2), which gives:

(h2n)n is bounded in L∞(0, T ;H1(Ω)).

For the time derivative of h2n , we restart from Equation (3.3). We have:

∂th2n = −div(h2nu1n) + κ∇ ·
[
(1 +

h2n

rh1n

)∇(h1n +
1

r
h2n)

]
. (3.16)

According to the Sobolev embeddings, the first term is in W−1, 2p
p+2 (Ω), since h2n is bounded in L2(Ω) and u2n

is bounded in Lp(Ω). The last term is in W−1,1(Ω).

We then deduce that
∂th2n is bounded in W−1,1(Ω).

Therfore, thanks to the Aubin Simon Lemma, we get

h2n −→ h2 Strongly in W−1, 2p
p+2 (Ω).

Now we are interested in the velocity u1n . Thanks to the Corollary 3.3, Corollary 3.5 and the Remark 3.9 we
have

u1n is bounded in L∞(0, T ;H1(Ω)).
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Also we have ∂tu1n =
1

h1n

∂t(h1nu1n) + u1n∇u1n + u2
1n

∇h1n

h1n

, thanks to the Proposition3.6 and the Remark

3.9, we have
∂tu1n is bounded in W−1,1(Ω).

The Aubin Simon Lemma ensures that

u1n −→ u1 Strongly in C0(0, T ;W−1,1(Ω)).

3.5. Step 2: Convergence of the sequences h2n

h1n
and (1 +

h2n

rh1n

)∇(h1n + 1
rh2n)

We have ∣∣∣∣h2n

h1n

− h2

h1

∣∣∣∣2 =

∣∣∣∣h2nh1 − h2h1 + h2h1 − h2h1n

h1nh1

∣∣∣∣2 ≤ K|h2n − h2|2 + |h1n − h1|2

thanks to the Proposition 3.6. According to the Step 1, we have∣∣∣∣h2n

h1n

− h2

h1

∣∣∣∣2 → 0, then
h2n

h1n

−→ h2

h1
strongly in L2(0, T ;L2(Ω))

consequently,

(1 +
h2n

rh1n

)∇(h1n +
1

r
h2n) −→ (1 +

h2

rh1
)∇(h1 +

1

r
h2) weakly in L1(0, T ; (L1(Ω)).

3.6. Step 3: Weak convergences of h1n∇∆2s+1h1n and h1n∇
[
h−α
1n

]
Concerning the two terms, we have

h1n∇∆2s+1h1nbounded in

L2(0, T ;W−1,1(Ω)) and h1n∇
[
h−α
1n

]
bounded in L2(0, T ;L

2p
p+2 (Ω))

So, we have
h1n∇∆2s+1h1n converges weakly to h1∇∆2s+1h1 in L2(0, T ;W−1,1(Ω)),

and

h1n∇
[
h−α
1n

]
converges weakly to h1∇

[
h−α
1

]
in L2(0, T ;L

2p
p+2 (Ω)).

3.7. Step 4: Convergence of ∇h1n and ∆h1n

As ∆h1n and ∇h1n are bounded respectively in L2(0, T ;L2(Ω)) and L∞(0, T ; (L2(Ω)), so we have:

∇h1n bounded in L2(0, T ;H1(Ω)).

Using the mass equation, one has ∂t∇h1n = −∇divh1nu1n , as h1nu1n is bounded in L2(0, T ;L2(Ω)), we have

∂t∇h1n is bounded in L2(0, T ;H−2(Ω)).

Then, applying Aubin-Simon Lemma, it follows that

∇h1n −→ ∇h1 strongly in L2(0, T ; (Lq(Ω))2), q ∈ [1,+∞[.

But as we have shown that ∇h1n is bounded in L∞(0, T ; (L2(Ω)), hence

∇h1n −→ ∇h1 strongly in L2(0, T ; (L2(Ω))2).

