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Abstract. This paper concerns a class of mean-field stochastic fractional evolution equations. Initially, we establish some
auxiliary results for weighted pseudo S-asymptotically Bloch type periodic stochastic processes. Without a compactness
assumption on the resolvent operator and some additional conditions on forced terms, the existence and uniqueness of
weighted pseudo S-asymptotically Bloch type periodic mild solutions on the real line of the referred equation are obtained. In
addition, we show the existence of weighted pseudo S-asymptotically Bloch type periodic mild solutions with sublinear
growth assumptions on the drift term and compactness conditions. Finally, an example is provided to verify the main
outcomes.
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Weighted pseudo S-asymptotically Bloch type periodic solutions

1. Introduction

Periodicity is a key topic in the qualitative property of differential equations, because of its importance
in both pure mathematics and applications. However, not all the phenomena in the real world can satisfy
the periodicity criteria. Some phenomena have a behaviour that is not periodic, but rather almost periodic,
asymptotically almost periodic, ω-periodicity, asymptotically ω-periodicity, Bloch periodic, and so on. Bloch
periodic phenomena are related to the conductivity of crystalline solids, as F. Bloch showed in [10]. N’Guérékata
and Hasler introduced the concept of Bloch-type periodic functions in [19], which generalizes the classical
notions of ω-periodicity and ω-anti-periodicity. Some publications have also explored the effects of perturbations
on Bloch periodic functions, by defining some quasi-Bloch periodicity concepts. For instance, [18, 20, 32]
studied asymptotically Bloch periodic functions and their applications, while [31–34] investigated (pseudo)
S-asymptotically Bloch periodic functions and their applications. These quasi-Bloch periodic functions are
extensions of the corresponding asymptotically ω-periodic and (pseudo) S-asymptotically ω-periodic functions
in the deterministic case. In [27, 28], the authors investigated the notion of S-asymptotically ω-periodicity
for stochastic processes and established some results on their existence, uniqueness, and asymptotic stability.
Recently, in [5], the concepts of square-mean (weighted) pseudo S-asymptotically Bloch-type periodicity for
stochastic process was introduced, which is a type of periodicity that can capture more stochastic phenomena.
Moreover, the authors of [5] investigated the existence and uniqueness of the mild solution of some stochastic
evolution equations.

In contrast, mean-field stochastic differential equations (SDEs), also known as McKean-Vlasov equations,
represent weak interactions between particles within a large system. Kac [17] first investigated it in relation to
the Boltzmann equation for particle density in diluted monoatomic gases. He also studied it in the stochastic toy
model for the Vlasov kinetic equation for plasma. McKean [13] examined how chaos spreads in physical systems
containingN particles interacting with one another. In his work, he emphasized the importance of the Boltzmann
equation, which describes the statistical behavior of gases with low densities. In [3, 4], Sznitman examines chaos
and the limit equation from a different perspective. As with the previously mentioned SDEs, he described the
limit equation using an evolution equation. A study of the dynamics of the polymers was carried out by E and
Shen in [30]. To approximate the description of the polymers, they used stochastic partial differential equations of
the mean field type. In [2, 11] they addressed similar issues related to stochastic differential equations in infinite
dimensional spaces.

A number of current research investigations have focused primarily on the existence and uniqueness of
solutions for stochastic fractional order evolution equations of the McKean-Vlasov type, with little or no results
from periodic or quasi-periodic solutions for the referred class of equations. Therefore, the above literature
motivates us to explore the existence and uniqueness of weighted pseudo S-asymptotically Bloch type periodicity
mild solutions of the following abstract mean field stochastic fractional evolution equations

∂αt v(t) = Av(t) +

∫ t

−∞
b(t− s)Av(s)ds+ g(t, v(t),Pv(t))

+ f(t, v(t),Pv(t))
dW(t)

dt
, t ∈ R,

Pv(t) = Probability distribution of v(t).

(1.1)

Here ∂αt denotes the Weyl fractional derivative of order α > 0, A : D(A) ⊆ L2(Ω,H) → L2(Ω,H) is a closed
linear operator on a complex Hilbert space L2(Ω,H) (where L2(Ω,H) is an appropriate function space specified
in Section 2) and generate an α-resolvent family {Rα(t)}t≥0 on H, g, f are H-valued stochastic processes. Here
(W(t))t∈R represents a two-sided and standard one-dimensional Brownian motion on H and Pv(t) = P◦ [v(t)]−1

is the probability distribution of v(t) under P ( i.e Pv(t)(K) = P({x ∈ Ω : v(t, x) ∈ K}) for each K ∈ B(H),
where B(H) represents the Borel class on H.

Returning to the literature, when α = 1 and b(t) = 0, the problem (1.1) degrades to a classical stochastic
differential equations of Mckean–Vlasov type for which have been investigated by many researchers through
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different methods [7, 14–16, 21, 22]. For example, let consider an q-particle system vq,1, · · · , vq,q given by the
following weakly interacting stochastic partial differential equations

dvq,j(t) = Avq,j(t)dt+ g(t, vq,j(t), µq(t))dt+ f(t, vq,j(t), µq(t))dW j(t), (1.2)

j = 1, 2, · · · , q, where µq(t) =
1

q

q∑
j=1

δvq,j(t), t ∈ R+ represents the empirical distributions,

(W j(t))j=1,··· ,q are independent standard cylindrical Brownian motions and A generates a C0-semigroup. It is
proved that under suitable conditions on the Equ.(1.2), it’s possible to describe the limit by the following
McKean-Vlasov equation

dv(t) = Av(t)dt+ g(t, v(t),Pv(t)) + f(t, v(t),Pv(t))dW (t) (1.3)

