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Abstract. The aim of this work is to present new concept of square-mean pseudo almost automorphic of infinite class using
the measure theory. We use the (u, v)-ergodic process to define the spaces of (u, v)-pseudo almost automorphic processes of
infinite class in the square-mean sense. We present many interesting results on those spaces like completeness and composition
theorems and we study the existence and the uniqueness of the square-mean (u, )-pseudo almost automorphic solutions of
infinite class for of the stochastic evolution equation. We provide an example to illustrate ours results.
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1. Introduction

In this work, we study the basic properties of the square-mean (i, v/)-pseudo almost automorphic process
using the measure theory and used those results to study the following stochastic evolution equations in a Hilbert
space H,

dx(t) = [Ax(t) + L(z¢) + f(¢)]dt + g(t)dW (t), 1.1

where A : D(A) C H is the infinitesimal generator of a Cy-semigroup (T'(t));>0 on H, f,g : R — L*(P, H)
are two stochastic processes, W (¢) is a two-sided and standard one-dimensional Brownian notion defined on the
filtered probability space (2, F, P, F;) with F, = o{W(u) — W(v) | u,v < t} and L is a bounded linear
operator from B into £.%(P, H). The phase space B is a linear space of functions mapping | — 0o, 0] into X for
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Square-mean pseudo almost automorphic solutions of infinite class under the light of measure theory

every t > 0, x; denotes the history function of B defined by z+(0) = x(t + ) for 6 €] — o0, 0]
We assume (H, || - ||) is real separable Hilbert space and L?(P, H) is the space of all H-valued random variables
x such that

B[] = / I[&]|2dP < 400,
Q

This work is an extension of [10] whose authors have studied equation (4.1) in the deterministic case. Some
recent contributions concerning square-mean pseudo almost automorphic solutions for abstract differrential
equations similar to equation (4.1) have been made. For example in [7] the authors studied equation(4.1)
without the operator L. They showed that the equation has a unique square-mean p-pseudo almost automorphic
mild solution on R when f and g are square mean pseudo almost automorphic functions.

In [4] the authors studied the square-mean almost automorphic solutions to a class of nonautonomous stochastic
differential equations without our operator L and without delay on a separable real Hilbert space. They
established the existence and uniqueness of a square-mean almost automorphic mild solution to those
nonautonomous stochastic differential equations with the ’Acquistapace-Terreni’ conditions.

In [8] The authors established the existence, uniqueness and stability of square-mean p-pseudo almost
periodic(resp. automorphic) mild solution to a linear and semilinear case of the stochastic evolution equations in
case when the functions forcing are both continuous and S? — ;—pseudo almost periodic (resp. automorphic)
and verify some suitable assumptions.

This work is organized as follow, in section 2, we study spectral decomposition of phase space then in section 3
we study square-mean (i, v)-Pseudo almost automorphic process, in section 4 we study square-mean pseudo
almost automorphic solutions of infinite class and we finish with application of our theory.

2. Variation of constants formula and spectral decomposition

In this work, the state space (B, |.|5) is a normed linear space of functions mapping ] — oo, 0] into L?(P, H)
and satisfying the following fundamental axioms.

(A1) There exist a positive constant H and functions K(.), M(.) : R™ — R, with K continuous and M
locally bounded, such that for any ¢ € R and a > 0, if u :] — 00,a] — L*(P,H), u, € B, and u(.) is
continuous on [o, o + a, then for every ¢ € [0, o + a] the following conditions hold
(@) ue € B,
(ii) |u(t)| < H|u¢|p, which is equivalent to [¢(0)| < H|p|g for every ¢ € B
(iii) |ut|p < K(t — o) sup |u(s)|+ M(t — o)|us|B-
o<s<t
(A2) For the function u(.) in (A7), t — wu; is a B-valued continuous function for ¢ € [0, 0 + a].
(B) The space B is a Banach space.

Assume that:

(C1) If (¢n)n>o0 is a sequence in B such that ¢, — 0 in B as n — +oo, then (¢, (0))n>0 converges to 0 in
L2(P, H).

Let C(] — 00,0], L?(P, H)) be the space of continuous functions from ] — co,0] to L?(P, H). Suppose the
following assumptions:
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(C2) BC C(] — 00,0], L*(P, H)).

(C3) there exists Ao € R such that, for all A\ € C with ReA > \gand z € L*(P, H), ez € B and

A
Ky = sup ™75 < 00,
Rer> Ao, z€L?(P,H) ||
z#0

where (e*'z)(0) = e*z for 6 €] —o0,0] and x € L*(P, H).

To equation (4.1), associate the following initial value problem

duy = [Au(t) + L(uy) 4+ f(t)]dt 4+ g(t)dW (t) for t >0
2.1)
up = p € B,

where f : R* — L2(P, H) is a continuous function.

Let us introduce the part Ag of the operator A in D(A) which defined by

{D(Ao) = {z e D(A): Az € D(A)}
Aoz = Az for x € D(Ap)

The following assumption is supposed:

(Hy) A satisfies the Hille-Yosida condition.

Lemma 2.1. [2] A( generates a strongly continuous semigroup (Ty(t))>0 on D(A).

The phase space B4 of equation (2.1) is defined by

Ba={peB: ¢0) € DA}
For each ¢ > 0, the linear operator I/ (¢) on B4 is defined by
u(t) = ’Ut(., %0)

where v(., ) is the solution of the following homogeneous equation

d
P Av(t) 4+ L(vy) fort > 0

Vo =Y E B.
Proposition 2.2. [3] (U(t))t>0 is a strongly continuous semigroup of linear operators on B4. Moreover,
(U(t))e>0 satisfies, for t > 0 and 6 €] — 0, 0], the following translation property

U+ 0)p)(0) fort +6 >0

Ut)p)(0) =
o(t+0) fort+6 <0.

3

s
2

168
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Theorem 2.3. [3] Assume that B satisfies (Ay), (Az2), (B), (C1) and (Cz). Then Ay defined on B 4 by

D(Ay) = {p € C1(1 = 50,01; X) N Ba; ¢ € Ba, 9(0) € D(A) and '(0) = Ap(0) + L() }

Aup =" for ¢ € D(Ay).
is the infinitesimal generator of the semigroup (U(t));>0 on Ba.

Let (X)) be the space defined by
<X0> = {Xox S X}

where the function Xy« is defined by

0 if 0 €] - oo,0],
(Xoz)(0) =
xz if 6=0.

The space B4 @ (Xo) equipped with the norm |¢ + Xoc|p = |¢|5 + || for (¢, ¢) € Ba x X is a Banach space
and consider the extension .4, defined on B4 @ (Xj) by
{D@){weclqoo,om: ¢ € D(4) and¢' € D(A)}
Ay = ¢ + Xo(Ap + L(9) = ¢).

Lemma 2.4. [3] Assume that B satisfies (A;), (Az2), (B), (Cy), (C2) and (C3). Then, .;l\z; satisfies the Hille-Yosida
condition on Ba @ (Xo).

Now, start the variation of constants formula associated to equation (2.1).
Let Cyo be the space of X -valued continuous function on | — 0o, 0] with compact support. Assume that:

(D) If (pn)n>0 is a Cauchy sequence in B and converges compactly to ¢ on | — 00,0], then ¢ € B and
lon — | = 0.

Definition 2.5. The semigroup (U(t))i>o is hyperbolic if
o(Ay)NiR=0
Let (So(t))¢>0 be the strongly continuous semigroup defined on the subspace
Bo={p€B: ¢(0) =0}

by
o(t+0) if t+6<0
(So(t)¢)(0) =
0if t+6>0
Definition 2.6. Assume that the space B satisfies Axioms (B) and (D), B is said to be a fading memory space, if
forall p € By,
|So(t)] = 0 as t — 400 in By.

Moreover, B is said to be a uniform fading memory space, if

|So(t)] = 0 as t — +o0.
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Lemma 2.7. If B is a uniform fading memory space, then the function K can be chosen to be constant and the
Sunction M such that M (t) — 0 as t — +o0.

Proposition 2.8. If the phase space B is a fading memory space, then the space BC(] — 00, 0], X) of bounded
continuous X -valued functions on | — 0o, 0] endowed with the uniform norm topology, is continuous embedding
in B. In particular B satisfies (C3), for Aoy > 0.

For the sequel, make the following assumption:

(Hy) To(t) is compact on D(A) for every ¢ > 0.

(H,) B is a uniform fading memory space.

Theorem 2.9. [3] Assume that B satisfies (A1), (Az), (B), (Cy) and (Hy), (H;), (Hz) hold. Then the semigroup
(U(t))1>0 is decomposed on B4 as follows

Ut) =Us(t) +Us(t) for t >0

where (U1 (t))>0 is an exponentially stable semigroup on BB s, which means that there are positive constants oy
and Ny such that
Uy (t)] < Noe= || for t >0 and ¢ € Ba

and (Us(t))>0 is compact for for every t > 0.

The following result on the spectral decomposition of the phase space 34 is obtained.