Thanks to the Corrolary 3.5, we have finally

∆h1n −→ ∆h1 weakly in L2(0, T ;L2(Ω)).
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3.8. Step 5: Convergence of (h1nu1n)n≥1

In the previous part, we proved that the sequence (h1nu1n)n is bounded in L∞(0, T ; (L
2p

p+2 (Ω))2) where p is an
integer greater than four.Writing the gradient as follows:

∇(h1nu1n) = 2
√
h1nu1n∇

√
h1n +

√
h1n

√
h1n∇u1n ,

since the first term is in L∞(0, T ;L1(Ω)) and the second one belongs to L2(0, T ;L
2p

p+2 (Ω)), we have:
(h1nu1n)n bounded in L2(0, T ;W 1,1(Ω)).

Moreover, the momentum equation (3.2) enables us to write the time derivative of the water discharge:

∂t(h1nu1n) = −div(h1nu1n ⊗ u1n)− gh1n∇(h1n + h2n) + 2ν1div(h1nD(u1n))

−gh2n∇(h1n +
h2n

r
) + β∇∆h1n − δh1n∇

[
h−α
1n

]
− κ̄h1n∇∆2s+1h1n

We then study each term:
• div(h1nu1n ⊗ u1n) = div(

√
h1nu1n ⊗

√
h1nu1n) which is in L∞(0, T ;W−1,1(Ω)),

• as h1n is bounded in L∞(0, T ;Lp(Ω)) and ∇(h1n + h2n) is in L2(0, T ;L2(Ω)), the we have:
h1n∇(h1n + h2n) bounded in L2(0, T ;L

2p
p+2 (Ω))

• remark that

h1n∇u1n = ∇(h1nu1n)− u1n ⊗∇h1n = ∇(
√

h1n

√
h1nu1n)− 2

√
h1nu1n∇

√
h1n , (3.17)

we know that the first term is in L∞(0, T ;W−1, 2p
p+2 (Ω)) and the second one in L∞(0, T ; (L1Ω)). So we have

hnD(un) bounded in L2(0, T ;W−1, 2p
p+2 (Ω)).

• Also, h2n is bounded in L∞(0, T ;L2(Ω)) and ∇(h1n +
h2n

r ) is bounded in L2(0, T ;L2(Ω)), therefore
h2n∇(h1n +

h2n

r ) is bounded in L2(0, T ;L1(Ω)).

• We have ∆h1n is bounded in L2(0, T ;L2(Ω)), so that h1n∇∆h1n is bounded in L2(0, T ;W−1,1(Ω)).

• One knowns that ∇∆sh1n is bounded in L∞(0, T ;L2(Ω)) and ∆s+1h1n is bounded in L2(0, T ;L2(Ω)).
Thus h1n∇∆2s+1h1n is bounded in
L2(0, T ;L1(Ω)) ⊂ L2(0, T ;W−1,1(Ω)).

• Thanks to the Proposition 3.6, h1n is bounded in L∞(0, T ;L∞)), hence h1n∇
[
h−α
1n

]
is bounded in

L2(0, T ;W−1,1(Ω)).

Finally, note that this terms are included in L2(0, T ;W−1,1(Ω)), which means that ∂t(h1nu1n) is also in this
space. Then, applying Aubin-Simon lemma, we obtain:

(h1nu1n)nstrongly converges to h1u1 in C0(0, T ;W−1,1(Ω)).
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3.9. Step 6: Convergence of (
√
h1nu1n)n≥1.

As we have mn = h1nu1n , so,we have
√
h1nu1n =

mn√
h1n

We will show the convergence of this term. We know that
mn√
h1n

is bounded in L∞(0, T ;L2(Ω)). Consequently

Fatou lemma reads: ∫
Ω

lim inf
mn

h1n

≤ lim inf

∫
Ω

m2
n

h1n

< +∞

Then, we can define the limit velocity taking u1n(t, x) =
mn(t,x)
h(t,x) ( h1n(t, x) ̸= 0). So we have a link between

the limits mn(t, x) = h1n(t, x)u1n(t, x) and:∫
Ω

m2
n

h1n

=

∫
Ω

h1n |u1n |2 < +∞ =

Thanks to the Remark3.9, we have:
√
h1n |u|2 in L2(0, T ;L2(Ω)).