Moreover, if f ≡ 0 and g(t, v(t),Pv(t)) ≡ g(t, v(t)), the existence and uniqueness of almost automorphic,
asymptotically periodic, almost periodic, asymptotically ω-periodic solutions, S-asymptotically ω-periodic
solutions, asymptotically almost periodic and asymptotically almost automorphic, (ω, c)-periodic and pseudo
S-asymptotically (ω, k)-Bloch periodic mild solutions of problem (1.1) have been investigated in deterministic
cases by various authors [6, 8, 9, 24, 35, 36, 38]. In this work, the problem (1.1) captures fading memory
behaviors, and randomness of the dynamical processes. We examine a more general class of above mentioned
problems under the situation that diffusion and drift terms f, g are weighted speudo-S-asymptotically Bloch
periodic, and depend on the probability distribution of the process at times. The obtained outcomes are mainly
relied upon on the Wassertein topology, resolvent operator theory, Banach and Krasnoselki’s fixed point theorem
and stochastic analysis. We firstly provide some convolutions and composition results under some suitable
conditions and continuity assumptions. Next, we establish existence and uniqueness result (see Theorem 3.10)
which needs no compactness condition on the resolvent operator under global Lipschitz conditions on f, g and
additional suitable conditions. Finally, we relax the Lipschitz condition of g to some sublinear growth
conditions (see Theorem 3.14). Consequently, our research study can be viewed as an extension and
continuation of investigation in [5, 6, 8, 9, 24, 35, 36, 38]. Additionally, this work generalize various papers on
S-asymptotically ω-antiperiodic (or ω-periodic) mild solutions of to square-mean weighted pseudo
S-asymptotically (ω, k)-periodic mild solutions for some stochastic fractional evolution equations.

The remainder of the paper is arranged as follows: Section 2 discusses some basic results regarding weighted
pseudo square-mean S-asymptotically Bloch type periodicity processes. Section 3.2 is devoted to the existence
and uniqueness of weighted pseudo S-asymptotically Bloch type periodicity mild solutions of Eq.(1.1). To
summarize this work, we provide an example that illustrates our results, in Section 4.

2. Background

We suppose that (Ω,F ,P) represents a probability space, H is complex separable Hilbert space, and K
indicates a real separable Hilbert space. For convenience, the same notations ∥ · ∥ and (·, ·) are applied to denote
the norms and the inner products in H and K. We denote by L(K,H) the Banach space of all bounded linear
operators from K to H endowed with the topology defined by the operator norm, and L2(Ω,H) stands for the
collection of all strongly-measurable, square-integrable H-valued random variables, which is a complex Hilbert
space endowed with the norm

∥v∥L2 = (E∥v∥2)1/2, v ∈ L2(Ω,H)

where E(·) is the expectation defined by E∥v∥2 =

∫
Ω

∥v∥2dP.

Definition 2.1. A stochastic process v : R → L2(Ω,H) is said to be
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(i) stochastically bounded if there exists a constant M > 0 such that

E∥v(t)∥2 =

∫
Ω

∥v(t)∥2dP < M for all t ∈ R;

(ii) stochastically continuous if lim
t→s

E∥v(t)− v(s)∥2 = 0 for all s ∈ R.

We denote by BC
(
R,L2(Ω,H)

)
the complex Banach space of all bounded and continuous stochastic

processes v from R into L2(Ω,H) with the norm ∥v∥∞ =

(
sup
t∈R

E∥v(t)∥2
)1/2

. We denote by

Pv(t) = P ◦ [v(t)]−1 = µ(v(t)) the distribution of all random variable v(t) : (Ω,F ,P) → H.

2.1. Wasserstein distances

Let (H, d) be a separable complete metric space and P(H) be the space of Borel probability measures on H.
For µ1, µ2 ∈ P(H), we define

dBL(µ1, µ2) = sup
∥ψ∥BL≤1

∣∣∣∣∫
H
ψ d(µ1 − µ2)

∣∣∣∣ , (2.1)

where ψ are Lipschitz continuous functions on H with the norm

∥ψ∥L = sup

{
|ψ(z1)− ψ(z2)|

∥z1 − z2∥
; z1, z2 ∈ H, z1 ̸= z2

}
∥ψ∥BL = max{∥ψ∥∞, ∥ψ∥L} , ∥ψ∥∞ := sup

k∈Y
|ψ(k)| <∞.

It is known that dBL is a complete metric on P(Y) which generates the weak topology [29]. For any p ≥ 1,we
denote by Pp(H) the subspace of P(H) consisting of the probability measures of order p. For any p ≥ 1 and
u, ũ ∈ Pp(H), the p-Wasserstein distance Wp(u, ũ) is defined by :

Wp(u, ũ) = inf
{[ ∫

H×H
|x− y|pµ(dx, dy)

]1/p
: µ ∈ Pp(H×H) with marginals u and ũ

}
The following lemma is of great importance in our analysis.

Lemma 2.2 (Carmona and Delarue [25], Corollary 5.4). If (P1(H), d) is a complete separable metric space, and
µ, µ̃ ∈ P1(H), then

W1(µ, µ̃) = sup
ψ:|ψ(x)−ψ(y)|≤d(x,y)

∫
H
ψ(z)(µ− µ̃)(dz)

where the supremum is taken over all the 1−lipschitz functions..