Theorem 2.10. [3] Assume that B satisfies (A1), (Az), (B), (Cy), and (Hy), (Hy), (H2) hold. Then the space B4
is decomposed as a direct sum

Ba=SaeU

of two U(t) invariant closed subspaces S and U such that the restricted semigroup on U is a group and there
exist positive constants M and w such that

Ut)p| < Me | for t >0 and ¢ € S

Ut)e| < Me*t|p| for t <0 and ¢ €U,
where S and U are called respectively the stable and unstable space.

Let N\ the Lebesgue o-field of R and by M the set of all positive measures p on A satisfying p(R) = 400
and p([a,b]) < oo, forall a,b € R (a <b).

Definition 2.11. Let x : R — L?(P, H) be a stochastic process.

1. z said to be stochastically bounded if there exists C > 0 such that

E|lz(t)|? < CVteR.

2. x is said to be stochastically continuous if

. 2
}1_}12]E||x(t) —z(s)|[*=0VseR.
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Denote by SBC(R, L%(P, H)), the space of all stochastically bounded and continuous process. Otherwise,
this space endowed the following norm

l2]loe = sup (E[lz($)[*) *
teR

is a Banach space.

Definition 2.12. Let p,v € M. A stochastic process f is said to be square-mean (p,v)— ergodic if f €
SBC(R, L?(P, H)) and satisfied

. 1 9 _
lim —D/ EJ|£(0)][2dpu(t) =

=00 U([—7, T
We denote by £(R, L?(P, H), j1, v), the space of all such process.

Definition 2.13. Let p,v € M. A stochastic process f is said to be square-mean (i, v)— ergodic of infinite
class if f € SBC(R, L*(P, H)) and satisfied

1 T

fim o [ sup BIF(6)|Pdutt) =

NI L
We denote by £(R, L?(P, H), i, v, 00), the space of all such process.

For p,v € M and a € R, we denote by p, and v, positives measures on (R, \') respectively defined by

po(A) =pla+b:be A) and v, (A) =v(a+b:be A) for Ae N. 2.2)

From p, v € M, we formulate the following hypothesis.

(H,): For all @ € R, there exists 3 > 0 and a bounded intervall I such that p,(A) < Bu(A) when A € N
satisfies AN T = ().

(H3) For all a, b and ¢ € R, such that 0 < a < b < ¢, there exist dg and «p > 0 such that

6] > 60 = pla+6,b+06) > aou(d,c+0).
w([=7,7])

(Hy) Let p, v € M be such that lim sup———"—< = a < .
7—+o0 V([=T,7])

Proposition 2.14. Assume that (Hy) holds. Then &R, L*(P,H), 1, v,00) is a Banach space with the norm
I Tloo-

Proof. 1t is easy to see that £(R; L2(P, H), u,v,00) is a vector subspace of SBC(R, L2(P, H))). To
complete the proof, it is enough to prove that &(R; L2(P, H), j1,v,00) is closed in SBC(R; L?(P, H)). Let
(fn)n be a sequence in E(R; L2(P, H), u,v,00) such that lirf fn = f uniformly in SBC(R, L*(P, H)).

n—-—+0oo
From v(R) = +o0, it follows v([—7,7]) > 0 for 7 sufficiently large. Let ng € N such that for all n > ny,
Ifn — flloo < €. Letn > ng, then

SR A 2 2 (T 2
i ) (e BRI < 2o | (yzup  Bllfn(6) = FOIF )autt

+%/f:(9€sup El| 2 (0)] 2 ) dn(t)

v([—, 7] ]

2 +T ‘ - ,
< sy | (SupEIa) = S auto

*ﬁ/f(eeﬁlp El| 2 (O)]? ) dp(t)

T +T
2~ 12 AT 2 [T s B O))auto)

v(l-n7l) (=7 J—c0,t]
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Consequently

1 tr
lim sup 7/ < sup E|\f(9)||2)du(t) < 2ae foranye > 0.0

T—+00 V([—T, T]) -7 0€]—o0,t]
The following theorem is a characterization of square-mean (u, v/)-ergodic processes(eventually 7 = 0)).
Theorem 2.15. Assume that f € SBC(R, L?(P, H)). Then the following assertions are equivalent:

i) ER,L*(P, H),p,v,0)

1
ii) lim 7/ sup E|[£(0)|[*du(t) =0
T—+00 V([_Tv T] \I) [=7,7]\I 6€]—00,t] || ( )H ( )

u{t c[-r,7]\I: sup E|f(O)|?> 6}
0€]—o0,t] -0

iii) Forany e > 0, TBI}_IOO v(—m, 7\ 1)

Proof. The proof is made like the proof of Theorem(2.13) in [6].
First, we will show that i) is equivalent to ii).

Denote by A = v(I), B = / ( sup E\|f(9)||2)du(t). A and B belong to R, since the interval [ is
I “0€]—o0,t]
bounded and the process f is stochastically bounded and continuous. For 7 > 0 such that I C [—7,7] and
v([—7,7)\ I) > 0, it follows
1 1
—_ E92dt:7/ E|l£(0)]|?)du(t) — B
=ty /[_T,T]v(geffil,t] POt = Z= [ (e | BIFO)IF)dutt) — B]

- u([y—([f_,:i;?A L([—ln = /HT] (you2  BIFOIF)dutt) - u([—Bnﬂ)]'

From above equalities and the fact that v(R) = 400, ii) is equivalent to

e v (5w BIFOI)dutt) 0.

rotoo V([=7,7]) J s \og-co
that is 1).

Then, we will show that iii) implies ii).
Denote by AZ and BZ the following sets

Ai:{te[ﬂ-,r]\]: sup ]E||f(9)||2>z-:} and B::{te[ff,f]\z); sup E||f(9)\|2§s}.

0€]—o0,t] €] —o0,t]
Assume that iii) holds, that is

_om(A7) —0. (2.3)

From the equality

/M\I (Ge]sggﬂE||f<6>|\2)du<t> - /A

Then for 7 sufficiently large

(5w EI@F)au)+ [ (s BIFO)IE)dute)

0€]—o0,t] N P€]—oo,t]

€
>

1 u 2 2 1(A3) p(B7)
AN D) /[”N (, 0 BIFOIF)du(®) < IR iy + e
2
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By using (Hy), it follows that

1 T
lim sup / ( sup E\|f(6)||2>du(t) < age, forany € >0,
€

T—+00 V([_Tv TD -7 ]—o0,t]

consequently ii) holds.

Thus, we shall show that ii) implies iii).
Assume that ii) holds. From the following inequality

/[TT]V(%]S“EN]E'f O )du(t) > /A (, 5, EISOP)dutt)

0€]—oo,t

£
-

1 su 2 (A7)
AN D) /[T,TN (, 00 EIFOIF)du(t) 2 o7
1 su 2 N(Ai)
A r N D) /WN (0 BIFEOIP)dut) 2 Sy,

for 7 sufficiently large, equation (2.3) is obtained, that is iii).ll

Definition 2.16. Let f € SBC(R,L?(P,H)) and 7 € R. We denote by f, the function defined by f,(t) =
f(t+7)fort € R. A subset§ of SBC(R, L*(P, H)) is said to translation invariant if for all f € § we have
freSforalrTeR

Definition 2.17. Let 1 and ps € M. py is said to be equivalent to s (11 ~ o) if there exist constants o and
B > 0 and a bounded interval I(eventually I = () such that ajiy (A) < p2(A) < Bui(A) for A € N satisfying
ANI=0.

Remark 2.18. The relation ~ is an equivalence relation on M.

Theorem 2.19. Let pi1, pio, 1,2 € M. If iy ~ o and vy ~ vs, then
E(R,L3(P,H), u1,v1,00) = E(R, L?(P, H), 2, v2, 00).

Proof. Since p1 ~ po and v; ~ 1o there exist some constants o, g, 51, 2 > 0 and a bounded interval I
(eventually I = @) such that vy 1 (A) < po(A) < Brp1(A) and sy (A) < va(A) < Bovy (A) foreach A € N

satisfies ANT =0 i.e
1 1 1

< < .
ﬁgl/l (A) %) (A) T ol (A)
Since pt1 ~ po and N is the Lebesgue o-field, then for 7 sufficiently large, it follows that

an({tel-rr\t: s BISOIF ><})  m({tel-nn\1: sw EIfOIF>c})
, < 00,t

B (=, 7\ D) vo(=r I\
sun({tel-nr\I: swp EIFO)P > <})

<

vy ([=7, 7]\ I)

Consequently by Theorem 3.2, E(R, X, p1,v1,00) = E(R, X, pa, 12, 00).1
Let p, v € M denote by
c(p,v) = {wi,ws : g~ wy and v ~ wo }.
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Lemma 2.20. [5] Let i € M. Then p satisfies (H>) if and only if the measures . and ji, are equivalent for all
TeR

Lemma 2.21. [6] (H;3) implies for all o, lim supCT — 7 +0])
T—00 M([—T, T])

Theorem 2.22. Let y,v € M satisfy (Hz). Then E(R, L*>(P, H), j1, v, 00) is translation invariant.