As (mn)n and (h1n)n converge , the sequence of
√

h1nu1n converges to
√
h1u1.

Moreover, for all M positive, (
√
h1nu1n1|u1n |≤M )n converges to

√
h1u1|u1|≤M .

Finally, let us consider the following norm:∫
Ω

∣∣∣∣√h1nu1n −
√
h1u1

∣∣∣∣2 ≤
∫
Ω

(∣∣∣∣√h1nu1n1|u1n |≤M −
√
h1u1|u1|≤M

∣∣∣∣
+

∣∣∣∣√h1nu1n1|u1n |>M

∣∣∣∣+ ∣∣∣∣√hu11|u1|>M

∣∣∣∣)2

≤

3

∫
Ω

∣∣∣∣√h1nu1n1|u1n |≤M −
√
h1u11|u1|≤M

∣∣∣∣2 + 3

∫
Ω

∣∣∣∣√h1nu1n1|u1n |>M

∣∣∣∣2

+3

∫
Ω

∣∣∣∣√h1u11|u1|>M

∣∣∣∣2.
Since (

√
hnun)n is in L∞(0, T ;Lp(Ω)), (

√
h1nu1n1|u1n |≤M )n is bounded in this space. So, as we have seen

previously, the first integral tends to zero. Let us study the other two terms:∫
Ω

∣∣∣∣√h1nu1n1|u1n |>M

∣∣∣∣2 ≤ 1

M2

∫
Ω

h1n |u1n |4 ≤ k

M2
and

∫
Ω

∣∣∣∣√h1u11|u1|>M

∣∣∣∣2 ≤ 1

M2

∫
Ω

h1|u1|4 ≤ k′

M2

for all M > 0. When M tends to the infinity, our two integrals tend to zero.
Then

(
√
h1nu1n)nconverges strongly to

√
h1u1 in L2(0, T ;L2(Ω)).

This ends the proof of Theorem 3.10.
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derivation of the saint-venant-exner including arbitrarily sloping sediment beds and associated energy,
Mathematical Modelling and Numerical Analysis, 51(2017), 115–145.

[8] F. GERBEAU AND B. PERTHAME, Derivation of viscous Saint-Venant system for laminar shallow-water:
Numerical validation, Discrete and Continuous Dynamical Systems-B, 1(1)(2001), 89–102.

[9] E. GRENIER. ON THE DERIVATION OF HOMOGENEOUS HYDROSTATIC EQUATIONS, ESIAM :Math. Model.Numer.
Anal., 33(5)(1999), 965–970.

[10] P.-L.LIONS Mathematical Topics in Fluid Mechanics. Vol.1 :incompressible models, Oxford University
Press, Oxford, (1996).

[11] G. KITAVTSEV, P. LAUREN¸COT AND B. NIETHAMMER, Weak solutions to lubrication equations in the presence
of strong slippage, Methods and Applications of Analysis, 18(2011),183–202.

[12] F. MARCHE, Derivation of a new two-dimensional viscous shallow water model with varying topography,
bottom and capillary effects, European J. Mech. B/Fluids, 26(1)(2007), 49–63.

[13] F. MARCHE, Theoretical and Numerical Study of Shallow Water Models. Applications to Nearshore
Hydrodynamics. PhD Thesis, University of Bordeaux.

[14] A. MELLET, A. VASSEUR, On the barotropic compressible Navier-Stokes equations Comm. Partial
Differential Equations, 32(3)(2007), 431–452.
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global weak solutions of a 2D sediment transport model, Nonautonomous Dynamical Systems, 9(1)(2022),
182–204.

This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

329