Notice that if v and ṽ are random variables of order p, then

Wp(Pv,Pṽ) ≤ (E∥v − ṽ∥p)1/p

and the Hölder inequality implies that

Wp(µ, µ̃) ≤ Wq(µ, µ̃), µ, µ̃ ∈ Pp(H), 1 ≤ p ≤ q.
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2.2. Weighted square-mean S-asymptotically Bloch type periodic process

In this segment, we recall some definitions and properties of weighted square-mean S-asymptotically Bloch
type periodic processes. We refer to [5] for a more detailed analysis. Let Λ denote the set of all functions
ρ : R → (0,∞), which are locally integrable over R such that ρ > 0 almost everywhere. For a given r > 0 and
each ρ ∈ Λ, we set

m(r, ρ) =

∫ r

−r
ρ(s)ds.

Throughout the work, we suppose that following condition hold:

(Hρ) : For all ζ ∈ R, lim sup
|t|→∞

ρ(t+ ζ)

ρ(t)
< +∞.

Define the Λ∞ = {ρ ∈ Λ : lim
r→+∞

m(r, ρ) = ∞}.

Definition 2.3 ([5]). A stochastic process v ∈ BC
(
R,L2(Ω,H)

)
is said to be square-mean weighted pseudo-S-

asymptotically (ω, k)-Bloch periodic if for given ω ∈ R, k ∈ R,

lim
r→+∞

1

m(r, ρ)

∫ r

−r
E∥v(t+ ω)− eikωv(t)∥2ρ(t)dt = 0,

for each t ∈ R. We denote the space of all such processes by WSABPω,k(R,L2(Ω,H), ρ) and and

WSABPω,k(R× L2(Ω,H)× P2(H),L2(Ω,H)) =

{
h(·, v, µ) ∈ WSABPω,k(R,L2(Ω,H), ρ)

for any v ∈ L2(Ω,H), µ ∈ P2(H)

}
.

From definition 2.3, we can formulate, the following concepts. By taking

1. kω = π, we obtain the notion of square-mean weighted pseudo-S-asymptotically ω-antiperiodic stochastic
processes, i.e

lim
r→+∞

1

m(r, ρ)

∫ r

−r
E∥v(t+ ω) + v(t)∥2ρ(t)dt = 0, for each t ∈ R;

2. kω = 2π, we get the concept of square-mean weighted pseudo-S-asymptotically ω-periodic stochastic
processes, i.e

lim
r→+∞

1

m(r, ρ)

∫ r

−r
E∥v(t+ ω)− v(t)∥2ρ(t)dt = 0, for each t ∈ R.

Lemma 2.4 ([5]). Let ρ ∈ Λ∞, and X1, X2, X ∈ WSABPω,k(R,L2(Ω,H), ρ), then the following results hold:

(a) X1 +X2 ∈ WSABPω,k(R,L2(Ω,H), ρ), and aX ∈ WSABPω,k(R,L2(Ω,H), ρ) for each a ∈ C.

(b) Xa ∈ WSABPω,k(R,L2(Ω,H), ρ) for each a ∈ R, where Xa(t) := X(t+ a) for each t ∈ R.

(c) WSABPω,k(R,L2(Ω,H), ρ) is a Banach space endowed with the norm ∥ · ∥∞.

Throughout the paper, we define the set

BC(R× L2(Ω,H)× P2(H),L2(Ω,H)) =

{
h(·, v, µ) ∈ BC

(
R,L2(Ω,H)

)
for any v ∈ L2(Ω,H), µ ∈ P2(H)

}
.
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3. Discussion on solutions existence

This section of the paper is mainly concerned with demonstrating that for each weighted pseudo
S-asymptotically (ω, k)-periodic input, the output is still a bounded and continuous mild solutions to the
fractional stochastic evolution equation (1.1), which is also weighted pseudo S-asymptotically (ω, k)-periodic.
To achieve that, we provide some auxiliary outcomes where we establish some useful superposition results.

3.1. Some auxiliary results

Let h ∈ BC(R× L2(Ω,H)× P2(H),L2(Ω,H)) and consider the following assumptions:

(H0) For all u ∈ L2(Ω,H),

lim
r→∞

1

m(r, ρ)

∫ r

−r
E∥h(t+ ω, u,Pu)− eikωh(t, e−ikωu,Pe−ikωu)∥2ρ(t)dt = 0

uniformly on any bounded set of L2(Ω,H).

(H1) There exists a number L > 0 such that for any u, v ∈ L2(Ω,H) and µ1, µ2 ∈ P2(H),

E∥h(t, u, µ1)− h(t, v, µ2)∥2 ≤ L.

(
E∥u− v∥2 +W2

2

(
ν1, ν2

))
,

uniformly for all t ∈ R.

(H*1) For any ϵ > 0 and any bounded subset D ⊂ L2(Ω,H), there exist constants Tϵ,D > 0 and δϵ,D > 0 such
that

E∥h(t, v1,Pv1)− h(t, v2,Pv2)∥2 ≤ ϵ

for all v1, v2 ∈ D with E∥v1 − v2∥2 ≤ δϵ,D and t ≥ Tϵ,D.

Remark 3.1. The condition (H*1) mean that h : R×L2(Ω,H)×P2(H) is asymptotically uniformly continuous
on bounded sets of L2(Ω,H).