< 4o00.

Proof. The proof of this theorem is inspired of Theorem (3.5) in [5]. Let f € £(R, L?(P, H), 1, v,o0) and a € R.
Since v(R) = +o0. there exists ag > 0 such that v([—7 — |a|, 7 + |a]]) > O for |a| > ag. Let us denote by

Ma(q—)—l/[ | < sup E|f(0)||2> diie(t) VT >0and a € R,

Va([_Tv T]) €] —o0,t]

where v, is the positive measure defined by equation(4.3). By using Lemma (2.20), it follows that v and

v, are equivalent, y and s, are equivalent by using Theorem (2.19) we have (R, L?(P, H), jiq, Va,00) =

E(R,L3(P,H), u,v, ) therefore f € E(R, L*(P, H), jia, Va, o) that is 115{1 M,(7) =0foralla € R.
T—>1T00

For all A € N, we denote by X4 the characteristic function of A, by using definition of the measure ,, we

obtain that

/ Xa(t)dpia(t) = / Xa(t)du(t + a) = / du(t) forall A € A
[—7,7] [—7,7]

[—T4a,7+a]
and since t — sup RE||f(6)||* is the pointwise limit of an increasing sequence of linear combinations of

0€]00,t]

functions [[12]; Theorem 1.17 p.15], we deduce that

/ sup E||f(9)|\2dua(t):/ sup B[ f(0)[[du(t).
[ [—74a,7+a]

—7,7] 0€]—00,t] €] —o0,t—al
If we denote by a™ := max(a,0) and a~ := max(—a,0) we have |a| + a = 2a™t and |a| — a = 2a~, and then
[-7 +a—|a|,7 + ala|]] = [-7 — 2a™, 7 + 2a™]. Therefore we obtain
1
M, (T + |a]) = / sup  E||f(0)|2du(t). 2.4)
( ‘ |) V([_T - 2(1_,7' =+ 2a+]) [-7—2a~,74+2at] 6€]—00, t—a] || ( )|| ( )

From equation (2.4) and the following inequality

1 2 _ 1 s 2
T ot EOPGRO < s [ s BIS@)dn0

—o0, t—al 0€]—o0,t—a

we obtain
1 / 5 v([-7 —2a7, 7+ 2a™]
_ sup  E|[f(0)]|7du(t) < x M, (T + |al).
ey B QIR0 S ( + lal)
That implies ,
1 / 9 v([-7 —2a",7 + 2a™]
_ sup  E||f(0)]]7du(t) < X My(T+ |a
ey B QIR0 S (r+ lal)
That implies
1 / 2 v([=7 — 2[a|, 7 + 2]al])
—_ sup  E||f(0)]]°du(t) < X My(T + |al). 2.5
V([_TuT]) [—7,7] 6€]—00, t—a] H ( )|| () V([_T7T]) ( | |)
S
S
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From equation(2.4) and equation(2.5) and using Lemma (2.21) we deduce that

[ el I I OITOR
T*}JFOOV([_T’ TD [=7,7] 0€]—00, t—a]

which equivalent to

lim L/ sup  EJ|F(0 — a)|[2du(t) = 0.
[

T_>+OOV([7T7 TD —7,7] 0€]—00, t]

That is f_, € E(R,L*(P,H),u,v,00). We have proved that f € &(R,L*(P,H),u,v,00) then f_, €
ER, L?(P,H), p,v,00) for a € R. Thatis &(R, L?(P, H), j1, v, 00) is translation invariant.

Proposition 2.23. Let v, i € M satisfy. Then SPAA(R, L?>(P, H), j1, v,00) is translation invariant, that is for
alla € Rand f € SPAA(R, L*(P,H), ju,v,00), fo € SPAA(R, L3(P, H), j1,v,0) .

Lemma 2.24. (Ito’s isometry). [13] Let W : [0,T] x Q — R denote the canonical real-valued Wiener process
defined up to time T > 0, and let X : [0,T] x Q — R be a stochastic process that is adapted to the natural
filtration FV of the Wiener process. Then

T 2 T
E (/ Xtth> :El/ det],
0 0

where E denotes expectation with respect to classical Wiener measure.

3. Square-Mean (1, v)-Pseudo Almost automorphic Process

In this section, we define square-mean (i, v)-pseudo almost automorphic and we study their basic properties.

Definition 3.1. Let f : R — L?(P, H) be a continuous stochastic process. f is said be square-mean almost
automorphic process if for every sequence of real numbers (t!,),,, we can extract a subsequence (tp,),, such that,
for some stochastic process g : R — L?(P, H), we have

lim E||f(t+t,) —g(t)||> =0 forall t € R
n—-+o0o

and
lim E|lg(t —t,) — f@®)||> =0 forall teR
n—-+oo

We denote the space of all such stochastic process by SAA(R, L?(P, H)).
Theorem 3.2. [11] SAA(R, L?(P, H)) equiped with the norm || - || is a Banach space.

Definition 3.3. Let f : R — L?(P, H) be a bounded continuous stochastic process. f is said be square-mean
compact almost automorphic process if for every sequence of real numbers (t],),, we can extract a subsequence
(tn)n such that, for some stochastic process h : R — L*(P, H), we have

lim E|[f(t+t,) — h(t)||> =0 forall t R

n—-+oo
and
lim E||h(t —t,) — f(t)||* =0 forall t € R

n—-+oo

uniformly on compact subsets of R. We denote the space of all such stochastic process by SAA.(R, L?>(P, H)).
Theorem 3.4. SAA.(R, L?(P, H)) equiped with the norm || - ||« is a Banach space.
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Definition 3.5. A function f : R x L*(P,H) — L*(P, H), (t,z) — f(t, ), which is jointly continuous, is said
to be square mean almost automorphic int € R for each x € L*(P, H) if for every sequence of real numbers
(t] )n, there exist a subsequence (t,),, such that for some function g
. . 2 _ . . _ 2 _
i B[/ (t 4 ta,) — g(t,2)|* = Oand lim Ellg(t ~ t,2) — 1(t,2)]* = 0
foreacht € R and each x € L*(P, H).
We denote the space off all such stochastic processes by SAA(R x L?(P, H), L?(P, H)).

Definition 3.6. Let j1,v € M and f : R — L?(P, H) be a continuous stochastic process.
f is said be (i, v)-square mean pseudo almost automorphic process if it can be decomposed as follows

f=g9+0,
where g € SAA(R, L*(P,H)) and ¢ € E(R, L*(P,H), u1,v).
We denote the space of all such stochastic processes by SPAA(R, L?(P, H), j1, ).

Definition 3.7. Let j1,v € M and f : R — L?(P, H) be a continuous stochastic process.
f is said be (i, v)-square mean compact pseudo almost automorphic process if it can be decomposed as follows

f=9+¢
where g € SAA.(R, L>(P,H)) and ¢ € E(R, L*(P,H), j1,v).

We denote the space of all such stochastic processes by SPAA (R, L*(P, H), i, v).
Hence, together with Theorem 2.22 and Definition 3.7, we arrive at the following conclusion.

Theorem 3.8. Let y, v € Mand f € SPAA(R, L*(P, H), j1, v, 00) be such that

f=9+¢
where g € SAAR,L*(P,H)) and ¢ € ER,L*(P,H),pu,v,00). If SPAAR,L*(P,H),p,v,00) is

translation invariant, then

{f(t),t € R} D {g(t),t € R}. (3.1)

The proof of Theorem 3.8 is similar to the proof of Theorem 4.1 in [5]
Theorem 3.9. Let i, v € M. Assume that SPAA(R, L>(P,H), i, v,00) is a Banach space with the norm

The proof of the theorem above is similar to the proof of Theorem 4.9 in [5].
Next, we study the composition of square-mean (i, ) pseudo almost automorphic processes.

Definition 3.10. Let y1, v € M. A continuous function f(t,z) : R x L?(P, H) — L?(P, H) is said to be square
mean (., v)-pseudo almost automorphic in t for any x € L*(P, H) if it can be decomposed as f = g + ¢, where
g € SAAR x L*>(P,H),L*(P,H)), ¢ € ER x L?>(P, H), uu,v,00). Denote the set of all such stochastically
continuous processes by SPAA(R x L?(P,H),L*(P, H), i, v, o0)

Theorem 3.11. [1]] Let f : R x L?*(P,H) — L*(P, H), (t,z) — f(t,x) be square-mean almost automorphic
int € R for each v € L*(P, H), and assume that f satisfies the Lipschitz condition in the following sense:

Elf(t,) — f(t,y)|* < LE[lz -yl

forall x, y € L*(P,H) and for eacht € R, where L > 0 is independent of t. Then for any square-mean almost
automorphic process x : R — L?(P, H), the stochastic process F : R — L?(P, H) given by F(t) := f(t,z(t))
is square-mean almost automorphic.

e

[V =)
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Theorem 3.12. Let u,v € M, ¢ = ¢ + ¢ € SPAAR x L*(P,H); L*(P,H), u,v,00) with
¢ € SAAR x L*PH)L*(P,H)), ¢ € ER x L2(P,H);L*P,H), p,v,00) and
h € SPAA(R; L?(P, H), u, v, 00). Assume:

i) ¢1(t, x) is uniformly continuous on any bounded subset uniformly for t € R.
i1) there exist a nonnegative function Ly € LP(R), (1 < p < c0) such that

E||p(t, x1) — ¢(t,z2)||* < Lg(t)E||zy — 22||?, forall t € R andforall xy,z5 € L*(P,H).  (3.2)
If
B— lim ¥/T< sup Ly (60))dp(t) < oo (3.3)
T—+00 V([_Ta T]) —7 NO€]—00,t]

then the function t — ¢(t, h(t)) belongs to SPAA(R; L*(P, H), j1, v, 00).