Remark 3.2. Particularly, by choosing

1. kω = π, condition (H0) degrades to assumption (H*0) given by: for all v ∈ L2(Ω,H),

lim
r→∞

1

m(r, ρ)

∫ r

−r
E∥h(t+ ω, v,Pv) + h(t,−v,P−v)∥2ρ(t)dt = 0

uniformly on any bounded set of L2(Ω,H).

2. kω = 2π, condition (H0) degrades to assumption (H**0) given by: for all v ∈ L2(Ω,H),

lim
r→∞

1

m(r, ρ)

∫ r

−r
E∥h(t+ ω, v,Pv)− h(t, v,Pv)∥2ρ(t)dt = 0

uniformly on any bounded set of L2(Ω,H).

We have the following composition theorem.

Theorem 3.3. Let ρ ∈ Λ∞. If h ∈ BC(R×L2(Ω,H)×P2(H),L2(Ω,H)) satisfies (H0)− (H1), then we have
h(·, v(·),Pv(·)) ∈ WSABPω,k(R,L2(Ω,H), ρ) for every v ∈ WSABPω,k(R,L2(Ω,H), ρ).
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Proof. Since v ∈ WSABPω,k(R,L2(Ω,H), ρ) then sup
t∈R

E∥v(t)∥2 <∞. Therefore

sup
t∈R

E∥h(t, v(t),Pv(t))∥2 ≤ sup
t∈R

E∥h(t, v(t),Pv(t))− h(t, 0, 0∥2 + sup
t∈R

E∥h(t, 0, 0)∥2

≤ L sup
t∈R

(
E∥v(t)∥2 +W2

2(Pv(t), 0)
)
+ sup

t∈R
E∥h(t, 0, 0)∥2

≤ 2L sup
t∈R

E∥v(t)∥2 + sup
t∈R

E∥h(t, 0, 0)∥2 <∞.

Let t, t0 ∈ R and v ∈ WSABPω,k(R,L2(Ω,H), ρ). Then

E
∥∥h(t, v(t),Pv(t))− h(t0, v(t0),Pv(t0))

∥∥2 ≤ 3E
∥∥h(t, v(t),Pv(t))− h(t0, v(t),Pv(t))

∥∥2
+ 3E

∥∥h(t0, v(t),Pv(t))− h(t0, v(t0),Pv(t))
∥∥2

+ 3E
∥∥h(t0, v(t0),Pv(t))− h(t0, v(t0),Pv(t0))

∥∥2
≤ 3E

∥∥h(t, v(t),Pv(t))− h(t0, v(t),Pv(t))
∥∥2

+ 3LE ∥v(t)− v(t0)∥2 + 3LW2
2

(
v(t), v(t0)

)
≤ 3E

∥∥h(t, v(t),Pv(t))− h(t0, v(t),Pv(t))
∥∥2

+ 6LE ∥v(t)− v(t0)∥2 .

Since v ∈ WSABPω,k(R,L2(Ω,H), ρ) and h ∈ BC(R× L2(Ω,H)× P2(H),L2(Ω,H)) then

lim
t→t0

E
∥∥h(t, v(t),Pv(t))− h(t0, v(t),Pv(t))

∥∥2 = lim
t→t0

E ∥v(t)− v(t0)∥2 = 0.

It follows that h(·, v(·),Pv(·)) ∈ BC
(
R,L2(Ω,H)

)
. Next, we prove that

lim
r→+∞

1

m(r, ρ)

∫ r

−r
E∥h(t+ ω, v(t+ ω),Pv(t+ω)))− eikωh(t, v(t),Pv(t)))∥2ρ(t)dt = 0.

We have

1

m(r, ρ)

∫ r

−r
E∥h(t+ ω, v(t+ ω),Pv(t+ω)))− eikωh(t, v(t),Pv(t)))∥2ρ(t)dt

≤ 1

m(r, ρ)

∫ r

−r
E∥h(t+ ω, v(t+ ω),Pv(t+ω))− eikωh(t, e−ikωv(t+ ω),Pe−ikωv(t+ω))∥2ρ(t)dt

+
2

m(r, ρ)

∫ r

−r
E∥eikωh(t, e−ikωv(t+ ω),Pe−ikωv(t+ω))− eikωh(t, v(t),Pv(t)))∥2ρ(t)dt

≤ 2

m(r, ρ)

∫ r

−r
E∥h(t+ ω, v(t+ ω),Pv(t+ω))− eikωh(t, e−ikωv(t+ ω),Pe−ikωv(t+ω))∥2ρ(t)dt

+
2L

m(r, ρ)

∫ r

−r

(
E∥e−ikωv(t+ ω))− v(t)∥2 +W2

2

(
Pe−ikωv(t+ω),Pv(t)

))
ρ(t)dt

≤ 2

m(r, ρ)

∫ r

−r
E∥h(t+ ω, v(t+ ω),Pv(t+ω))− eikωh(t, e−ikωv(t+ ω),Peikωv(t+ω))∥2ρ(t)dt

+
4L

m(r, ρ)

∫ r

−r
E∥e−ikωv(t+ ω)− v(t)∥2ρ(t)dt

→ 0 as r → +∞ by (H0) and the fact that v ∈ WSABPω,k(R,L2(Ω,H), ρ).
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Then it follows that

lim
r→+∞

1

m(r, ρ)

∫ r

−r
E∥h(t+ ω, v(t+ ω),Pv(t+ω)))− eikωh(t, v(t),Pv(t)))∥2ρ(t)dt = 0.