To prove the theorem, we need the following lemma.

Lemma 3.13. Assume (H3) holds and let f € SBC(R; L?*(P,H)). Then f € E(R; L*(P,H), u,v,0) if and
only if for any € > 0,
I’L(M‘I’,E(f)) — 0

where

M, (f)={te[-771]: , sup E||f(0)])* > €).

€]—o0,t]

Proof. Suppose that f € E(R; L*(P, H), j1, v, 00). Then

1 +7 1
/ sup Bl f(0)[1*du(t) = 7/ sup El|f(6)[1*dp(t)
] M~ (f) 0€]

V([_Tv T]) —7 6€]—o0,t V([_Tv T]) —00,t]

: /[,T,T] sup || £(0)]*du(t)

v([=7,7]) \M- = (f) 0€]—00,1]

1
_ R
v([~,7]) /Nu,aneef}i,t] £ O du(t)

E.U’(MT,E (f))
v([-r1])

Y

Consequently
lim M(IMT,E(f)) —0.
T—+oo 1/([77, 'r]

Suppose that f € SBC(R; L?(P, H)) such that for any £ > 0,

i PO(F)

ST

e
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Assume E||f(¢)]|> < N for all t € R, then using (Hs), it follows that

1 T 1
/ sup Ellf(9)|\2du(t):7/ sup  E|[f(0)|[dpu(t)
M, (f) 0

V([_T’T]) —7 0€]—00,t] V([_TaT]) ]—o0,t]
1 / 9
R - sup E|LF(6)|Pdp()
V(= 7)) Jiermnate L) ve)—c0.t]

N
= v([=7,7]) /MT,E(f) ault)

1
—&-7/ sup  E||£(0)]|du(t
v([-7,7]) [—7,7\M+ o (f) 0€]—00,t] 171l ®)

N 5
) /Mmm WO+ ) /[] au(?)

IN

Which implies that

1 +r
lim 7/ sup E||f(0)]|?du(t) < as forany e > 0.

T—+o0 V([_T7 T]) —7 0€]—00,t]

Therefore f € £(R; L?(P, H), u,v,00).1

The following proof is for the Theorem(3.12).

Proof. Assume that ¢ = ¢ + ¢, h = hy + hy where ¢; € AAR x L*(P,H); L*(P, H)), ¢» € E(R x
L?(P,H); L*>(P,H), u,v,00) and hy € AA(R;L*(P,H)), hy € E(R;L?(P,H),u,v,00). Consider the
following decomposition

¢(t, h(t)) = d1(t, ha(t)) + [9(t, h(t)) — &t ha ()] + @2(t; P (1))

From [11], ¢1(.,h1(.)) € SAA(R;L?(P,H)). It remains to prove that both ¢(.,h(.)) — &(.,h1(.)) and
¢2(.,h1(.)) belong to E(R; L2(P, H), ju,v,0). Clearly, ¢(t, h(t)) — ¢(t, hi(t)) is bounded and continuous.
Assume E||¢(t, h(t)) — ¢(t, h1(t))||* < N, Vt € R. Since h(t), hi(t) are bounded, choose a bounded subset
B C R such that A(R), by (R) C B. Under assumption (i), for a given ¢ > 0, E||z; — 22||? < &, implies that
El|¢(t, 1) — ¢(t, z2)||> < eLy(t), for all t € R. Since for § € E(R; L*(P, H), j1, v, 00), Lemma 3.13 yields
that

lim %u(MT,E((S)) ~o.

r—too U([—7, T

e
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Consequently
1 +T
o L (e BISE.RE) = o(6.h (6] )du(t)
1

= ( sup  Ell6(6, h(8)) — 4(6, h1(0))II?)du(t)

v([=7,7]) S, o (5) No€]—oo,t]

' ﬁ [—r My 2 () <ee]sllfo,t1EH¢(9’h(9)) = $(0:ha(O)II*)du(t)

- ﬁ /Mm(g) W) + S /[—T,T1\m,5<a) <eefffo,q Lo (0)] ) dpt)
= ﬁ ety PO ﬁ /[—m (gefgfo ,t]|L¢(9)‘>d“(t)

: N5<([]i4;§i(]§)) " u([—emn/ . (GJEEQ,H'L“H)‘)W“)-

Which implies that

+7
lim é/ ( sup E||o(0,h(0)) — ¢(0, h1(0))]| ) u(t) < eB foranye > 0,

TFoo V([_T7 T]) -7 0€]—o0,t]

which shows that t — @(t, h(t)) — &(t, h1(t)) is (i, v)-ergodic of infinite class.

Now to complete the proof, it is enough to prove that ¢ — ¢2 (¢, h(t)) is (u, v)-ergodic of infinite class. Since ¢o
is uniformly continuous on the compact set ) = {h;(t) : t € R} with respect to the second variable x, then for
given € > 0, there exists § > 0 such that, for all t € R, &; and &> € (), one has

Ell¢ — &[|* <6 = Ellg2(t,&1()) — ¢a(t, &2(1))]]* < e.

Therefore, there exist n(s) and {zz} ) Q, such that

n(e)
Qc | Bs(z,90)
i=1
and then
n(e)
Elga(t, ()| < e+ > Ellga(t, )|
n=1
Since
Vie{l,.,n()}, lim L/ ( sup E||¢2(9,zi)|\2)du(t) —0,
T—too V([fTvT]) —7 N 0€]—00,t]
then
. 1 4 9
Ve >0, tmsup———— [ ( sup Ell6a(6, i (1)]?)dpu(t) <=,
T—+00 V([_T7T]) —7 NO€]—o00,t]
that implies

lin_ s /T( s B0, (1)) ) = 0

r—+oo v([—T, T oe]—

Consequently t — ¢o(t, h(t)) is (i, v)-ergodic of infinite class.ll

e
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4. Square-mean pseudo almost automorphic solutions of infinite class

(Hs): g is a stochastically bounded process.

Theorem 4.1. Assume that (Hy), (Hy), (Hy) and (Hs) hold and the semigroup (U(t))i>o is hyperbolic. If f is
bounded and continuous on R, then there exists a unique bounded solution u of equation (1.1) on R given by

t t

u = lim U (t — s)IT°(BxXof(s))ds + lim U (t — s)IT*(BxXo f(s))ds
A—+oo o A—+oco o0
¢ t
+ lim Ut — s)II°(BrXog(s))dW(s) + lim U (t — s)IT*(Br(Xog(s))dW (s)
A—+oo o A——+oo o0

YV t > 0, where E,\ = MM — ju)’l, I1° and T1* are the projections of B4 onto the stable and unstable
subspaces.

t

Proof. Let u; = v(t) + )\HIE U (t — $)IT°(BxXog(s))dW (s)
—+oo J_
t
+ lim U (t — s)IT*(BrXog(s))dW (s)V t > 0, where
A—=+oo J 4 o
t ¢

v(t) = lim Ut — s)II*(BaXof(s))ds + lim Ut — s)II*(BrXof(s))ds

A—~+oo oo A——+oo +o0

Let us first prove that u; exists. The existence of v(t) have proved by [1]. Now, we show that the limit
t

lim U (t — s)I1°(BxXog(s))dW (s) exist.