Which means that h(·, v(·),Pv(·)) ∈ WSABPω,k(R,L2(Ω,H), ρ). ■

From Theorem 3.3, we derive the following corollaries.

Corollary 3.4. Let ρ ∈ Λ∞ and v be a square-mean weighted pseudo-S-asymptotically ω-antiperiodic stochastic
process. If h ∈ BC(R × L2(Ω,H) × P2(H),L2(Ω,H)) satisfies (H*0)-(H1), then t 7−→ h(t, v(t),Pv(t)) is
square-mean weighted pseudo-S-asymptotically ω-antiperiodic.

Corollary 3.5. Let ρ ∈ Λ∞ and v be a square-mean weighted pseudo-S-asymptotically ω-periodic stochastic
process. If h ∈ BC(R × L2(Ω,H) × P2(H),L2(Ω,H)) satisfies (H**0)-(H1), then t 7−→ h(t, v(t),Pv(t)) is
square-mean weighted pseudo-S-asymptotically ω-periodic.

Theorem 3.6. Let ρ ∈ Λ∞. If h ∈ BC(R × L2(Ω,H) × P2(H),L2(Ω,H)) satisfies (H0)-(H*1), then we have
t −→ h(t, v(t),Pv(t)) ∈ WSABPω,k(R,L2(Ω,H), ρ) for every v ∈ WSABPω,k(R,L2(Ω,H), ρ).

Proof. The demonstration can be done similarly to Theorem 3.3 and Theorem 2.6 in [5] with minor
modifications. ■

Now, we present some convolutions results.

Lemma 3.7. If {K(t)}t≥0 ⊂ B(H) is uniformly 1−integrable and strongly continuous family of operators, and
X ∈ WSABPω,k(R,L2(Ω,H), ρ), then

t 7−→ Φ(t) =

∫ t

−∞
K(t− s)X(s)ds ∈ WSABPω,k(R,L2(Ω,H), ρ).

Proof. Let X ∈ WSABPω,k(R,L2(Ω,H), ρ). Since the operator family {K(t)}t≥0 is uniformly 1−integrable
then there exist M > 0 such that ∫ ∞

0

∥K(t)∥dt ≤ M.

Then it is easy to show that Φ ∈ BC
(
R,L2(Ω,H)

)
using the Lebesgue dominated convergence theorem and the

fact that X ∈ BC
(
R,L2(Ω,H)

)
. For any r > 0 we have

1

m(r, ρ)

∫ r

−r
E∥Φ(t+ ω)− eikωΦ(t)∥2ρ(t)dt

=
1

m(r, ρ)

∫ r

−r
E

∥∥∥∥∫ t+ω

−∞
K(t+ ω − s)X(s)ds− eikω

∫ t

−∞
K(t− s)X(s)ds

∥∥∥∥2 ρ(t)dt
=

1

m(r, ρ)

∫ r

−r
E

∥∥∥∥∫ t

−∞
K(t− s)X(s+ ω)ds− eikω

∫ t

−∞
K(t− s)X(s)ds

∥∥∥∥2 dρ(t)dt
=

1

m(r, ρ)

∫ r

−r
E

∥∥∥∥∫ t

−∞
K(t− s)[X(s+ ω)− eikωX(s)]ds

∥∥∥∥2 ρ(t)dt
≤ 1

m(r, ρ)

∫ r

−r

[∫ t

−∞
∥K(t− s)∥ ds

∫ t

−∞
∥K(t− s)∥ E∥X(s+ ω)− eikωX(s)∥2ds

]
ρ(t)dt

≤M 1

m(r, ρ)

∫ r

−r

[∫ t

−∞
∥K(t− s)∥ E∥X(s+ ω)− eikωX(s)∥2ds

]
ρ(t)dt

≤M 1

m(r, ρ)

∫ r

−r

[∫ ∞

0

∥K(s)∥ E∥X(t− s+ ω)− eikωX(t− s)∥2ds
]
ρ(t)dt.
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From the Fubini theorem, it follows that

M
1

m(r, ρ)

∫ r

−r

[∫ ∞

0

∥K(s)∥ E∥X(t− s+ ω)− eikωX(t− s)∥2ds
]
ρ(t)dt

=M

∫ ∞

0

∥K(s)∥
[

1

m(r, ρ)

∫ r

−r
E∥X(t− s+ ω)− eikωX(t− s)∥2ρ(t)dt

]
ds

=M

∫ ∞

0

∥K(s)∥
[

1

m(r, ρ)

∫ r

−r
E∥X−s(t+ ω)− eikωX−s(t)∥2ρ(t)dt

]
ds.

Since X ∈ WSABPω,k(R,L2(Ω,H), ρ), thanks to Lemma 2.4, we know that for any s ∈ R, we have

lim
r→+∞

1

m(r, ρ)

∫ r

−r
E∥X−s(t+ ω)− eikωX−s(t)∥2ρ(t)dt = 0.

Then Lebesgue dominated convergence theorem yield that∫ ∞

0

∥K(s)∥
[

1

m(r, ρ)

∫ r

−r
E∥X−s(t+ ω)− eikωX−s(t)∥2ρ(t)dt

]
ds→ 0 as r → +∞.

Therefore

lim
r→+∞

1

m(r, ρ)

∫ r

−r
E∥Φ(t+ ω)− eikωΦ(t)∥2ρ(t)dt = 0.

Which proves that Φ ∈ WSABPω,k(R,L2(Ω,H), ρ). ■

Lemma 3.8. If {K(t)}t≥0 ⊂ B(H) is uniformly 2−integrable and strongly continuous family of operators, and
X ∈ WSABPω,k(R,L2(Ω,H), ρ), then

t 7−→ Φ̃(t) =

∫ t

−∞
K(t− s)X(s)dW(s) ∈ WSABPω,k(R,L2(Ω,H), ρ).

Proof. Since the operator family {K(t)}t≥0 is uniformly 2−integrable then by the Ito’s isometry property of
stochastic integral, the Lebesgue dominated convergence theorem and the fact that X ∈ BC

(
R,L2(Ω,H)

)
, it is

easy to show that Φ̃ ∈ BC
(
R,L2(Ω,H)

)
using the Lebesgue dominated convergence theorem and the fact that

X ∈ BC
(
R,L2(Ω,H)

)
. We have that

1

m(r, ρ)

∫ r

−r
E∥Φ̃(t+ ω)− eikωΦ̃(t)∥2ρ(t)dt

=
1

m(r, ρ)

∫ r

−r
E

∥∥∥∥∫ t+ω

−∞
K(t+ ω − s)X(s)dW(s)− eikω

∫ t

−∞
K(t− s)X(s)dW(s)

∥∥∥∥2 ρ(t)dt
=

1

m(r, ρ)

∫ r

−r
E

∥∥∥∥∫ t

−∞
K(t− s)X(s+ ω)dW(s+ ω)− eikω

∫ t

−∞
K(t− s)X(s)dW(s)

∥∥∥∥2 ρ(t)dt.
Let W̃ (s) = W(s + ω) − W(ω). We know that W̃ is a Brownian motion and has the same distribution as W.
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Using the Ito’s isometry property of stochastic integral and the Fubini’s theorem, we obtain that

1

m(r, ρ)

∫ r

−r
E∥Φ̃(t+ ω)− eikωΦ̃(t)∥2dµ(t)

=
1

m(r, ρ)

∫ r

−r
E

∥∥∥∥∫ t

−∞
K(t− s)X(s+ ω)dW̃ (s)− eikω

∫ t

−∞
K(t− s)X(s)dW̃ (s)

∥∥∥∥2 ρ(t)dt
=

1

m(r, ρ)

∫ r

−r
E

∥∥∥∥∫ t

−∞
K(t− s)

[
X(s+ ω)− eikωX(s)

]
dW̃ (s)

∥∥∥∥2 ρ(t)dt
=

1

m(r, ρ)

∫ r

−r

∫ t

−∞
E
∥∥K(t− s)

[
X(s+ ω)− eikωX(s)

]∥∥2 dsρ(t)dt
≤ 1

m(r, ρ)

∫ r

−r

[∫ t

−∞
∥K(t− s)∥2 E∥X(s+ ω)− eikωX(s)∥2ds

]
ρ(t)dt

≤ 1

m(r, ρ)

∫ r

−r

[∫ ∞

0

∥K(s)∥2 E∥X(t− s+ ω)− eikωX(t− s)∥2ds
]
ρ(t)dt

≤
∫ ∞

0

∥K(s)∥2
[

1

m(r, ρ)

∫ r

−r
E∥X(t− s+ ω)− eikωX(t− s)∥2ρ(t)dt

]
ds.

Since X ∈ WSABPω,k(R,L2(Ω,H), ρ) and {K(t)}t≥0 is uniformly 2−integrable, therefore invoking Lemma
2.4 and Lebesgue dominated converge theorem, we get that

lim
r→+∞

1

m(r, ρ)

∫ r

−r
E∥Φ̃(t+ ω)− eikωΦ̃(t)∥2ρ(t)dt = 0.

which proves that Φ̃ ∈ WSABPω,k(R,L2(Ω,H), ρ). ■

It is worthwhile to point out that if kω = π (resp. kω = 2π), from Lemmas 3.7 and 3.8, we can get
some convolutions results for weighted pseudo S-asymptotically ω-anti-periodic (resp. ω-periodic) stochastic
processes.

3.2. Existence of mild solution in WSABPω,k(R,L2(Ω,H), ρ)

We will begin by recollecting some facts about the Weyl fractional integrals and derivatives of order α > 0, as
well as the α-resolvent operators that will be employed to develop the main results. For more details on properties
α-resolvent operators, one can make reference to [24]. Suppose that X is a Banach space. For given function
h : R → X, the Weyl fractional integral of order α > 0 is defined by

∂−αt h(t) :=
1

Γ(α)

∫ t

−∞
(t− s)α−1h(s)ds, t ∈ R,

when this integral is convergent. The Weyl fractional derivative ∂αt of order α is defined by

∂αt h(t) =
dn

dtn
∂
−(n−α)
t h(t), t ∈ R,

where n = [α] + 1, and the notation [α] represents the integer part of α. Now, Let A be a closed and linear
operator with domain D(A) defined on a Banach space X , and α > 0. For a given kernel b(·) ∈ L1

loc(R+), it
is said that A is the generator of an α-resolvent family if there exists ξ > 0 and a strongly continuous family
Rα : R+ → B(X) such that {

λα

1 + b̂(λ)
: Re(λ) > ξ

}
⊆ ρ(A)
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and for all y ∈ X,

(λα − (1 + b̂(λ))A)−1y =
1

1 + b̂(λ)

(
λα

1 + b̂(λ)
−A

)−1

y =

∫ ∞

0

e−λtRα(t)ydt, Reλ > ξ.