A——+oo [ 00
For ¢t € R and using the Ito’s isometry property of the stochastic integral we have,

2 t
gE/ A2 2009 T2 | (BxXog(s))|*ds

E ' \ / ; U (1 — $)TT* (BrXog(s)dmW (s)

t

gﬂ%/fﬂWﬂme&&mmWs
9~ ) t

< WP IR / e=209)| 1 g()][2ds

— 00

9~ o t—nm—+1
<A ([ g s ).
n=1 t—n

then, using the Holders inequality, we obtain

2

e [ e Bxogenaws

S +00 , otontl 3 t—n+1 3
< TP ( / e—‘*w“—s)ds) E ( / Hg(s)llzds)
t—n t—n

n=1

T2 72 s 1 & 4w(n—1) 4 3 bontt 2 H
< TP (et — ey e ([T giias)
2\/wnz::1 t—mn

2

72772 g 1 4 1 2 fontl 2
< MTMAITP|F —— wn*lig AW xR d
| | 2 VW (e ) n:le (\/t.fn Hg(S)H s)

e

180



Square-mean pseudo almost automorphic solutions of infinite class under the light of measure theory

Since the serie Ze‘Qw” is convergent, then it exists a constant ¢ > 0 such that

n=1
Zefzw” < ¢, moreover it follows that
n=1
+ N 2
||/ BuXog)aw(s)| < MR- - )iElg(e) Hze-m
< ’726_2“}”
n=1

<6

R | w 1
where, v = M M2\Hé|2m(e4 —1)2E||g(s)]]-

Let F(n, s,t) = Us(t — s)I1*( BxXog(s)) forn € N for s < t.
For n is sufficiently large and ¢ < ¢ and using the Ito’s isometry property of the stochastic integral we get the
following result

EH /_ " s, tyaws)||

too 1 o—n+1 3
<M M2|H5| Z / _4w(t_s)ds) x E (/ |g(s)||2ds)
n g

g— —n

M M2|H |2 (Z (e—4w(t—a+n—1) _ e_4w(t_g+n))
Zf

<5( [ U_"+1|\g<s>|\2ds)§)

—-n

o 1 ) > o—n+1 %
<M M2|Hs|22\/ae—2w(t o) (4w 5 —2wn (/0 ||g(8)||2d8)

—n

Nl=

n=1

It follow that for n and m sufficiently large and o < ¢, we have
2

1EH/J F(n,s,t)dW(s)+/tF(n,s,t)dW(s)

N

IEH/_tOOF(n,s,t)dW(s) 7/; F(m, s, t)dW (s)
f/ F(m, s,8)dW (s /F(mst)dWs)H

N

31[;”/7 F(n,s,t)dw(s)H +3EH[ F(m,s,t)dW(s)H2

+

3IEH/; F(n, s, t)dW(s) — /; F(m,s,t)dW(s)Hz

N

t t 2
6yce 2w (t—2) +3EH/ F(n,s,t)dW(s) 7/ F(m,s, t)dW(s)H

t 2
Since lim EH/ F(n,s,t)dW(s)‘ exists, then

n—-+o0o

2
lim sup EH/ (n, s, t)dW (s / F(m,s,t)dW (s )H < Gryce 2(t=9)

n,Mm——+00

e
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If o — —o0, then
t

2
lim sup EH/ (n,s,t)dW(s) — / F(m,s,t)dW(s)H =0.
n,m——+oo —00
We deduce that the limit

lim EH/ (n, s, 8)dW (s )H — lim 1E / US(t — $)TT°( BnXog(s ))dW(s)H2

n—-+o00 n—-+o0o

exists. Therefore, lirﬁ{l / U (t—s)I1°( B Xog(s))dW (s) exists. In addition, one can show that the function
n—+oo /o

t— lim IEH/ $)II°( B, Xog(s dsH
n—-+oo
is bounded on R. Similary, we can show that the function

+oo

t— lim U™ (t — $)IT*( B, Xog(s))dW (s)

n—-+oo t

is well defined and bounded on R. I

Theorem 4.2. Assume that (Hs) holds. Let p,v € M and ¢ € SPAA.(R, L?(P, H), j1, v, 00) then the function
t — ¢y, belongs to SPAA.(C(] — 00,0], L*(P, H)), p, v, ).

Proof. Assume that ¢ = v + h, where v € SAA.(R, L?(P,H)) and h € £(R, L?>(P, H), u, v, 00). We have
¢ = vy + hy. Firstly, we show that v; € SAAL(R, L*(P, H)).
Let (Sm)men of real numbers, fix a subsequence (s, )nen and w € SBC(R, L2(P, H))) such that v(s +s,,) —
w(s) uniformly on compact subsets of R. Let K’ C [—L; L]. For ¢ > 0 fix N, , € N such that E||v(s + s,,) —
w(s)||?> < efors € [~L; L]. Whenerver n > N, 1. Fort € K and n > N, j, we have

El|vits, —wel|* < sup E|[o(0 + s,) — w(0)]]?
0€[—L;L]

<e

then, v;_,, converges to w; uniformly in K. Simlarly, we can show prove that w;_; converges to v; uniformly
in K.
Finaly, we show that h; € &(R, L?(P, H), p, v, 0)

1 T
Mo =t [ (s B
VO(([_Tv T]) —7 6€]—00,t]
Where u,, and v, are the positive measures defined by equation (4.3). By using Lemma (2.20), it follows that
o and p are equivalent and v, and v are also equivalent. Then by using Theorem (3.8) we have
ER,L*(P,H), jio; Va,0) = E(R,L*(P,H),u,v,00) therefore h € E(R,L*(P,H), iq,Va,o0) that is
lim M, (7) = 0 for all @ € R. On the other hand, for » > 0 we have

T—+400

T

1 4 1
- u u E||h(0 N4 < — u E||h(0)]]?) d
v([=T,7]) [Teef fo,t] <ne]sfo,01( IR0+ ) )> ult) < v([-7,7]) ﬂee]s fo (EIROI) dyu(t)

< oL e EROIR) 4 s GO o

< ﬁ/_i 0 P L (E||R(0)[1) dpu(t + 1) + _: S (B||h(0)||?) dpu(2)
) V([ivT([:: D L = fm+r])/j:.95‘&]“'“9)“2‘[“““)

SR e ML O G IRTIC

e
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Consequently,

— L " s s @) ) du) < LETZTED oy
v([—7,7]) €] —co,t] \n€]—00,0] v([=7,7])
s —T —o0, ne]—oo, s

*ﬁ / sup  E||h(0)]2dpu(t)

V([_TvT —7 €] —00,t]

which shows using Lemma(2.21) and Lemma (2.20 ) that ¢; belongs to
SPAA.(C(] — 00,0], L3(P, H)), 1, v,00). Thus, we obtain the desired result

Theorem 4.3. Let f, g € SAA.(R, X) and T be the mapping defined for t € R by

t

P(f.)(t) = [, lim / US(t— T (BrXof(s)ds + lim | U™t — )T (B Xof(s))ds

A— o0 oo A—+00 +oo
t ¢
+ lim U (t — s)II°(BrXog(s))dW(s) + lim U (t — s)IT°(BrXog(s))dW (s)|(0)
A—+o0 o A—+oo +oo

ThenT(f,g) € SAA.(R, L*(P, H)).

Proof. Let (8y,)men of real numbers, fix a subsequence (s, )nen and v, h € SBC (R, L?(P, H)) such that
f(t+ sp) converges to v(t) and g(t + s,,) converges to h(t) uniformly on compact subsets of R. using Lemma
2.4 and Theorem 2.10, we get the following estimates

im0 = I (BrXo ()| < MM e f(s) P (4.1)
—+00
lim [ (t — )TI*(BaXof ()1 < MM2[I 29| | £ (s)] 2 4.2)
A—+oo
im0 (= )T (BrXog (9)[* < MM |1 P> (s) (43)
—+o0
and N Y
im0 (6 = )T (BaXog(s) | < B M| 6> g(5)] (4.4)
—+00
Therefore, if
w(t+ sp) = [)\Hr}rloo /:x)z,{S(t — $)I*(BaXo f(s + sn))ds + )\ETOO :oouu(t — $)[I°(BaXo f(s + sn))ds
t _ t ~
+ AETOO /7001/{8 (t — s)II°(BxXo0g(s + sn))dW (s) + )\Er}rloo +OOZ,{H (t — s)IT°(BxXog(s + sn))dW(s)]

then by Equations.(4.1), (4.2), (4.3) and (4.4) and the Lebesgue Dominated convergence Theorem, we have
w(t + s,,) that converges to v(t).

o(t) = [ 1im / Us(t— T (BrXof(s))ds + lim [ U™t — $)TI* (B Xof(s))ds

A—=+oo J o A—=+oo J 4
t ¢
+ lim U (t — s)IT°(BxXog(s))dW(s) + lim U (t — s)II° (B Xog(s))dW (s)
A—=+too J_ A—=+oo J4

Now, It remains to prove that the convergence is uniform on all compact subset of R. Let X' C R be an arbitrary

—L L
compact and let £ > 0. We fix L > 0 and N, € N such that K C {7, 5} with,

“+o0o
/ e85 < .

L

2

e
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E||f(s+ s,) —v(s)||* <eforn > N.and s € [-L, L. 4.5)

and
E|lg(s + s,) — h(s)||> < eforn > N.and s € [-L, L. (4.6)
Then, for each t € K, ones has

Ellw(t + sn) — 2(t)|*

t . t -
= ]EH lim / U (t — $)IT° (B Xof(s + sn))ds + lim U (t — $)IT°(BrXof (s + sn))ds
A—=+oo ) oo A—+oco +oo
t - t ~
+ lim / U (t — s)II*(BrXog(s + sn))dW(s) + lim U (t — s)II°(BrXog(s + sn))dW (s)
A—=+oo J oo A—+oo +oo
t _ t -
— lim / U (t — s)II*(BrXov(s))ds — lim U (t — s)II*(BrXov(s))ds
A—=+oo ) oo A—+oo +oo
t . t - 2
— lim / US(t — s)IT°(ByXoh(s))dW (s) — lim Ut — s)HS(B,\XOh(s))dW(s)H
A—=+oo ) oo A—+oco +oo

< a(g[|  1im /_:ol/ls(tfs)HS(EAXo(f(ersn)fv(s)))dsH2

A—+oco

+ | im /;oo““(t — S)TI* (B Xo(f(s + sn) — v(s)))dsH2

t — 2
+ B[ 1im /_OOZ/{S(tfs)HS(BA(Xog(ersn) ~ h(s))dW (s)|

A—+oo

+ ]EH s /tm?/f“(t — $)I1*(BxXo(g(s + sn) — h(s)))dW(s)‘ ]2)

progressively, we increase each terms of previous inegalitie.

||  tim [oousu — S)TI* (B Xo(f(s + sn) — v(s)))dsH2

A—+oo

< B(, lim H/joous(t—s)Hs(EAXo(f(s—l—sn)—v(s)))dst)

A— 400

~ 2
< ]E( lim Ms(t—s)Hs(BAXo(f(s—l—sn)—v(s)))dsH )

A—=+o0 J o

< ]E(/j M2 2 (t=9) |15 2 ’f(s—i—sn) —U(S)Hst)

< [ PR P s+ 000 - o(0) s

< are [t -t

L s TR
—L

o0 . 2
]EH AEToo/t U™ (t — s)II°(BrXo(f(s + sn) —U(s)))dSH

—+oo - 2
<E( lim Huu(t—s)HS(B/\Xo(f(s—&-sn)—v(s)))dsH )

A—+o0 Jy

< IE(/;FOOMQMQ@*Q“’“*S”H“H‘f(s + Sn) — v(s)H2d5>

T2 A2 1T |2 Foo —2w(t—s) 2
< M™M= e SEH]‘(S—&-SH)—U(S)H ds
t

e
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Using Ito’s isometry property of stochastic integral, we obtain that

|| tim / UP (1 — )T (B (Xog(s + sn) — ()W (s)| |

<& 1im H/ L{s(t—s)Hs(EA(Xog(s—i—sn)—h(s)))dW(s)H)

A—+oo

2
< E( AHTOO Hus (t — )II°(Bx(Xog(s + sn) — h(s)))dsH )
< MQMQH'[SF/

—o0

e_QW(t_S)E‘ ‘g(s + sn) — h(s)szs

— o~ —L 2
< M2M2|HS|2/ e‘zw(t_S>IEHg(s+sn) - h(s)H ds

— o0

— o t 2
+ M2M2|HS|2/ e_zw(t_s)]EHg(s + 8n) — h(s)H ds
L

and,
) im [T By Kogls +50) — o ()|
<i( i | / U (1 — $)TT° (Bx(Xog(s + sn) — h())aw (s)]|")
<B( lim_ t Hus(t—s)Hu(ﬁ/\(Xog(s—i—sn)—h(s)))dsH2)
< M2M2|Hu|2/t+we*2w<f*5>za)‘g(s +5n) — h(s)||"ds
Consequently,

Efjw(t + sn) — 2()]1 < 4(MQJT/[’%HS\?/;Le*?w(t*ﬂE’(f(s +5n) — U(S)H2ds
+ Wﬁﬂnsﬁ/;e*”“*sm\\f(s ) = o(s)|| ds
+ M2M2|Hu|2/t+ooe—2W<t—s)E( |5+ 50) = v(s)| s
+ M2M2|n3|2[:e—2w<i—s>m\]g(s + ) = h(s)|“as
+ T [ e g(s + ) — ho)|[fas
+ M2M2|Hu|2/t+ooe*%<f*5)£( lo(s + n) — (s)|[ds)
Ellw(t +sn) — 2(0)]|? < 4(2eM° M2 2 [ je—w‘s)ds
n M2M2|HS|2[Le_zw(t_s)E‘ |£(s+ s0) = v(s)] \2ds
IR [ P8 s ) = ot

S W R
—L

+ M2M2|H“|2/+00672“’(t75)ﬂi"g(s + Sn) — h(s)szs).
t

e
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Therefore,

o +oo
E|[w(t + sn) — 2(1)]|% < 4(2aM M2|H5\2/ e”2wsds
t+L

22 (1711812 w2 teo —2w(t—s) 2
+ M™M=(|]I1°%)* + [T1%|%) e E||f(s+ sn) —v(s)|| ds
—L

22 512 u|2 too —2w(t—s) 2
+ MR 4 ) [ e ]EHg(ersn)fh(s)H ds)

2 Foo =2~ Foo ;
< 4(251\/1 M2|H$\2/L e~ 2% ds + 2 M- M2 (I |2 + |H“|2)/ e*QWbds)
5 0
2
——2 ——2 Foo
< (85M M2|IT% |2 + 83 M2 (|2 + |H“|2)/ e_2wsds>s
0
AN D2 2 + |Hu|2>)
€
w

< (8eM* M2 +

which proves that the convergence is uniform on K, by the fact that the last estimate is independent of t € K.
Proceeding as previously, one can similarly prove that z(t — s,,) converges to w uniformly on compact subsets in
R. This completes the proof.l

Theorem 4.4. Assume that (H3) and (Hs) holds. Let f,g € EMR,L*(P H),p,v,00) then

L(f,9) € &R, L*(P, H), p, v, 00).

Proof.

I'(f,g)(t) = lim / US(t — $)TT*(BrXo f(s))ds + AETOO

A——+oo o
t

U™ (t — s)IT*(BxXo f(s))ds
“+00
U™ (t — $)IT*(BxXog(s))dW (s)

t
+ lim Ut — s)II°(BrXog(s))dW (s) + lim

A—~+o00 oo A——+o0 +oo

/ U (t — $)IT°(BxXof(s))ds + lim U (t — s)IT*(BxXo f(s))ds

A—+oo +oo

—o00
t

Blro oo =5 m_
Ut — s)H“(EAXog(s))dW(s)HQ.

t
+)\EIJIFIOO 7001/1 (t — s)II*(BAXog(s))dW (s) +)\EIEOO .
T T —~— o 6
[ sw BRGo@Pduw < [ s [P [ e mwp)|Pas
—7 0€]—00,t] —7 0€]—00,t] —o0

. —+o0
AT / 2= I 2] £(s)]2ds
0
L PTE / e~ 2909|119 g (s)]|2ds
+oo
T2 w(t—s U
PN [ g (o) s )

T [’
—~ 2 ) _s s
< AM?M [/ sup ](/ e 2= |2E|\f(s)\|2ds)du(t)

—7 0€]—00,t

+ /T sup (AJFOO&ZW():S)Hu|2E||f(S)||2dS>du(t)

—7 0€]—00,t]

e
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T 6 +oo
b [ s ([ e omepBlgelPds+ [ e Ine PElg(s)|Pds )duto)]
—7 0€]—00,t] W —o0 0

T

<l T [ [T sy ([ @61+ Blg(o) P )

—7 0€]—00,t]

s [T s ([ @617 + Bl 7))o

—7 €] —00,t]

one the one hand using Fubini’s theorem, we have

e [ s ([ e w6 + Bl (o))t

—7 0€]—00,t] *J—o0

T 0
i 2 / sup / ¢~ 29 (| f(s)|? + El|g(s)][2)ds

—7 0€]—00,t]

r 0
< 62‘”|H5|2/ sup (/ ei2w(t*5)(E||f($)||2+E||g(8)|\2)d5)du(t)

—7 6€]—00,t] *J —o0

< eWmSF/T sup (/ e |1 (5)][2 + Ellg(s)]12)ds ) dput)

—7 6€]—o00,t] *J —oc0

T t

< e [ ([ e @ s)|P + Bl P)ds) dute)
T o0

< 62wr|Hs|2[ (/0 efzwsGEHf(tfs)||2+E||g(t*5)||2)d3)dﬂ(t)
+o0 T

< e[ e [ (B 9l +Bllate - 9))duttds

By using Theorem(2.22) we deduce that

TE%VS([—T,;D/T(EHN — )2+ Ellg(t — )I[?) du(t) ?Sfor all s € R+ and
ey (Bl =9I + Bl = )1 )dite) < i (11 + Il

e*UJS

oy 11 + gz, ) betongs t0

L'([0,400]) in view of the Lebesgue dominated convergence Theorem, it follows that

e lim /O+OOV(‘E_M/T (]E||f(t — 8)|2+Ellg(t — s)\|2)du(t)ds - 0.