{Rα(t)}t≥0 is called the α-resolvent family generated by the operator A. Motivated by Ponce [24], we present
the concept of mild solutions for Eq.(1.1). For each t ∈ R, W(t) is a two-sided and standard one-dimensional
Brownian motion defined on the filtered probability space (Ω,F ,P,Ft) with Ft = σ{W(r)−W(s) | r, s ≤ t}.

Definition 3.9. An Ft-progressively measurable process {v(t)}t∈R is called a mild solution of problem (1.1) if it
satisfies the following stochastic integral equation

v(t) =

∫ t

−∞
Rα(t− s)g(s, v(s),Pv(s))ds+

∫ t

−∞
Rα(t− s)f(s, v(s),Pv(s))dW(s)

for all t ∈ R, where {Rα(t)}t≥0 the resolvent family generated by the operator A.

We establish the existence and uniqueness of weighted square-mean S-asymptotically Bloch type periodic
mild solution for Eq.(1.1) under global Lipschitz-type conditions on the second variable of functions.

Theorem 3.10. Suppose that the operator A generates an α-resolvent operator {Rα(t)}t≥0 ⊂ B(H) such that
for t ≥ 0, ∥Rα(t)∥ ≤ ϕα(t) where ϕα ∈ L1(R+) ∩ L2(R+). Further, assume that g, f ∈ BC(R× L2(Ω,H)×
P2(H),L2(Ω,H)) satisfy (H0) and there exists constants L,L′ > 0 such that for any v1, v2 ∈ L2(Ω,H) and
µ1, µ2 ∈ P2(H),

E∥g(t, v1, µ1)− g(t, v2, µ2)∥2 ≤ L

(
E∥v1 − v2∥2 +W2

2(ν1, ν2)

)
,

E∥f(t, v1, µ1)− f(t, v2, µ2)∥2 ≤ L′
(
E∥v1 − v2∥2 +W2

2(ν1, ν2)

)
,

uniformly for all t ∈ R.
Then Eq.(1.1) has a unique mild solution v ∈ WSABPω,k(R,L2(Ω,H), ρ), provided

∥ϕα∥2L1L+ L′∥ϕα∥2L2 <
1

4
. (3.1)

Proof. From Theorem 3.3, for each v ∈ WSABPω,k(R,L2(Ω,H), ρ), the stochastic processes
s 7→ f(s, v(s),Pv(s)), s 7→ g(s, v(s),Pv(s)) belongs to WSABPω,k(R,L2(Ω,H), ρ). From Lemmas 3.7, 3.8
and 2.4-(a), we can define the operator

S : WSABPω,k(R,L2(Ω,H), ρ) → WSABPω,k(R,L2(Ω,H), ρ)

by (Sv)(t) =
∫ t

−∞
Rα(t− s)g(s, v(s),Pv(s))ds+

∫ t

−∞
Rα(t− s)f(s, v(s),Pv(s))dW(s) .

Let v1, v2 ∈ WSABPω,k(R,L2(Ω,H), ρ) and t ∈ R. Then using Cauchy-Schwartz’s inequality and Ito’s
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isometry property of stochastic integral, we have

E∥(Sv1)(t)−(Sv2)(t)∥2

≤2E∥
∫ t

−∞
Rα(t− s)[g(s, v1(s),Pv1(s))− g(s, v2(s),Pv2(s))]ds∥

2

+ 2E∥
∫ t

−∞
Rα(t− s)[f(s, v1(s),Pv1(s))− f(s, v2(s),Pv2(s))]dW(s)∥2

≤2

∫ t

−∞
ϕα(t− s)ds

(∫ t

−∞
ϕα(t− s)E∥[g(s, v1(s),Pv1(s))− g(s, v2(s),Pv2(s))]∥

2 ds

)
+ 2

(∫ t

−∞
ϕ2α(t− s)E∥[f(s, v1(s),Pv1(s))− f(s, v2(s),Pv2(s))]∥

2 ds

)
≤2L∥ϕα∥L1

(∫ t

−∞
ϕα(t− s)

[
E∥v1(s)− v2(s)∥2 +W2

2

(
v1(s), v2(s)

)]
ds

)
+ 2L′

(∫ t

−∞
ϕ2α(t− s)

[
E∥v1(s)− v2(s)∥2 +W2

2

(
v1(s), v2(s)

)]
ds

)
≤4L ∥ϕα∥2L1 sup

s∈R
E∥v1(s)− v2(s)∥2 + 4L′∥ϕα∥2L2 sup

s∈R
E∥v1(s)− v2(s)∥2

≤4

(
∥ϕα∥2L1L+ L′∥ϕα∥2L2

)
∥v1 − v2∥2∞.

Therefore we have
∥Sv1 − Sv2∥∞ ≤ 2

√
∥ϕα∥2L1L+ L′∥ϕα∥2L2 ∥v1 − v2∥∞ .

The conclusion follows from the Banach fixed point theorem.

Remark 3.11. By taking kω = π, we can derive some existence results for square-mean weighted pseudo S-
asymptotically ω-antiperiodic mild solutions to problem (1.1) from Theorems 3.10. Moreover, choosing kω =

2π, we can derive some existence results for square-mean weighted pseudo S-asymptotically ω-periodic mild
solutions to problem (1.1) from Theorems 3.10.

■

In the rest of this section, we prove the existence of the weighted pseudo S-asymptotic Bloch type periodic
mild solution for Eq.(1.1) under sublinear growth conditions on g and global Lipschitz assumption on f . First,
suppose that Ψ : R → R is a continuous functions which satisfies Ψ(t) ≥ 1 for all t ∈ R and lim

|t|→∞
Ψ(t) = ∞.