T—+oo -7, T]) -7
On the other hand by Fubinis theorem, we also have

Since f and g are bounded functions, then the function s +—

T +oo
wE [ s ([ ISP + o) P)ds) duce)

—7 0€]—o00,t]

T +oo
< [ s ([P + o) )ds) duce)

—7 0€]—00,t] —r

T +oo
< mp [ (IR + o) )ds) duce

-7 —r

e
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<inep [ ([ @I+ Ela)ds)dut)

—7 J —00

<imep [ ([ @I + Bl P )ds

—oo W —T

2ws
Since the function s + ﬁ (\|f||c2>O + ||g||§o) belongs to L!(] — oo, r]) resoning like above, it follows
v([-7,T
that ; ) .
. ws 2ws 2 2 _
Jim [ et ([ @) + Bl au))ds = 0
Consequently

1 T
1' - - Q E 9 2d =
TiIJIrlool/([—T, T])/T HE]bBcE)o,t] Hr(f’ g)( )|| u(t) 0

Thus, we obtain the desired result.ll

For proof of existence of square-mean compact pseudo almost automorphic solution of infinite class , we need
the following assertion.

(Hg) f,g : R — L?(P, H) are square-mean compact pseudo almost automorpic of infinite class

Theorem 4.5. Assume (Hy), (Hy) and (Hg) hold. Then Eq (4.1) has a unique pseudo almost automorpic solution
of infinite class

Proof. Since f and g are pseudo almost periodic functions, f has a decomposition f = fi1+ fo and g = g1+¢o
where f1,91 € SAA.(R; L?(P, H)) and f2, 92 € E(R; L?(P, H), uu,v,00). Using Theorem 4.1, Theorem 4.3
and Theorem 4.4, we get the desired result. H
Our next objective is to show the existence of square mean (u, v/)-pseudo almost automorphic solutions of infinite
class for the following problem

du(t) = [Au(t) + L(u) + f(t,ur)]dt + g(t, u;)dW (t) for t € R (4.7)

where f : R x B — L?(P,H)and g : R x B — L?(P, H) are two stochastic continuous processes. To prove
our result, we formulate the following assumptions

(Hy) Let u, v € M and f : R x C(] — o0,0],L?(P,H)) — L*(P,H) square mean cl(u,v)-pseudo
automorphic periodic of infinite class such that there exists a function Ly such that

E||7(t:01) 70 62)||| < Lo(RII61 — 6all? forall ¢ € R and 61, 65 € O] — 00,0], L2(P, H).

(Hg) Let y, v € Mand g : R x C(] — 00,0], L3(P,H)) — L*(P, H) square mean cl(u,v)-pseudo almost
periodic ~ of infinite class such that there exists a function L, such that
2
E||g(t, 1) = 9(t.62)|| < Ly()Ellér — al|? forall ¢ € Rand 61, g2 € C(] - 00,0, LA(P, H)).
Where L and L, € LP(R), (1 < p < 00)

(Hg) Letk = max(Lf, Lg).
(Hyg) The instable space U = {0}

Theorem 4.6. Assume that B satisfies (A;), (Az2), (B), (C1), (C2) and (Hy), (Hy), (H3) , (Hy), (Hy), (Hs),
(H), (Hg), (Hy) and (Hjg) hold. Then Eq.(4.7) has a unique cl(u,v)- square mean pseudo compact almost
automorphic mild solution of infinite class.

e

[V =)
MM

188
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Proof. Let x be a function in SPAA.(R; L?(P, H), i1, v, 00) from Theorem 4.2 the function ¢ — x; belongs
to SPAA.(C(] — 00,0]; L?>(P, H)), pt, v, 0). Hence Theorem implies that the function g(.) := f(.,x.) is in
SPAA.(R; L?(P, H), u,v,o0). Since the instable space U = {0}, then IT* = 0. Consider now the following
mapping

H: SPAA.(R; L*(P, H), i, v,00) — SPAA.(R; L*(P, H), yi, v, 00)

defined for ¢ € R by

(Hz)(t) = | lim Z/ls t—s HS(BAXOf(s xs))ds—i— hm Uus(t —s)HS(EAXOg(s,acS))dW(S) (0)

)\~>+oo +oo ) _

From Theorem 4.3, Theorem 4.4, Theorem 4.4 and Theorem 4.1 we obtain that H maps
SPAA.(R;L*(P,H), i, v,0) into SPAA.(R; L*(P, H), u1, v, 0).

It remains now to show that the operator H has a unique fixed pointin SPAA.(R; L?(P, H), j1, v, o0).

Since B is a uniform fading memory space, by the Lemma (2.7), choose the function K constant and the

function M such that M(t) — 0 ast — +oo. Letn = max{sup|K(t)|2,sup|M(t)|2} Case 1:
teR L 4eRr teR

Ly Ly € L'(R,RT)
Letz1, 22 € SPAA.(R; L*(P, H), i, v,0). Then we have

2 t - 2
E|[Han (1) — Hao (]| < 28| 1im / Ut — )T (B Xo[f (5, 712) — F(5,22))ds

A=+oo J_

+2EH lim /t Us(t—s)Hs(g,\Xo[g(s,xls)—g(s,xQS)})dW(s)W

A=+too J_

Using Ito’s isometry we have

2 o t
E‘ "Hml(t) - ng(t)H < 20 M2 2 / e 2= [ L (5)E| |21y — 2s||3ds
— 2~ t )
+ o M2|HS|2/ =205 [ (VB |01, — 9o |3

— 0o

N t
<R [ eI B (K (s) sup [Jo1(6) = €]+ M(s)loa, — wa,]l) ds

—o0 0<E<s

t 2
SVEYe —2w(t—s
+ 2M M2|HS|2/ e 2w(t )Lg(s)]E<K(5) Oilgg [|z1(&) — 22(8)]] +M(S)||ZC10 fLEQOH) ds

. t
<P [ e ME(K(s) sup [la1(€) = al@)]| + M()lar, 2, ds

—o0 0<E<s

t
T2 —2w(t—s
ST [ e B0 E(Ks) sup [fon(€) ~ wa(€)| + M), — | ds

—o0 0<éss

t

T2 AT —2w(t—s

I [ k() (K2 sup Blles(€) a1 + Ml - a2, ) ds
—0oQ KICKkS

— 9~ t

< 160 MQ\HS|277(/ k(s)ds)||x1 TS

— 00

e
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It follows that

]EHH2z1(t) —H2x2(t)H2 < ZIEH lim /t Ut = )T (BaXo [ f(s, Hary) = f(s, Haas)| ) ds ’

A——+o0 oo

+ ZIEHAlim /t L{S(t—s)HS(EAXo [g(s,?—[;z:ls) fg(s,H:c%)DdW(s)

—+o0 J_

’ 2

o~ 2, [t 2
< (1637 M2 ) (/ B(s)ds) llar — w2l

By induction on n we obtain the following inequalitie

t

E||Hm (1) - w@(t)]f < (1637 D20 ) / K(s)ds ) o — wall

— 00

Therefore

|01 (t) = ()] | < ANMIIE| )" ks oy 1 — 2l o

Let ng be such that (43 M [TI°|/m)" k|79 ® < L. By Banach fix point Theorem, H has a unique point fixed

and this fixed point satisfies the integral equation

U (t — $)IT° By(Xo f(s))ds + im U (t — $)TT* By (Xog(s))dW (s)

Uy = lim
—+o0 J_

A— 400 o

Case2: L,, Ly € LP(R); (1 < p < 00)
First, put

uo) = [ (k(s)ras.

— 00

Then we define an equivalent norm over SPAA(R, L?(P, H), i, v,7) as follows

1
2

_ —cu(t) 2
1flle = sup (= RIS

where c is a fixed positive number to be precised later. Using the Holder inequality and Ito’s isometry we have

2 o t

]E‘ \ml(t) - %m(t)H < 2M2M2|H5\2/ e UL ()E|| 215 — 24| |Bds
t

+ 2M2M2|H8\2 / e 2L ()E w15 — Tos]|%ds

— 00

e
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t
ST [ e en(s) (K3 s) sup Blles(€) - aale)]
—0 0<E<s

+ M2 (5)E| 2, — w2, |2 ) ds

t

< 1637° M2 [T 2 / e 2= cn i (s) (supe P B |1 (€) — w5 (6)][?) ds
—00 sER

< 16M2M2|HS‘277/ e—2w(t—s)ecu(s)k(8) (Slelg( —cpu(: E||$1( )_x2(€)”2)2) ds

t
< 1637 37 11° P / e )M () ds) |21 — ][

1 t 1
et 9s) ([ O (s)ds) s ol

— 00

< 16307 M2|1T |2 /

o0

1 t 1
< 16M2M2|H9 277(/ —2qw(f G)ds) (/ epCM(S)M/(S)dS) P ||$1 _ 332”2
—o0

; l)ewnxl—xznz
q )P

< 16007 M2|IT 2

1
X

1
(2wq)7  (pe)?
(e_c“(t)E‘ ‘Hm(t) - Ha:Q(t)Hz)% < 4MZ\7IHSI\/T7(

e’C“(t)IEHHxl(t) - ”ng(t)H < 1600 D22 |1 oy Ml = 222

1
x —— ) lla1 — a2

1
()% (pe)*

Consequently,

4]\4]\41_[S
Wy — .

Hz1(t) — Haa(t)||e <
7,0 = Hrale < = Y

Fix ¢ > 0 so large, then the function ¢ — converges to 0 when c¢ converges to +oco. It follows that for

(pc)?»
AMM|1I#| /1 . . . .
¢ > 0 so large we have - - < 1. Thus H is a contractive mapping. we conclude that there is a
_ (2wg)®a x (pc)=» .
unique pseudo almost automorphic integral solution to Eq.(4.7).

Proposition 4.7. Assume that B is a uniform fading space and (A1), (As), (C1), (C2), (Hp), (Hy), (Hz), (Hy4)
and (Hs) hold f and g are lipschitz continuous with respect the second argument if

w
max(Lip(f), Lip(g)) < ———==——Then Eq(4.7) has a unique square-mean cl(u,v)-pseudo almost
(Lip(f), Lip(g)) oy (k,v)

automorphic solution of infinite class, where Lip(f) and Lip(g) are respectively Lipschitz constant of f and g.

Proof. Let us pose k = max(Lip(f), Lip(g)), we have

2 e t
E|[#ar(0) — Haa(o)||” < s3PR e [ e 2 Ik() (K3 (s) sup Bler(€) — aa(©)IF + M (9)Bllery — a2, ) ds
—o0 IERS

e t
<A ([ e s o — ol
— 00
_ 8> M2|IT° |2k

w

2v/2M M |TI%|kn
w

2
[lz1 — 22|l

[lz1 — 72|l

1) = Haa(0)]| <

e
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w
Consequently # is a strict contraction if k < ————— 1
2v/2M M |TI5|n

5. Application

For illustration, we propose to study the existence of solutions for the following model

2

dz(t,z) = %z(t, x)dt + [/_ODOG(H)z(t + 6, 2)df + sin (

1
2 + cos(t) + cos(v/2t)

) + arctan(t)

0 1 0

+ e“Pn(0, z(t + 0,2)d0|dt + | cos + sin(t —|—/ e“On(0, z(t + 0,2))d0 | dW (¢
[ nio 20+ 0@yt it [cos (o) w0+ [ o0+ 0,8 aw )
2(t,0) = z(t,7) =0 fort € R

G.D

Where G :] — 00,0] — R define by G(#) = e("*1? is a continuous function and h :] — 00,0] x R — R is

continuous, Lipschitzian with respect to the second argument and w is a positive positive real number.
For example, take h(6, ) = 6% + cos (g) for (0, z) €] — 00,0] x R, it follows that

1
M@xg—ma@)gjm—xﬂ

which implies / :] — 00, 0] x R — R is continuous and lipschitzian with respect to the second argument. W () is
a two-sided and standard one-dimensional Brownian notion defined on the filtered probability space (X2, F, P, F3)
with 7y = o{W(u) — W(v) | u,v < t}.
The phase B = C.,, v > 0 where

C, = {¢ € O(] - 00, 0; LA(P,H)) : lim "’¢(6) exist in L(P, H)}

0——o0
With the following norm
1
3
1]l = sup(Elle*’6(0)]?)
9<0

To rewrite equation (5.1) in the abstract form , we introduce the space H = L?*((0,7)). Let
A: D(A) — L?((0,7)) defined by

D(A) = H'((0,7)) "H((0,1))
Ay(t) = y"(t) fort € (0,7)and y € D(A)

Then A generates a Cy-semigroup (U(t));>0 on L?((0, 7)) given by
UB)(r) = e ™ < en > 12 enlr)
n=1

Where e,,(r) = /2sin(nnr) forn = 1,2, ..., and |[U(t)|| < et forallt > 0. Thus M = 1 and w = 2.
Then A satisfied the Hille-Yosida condition in L2((0, 7)). Moreover the part Ag of A in D(A). It follows that
(Hy) and (Hy) are satisfied.

We define f : R x B — L?((0,7)),g:R x B— L?((0,7)) and L : B — L?((0, 7)) as follows

0

- 1 wb
m@@mg+mmﬂﬂﬁy+mmw+[;h&me0
Sake
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0

! ( \/Qt)>+sin(t)+ / “OR(0, $(6)(x))db

sin(t) + sin oo

9(t.0)(x) = cos (

0
L(6)(x) = / G0, $(6)(2))d0 for — o0 < 0 < 0 and z € (0, 7)
let us pose v(t) = z(t, z). Then equation(5.1) takes the following abstract form
dv(t) = [Av(t) + L(ve) + f(t,v)]dt + g(t,v,)dW (¢) for t € R

Consider the measures p and v where its Radon-Nikodyn derivative are respectively p1, p2 : R — R defined by

(t) 1fort >0
PIEI= et fort <0

and
p2(t) = [t| fort € R

i.e du(t) = p1(t)dt and dv(t) = po(t)dt where dt denotes the Lebesgue measure on R and

u(A) = /Apl(t)dt for v(A) = /Apg(t)dt for A e B.

1 1
From [6] pu, v € M, pu, v satisfy (Hy) , sin ( ) and cos ( ) are almost
(o] u K y (Hy) 2 + cos(t) + cos(v/2t) sin(t) + sin(v/2t)
automorphic.
We have 0
eldt +/ dt
L H([_TvT])_. . /—7‘ 0 T e i
hmbupﬁ =limsup——F——— =limsup————— =0 < oo,
T 0o —T,T T oo T 0o T
el el 2/ tat el
which implies that (H,) is satisfied.
Forall § € R, —1 < sin(f) < 1 then,
1 /T E|si (0)‘2dt< L L
—_ sup sin < — m
V([_T7 T]) —7 0€]—00,t] V([_Tv T]) —T
< w=mrl) — 0asT — 400
V([_Tv T])

Consequently,
. 1 o
lim ——— sup E

T_H_OOV([_TvT]) —7 0€]—00,t]

2
sin(@)‘ du(t) =0

It follows that ¢ — sin(t) is square mean (u, v)-ergodic of infinite class , consequently, g is uniformly square
mean (u, v)-pseudo almost automorphic of infinite class.

Forall 6 € R, %ﬂ < arctanf < g then,
1 /T 2 T 1 T
—_ sup E arctan(@)’ dt < = x 7/ du(t)
V([_T7 T]) —7 0€]—00,t] 2 V([_Ta T]) -7

7, 7]
< X —————= — (0asT — +00
—T,T

e
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Consequently,

1 +r
lim 7/ sup E
TotooV([=T,T]) s he]—o0.t]

arctan 9‘ du(t) =0

It follows that ¢ — arctant is square mean (u, v)-ergodic of infinite class , consequently, f is uniformly square

mean (u, v)-pseudo almost automorphic of infinite class.

For ¢ € C,,v € C(] — 00,0]; L*(P, H)) and Ghm e $(0) = x¢ exist in L?(P, H), then there exists M > 0
——00

such that E||e7?¢(0)[|> < M for § €] — oo, 0].
) 2
E||L(6) ()] ]EH/ G(0)6(0) ()|
</'me><><m%0
0
</ 2O TVR| e 070 G(0)¢(0) (x)]|*df
0
</ 2O 5 R0 G (0)p(0) (x)|*dO
-
</ *E[|eG(0)¢(9) ()| |2do
=
< M/ e?df < oo

Moreover,

0
BlL@@I < ([ db) supBller'o(0)(a)]

< ([ ean)ion

Then L is well defined and L is bounded linear operator from B to L2(P, L*((0,7)).

E||£(t, 1) (@) = F(t,6) )| * = Hﬂ/’ @un—hwwﬂmuMHze
<[m2wwh 6 (0)(@) — h(0,62(0)(x))||" a0
< ;/Ooo 2wl 77766279EH¢1 _¢2(9)(x)H2d9

<;/za< (60 (0) ) — 62(6) ) ||

<o ([ e i) for oo

Consequently, we conclude that f and g are Lipschitz continuous and ¢l(yu, v)-pseudo almost automorphic of
infinite class .
Moreover, since h is Lipschitzian by consequently bounded i.e there exists a constant M positive real number

E =

[V =)
MIM
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such that |h(0, z)| < My, then we have

2

0
Ellgtt, e <2+ [ e Bluo.60)(w)| do

0
<2+M12/ e“?dh < oo

— 00

Which implies that g verifies (Hs)

Lemma 5.1. [9] If / 0)|d0 < 1, then the semigroup (U(t)))i>o is hyperbolic and the instable space
= {0}.
Observe that
1 0 1
/ |G (6 )\d@— hm / 0940 = lim [7 (r+1)¢ = —— < 1, then (Hg) holds Then by
r—+oo Ly 41 —r v+1

Proposition(4.7) we deduce the following result.

Theorem 5.2. Under the above assumptions, then equation (5.1) has a unique square mean cl(u,v)-pseudo
almost automorphic solution of infinite class .
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