We define the space

CΨ(R,L2(Ω,H)) :=

{
v ∈ BC

(
R,L2(Ω,H)

)
: lim

|t|→∞

E∥v(t)∥2

Ψ(t)
= 0

}
.

CΨ(R,L2(Ω,H)) is a Banach space equipped with the norm ∥v∥Ψ =

(
supt∈R

E∥v(t)∥2

Ψ(t)

)1/2

.

Lemma 3.12 ([12]). A set U ⊂ CΨ(R,L2(Ω,H)) is relatively compact if the following conditions hold

(a) lim
|t|→∞

E∥u(t)∥2

Ψ(t)
= 0 uniformly for any u ∈ U;

(b) U is equicontinuous.

(c) The set U(t) = {u(t) : u ∈ U} is relatively compact in L2(Ω,H) for each t ∈ R.
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In order to accomplish that, we will need the following conditions:

(H2) The functions g, f ∈ BC(R× L2(Ω,H)× P2(H),L2(Ω,H)) satisfy

1. f(t, z, µ) and g(t, z, µ) are uniformly continuous in any bounded subset D ⊆ L2(Ω,H) uniformly
for t ∈ R and µ ∈ P2(H)

2. For all µ ∈ P2(H), there is a continuous nondecreasing function Xg : [0,+∞) → [0,+∞) and
positive constant Mg :=Mg(µ) such that

E∥g(t, z, µ)∥2 ≤Mg Xg(E∥z∥2) for all t ∈ R, z ∈ L2(Ω,H).

3. For each ϵ > 0 there exist δ > 0 such that for every y, z ∈ CΨ(R,L2(Ω,H)), ∥y − z∥Ψ ≤ δ implies
that ∫ t

−∞
ϕα(t− s)E∥g(t, y,Py)− g(t, z,Pz)∥2ds ≤

ϵ

4(∥ϕα∥L1 + 1)
for all t ∈ R,∫ t

−∞
ϕ2α(t− s)E∥f(t, y,Py)− f(t, z,Pz)∥2ds ≤

ϵ

4
for all t ∈ R and

J := sup
t∈R

(∫ t

−∞
ϕ2α(t− s)Ψ(s)ds

)
<∞.

Our strategy is based on the following Krasnoselskii’s fixed point theorem.

Lemma 3.13 ([1]). Suppose B is a closed convex and nonempty subset of a Banach space Y and S1 and S2 are
two operators verifying

1. If y, z ∈ B; then S1y + S2z ∈ B;

2. S1 is compact and continuous;

3. S2 is a mapping contraction.

Then, there exists y ∈ B such that y = S1y + S2y.

We have the following existence result.

Theorem 3.14. Suppose that the operator A generates a compact α-resolvent operator {Rα(t)}t≥0 ⊂ B(H)

for t > 0 such that ∥Rα(t)∥ ≤ ϕα(t) where ϕα ∈ L1(R+) ∩ L2(R+) for t ≥ 0. Assume that g, f ∈ BC(R ×
L2(Ω,H) × P2(H),L2(Ω,H)) verify assumptions (H0) and (H2). Moreover, suppose that g satisfies condition
(H*1) and there exists constants L′ > 0 such that for any v1, v2 ∈ L2(Ω,H) and µ1, µ2 ∈ P2(H),

E∥f(t, v1, µ1)− f(t, v2, µ2)∥2 ≤ L′
(
E∥v1 − v2∥2 +W2

2(ν1, ν2)

)
.

Then the problem (1.1) has at least one mild solution in WSABPω,k(R,L2(Ω,H), ρ) provided that

2L′J < 1.

Proof. Define the operator S : CΨ(R,L2(Ω,H)) → CΨ(R,L2(Ω,H)) by

(Sv)(t) =
∫ t

−∞
Rα(t− s)g(s, v(s),Pv(s))ds+

∫ t

−∞
Rα(t− s)f(s, v(s),Pv(s))dW(s)

=(S1v)(t) + (S2v)(t).
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where

(S1v)(t) =

∫ t

−∞
Rα(t− s)g(s, v(s),Pv(s))ds and

(S2v)(t) =

∫ t

−∞
Rα(t− s)f(s, v(s),Pv(s))dW(s).

In order to show that S has at least one fixed point in WSABPω,k(R,L2(Ω,H), ρ) through the Krasnoselskii’s
fixed point theorem, we will divide the proof in several steps.
Step 1. We claim that S : CΨ(R,L2(Ω,H)) → CΨ(R,L2(Ω,H)).
Let v ∈ CΨ(R,L2(Ω,H)). First, from Lemmas 3.7 and 3.8, S(Φ) ∈ C(R,L2(Ω,H)).

Next, we have that

E∥(Sv)(t)∥2

≤2E∥
∫ t

−∞
Rα(t− s)g(s, v(s),Pv(s))ds∥2 + 2E∥

∫ t

−∞
Rα(t− s)f(s, v(s),Pv(s))dW(s)∥2

≤2

∫ t

−∞
ϕα(t− s)ds

(∫ t

−∞
ϕα(t− s)E∥g(s, v(s),Pv(s))∥2 ds

)
+ 2

(∫ t

−∞
ϕ2α(t− s)E∥f(s, v(s),Pv(s))− f(s, 0,Pv(s)) + f(s, 0,Pv(s))∥2 ds

)
≤2∥ϕα∥L1

(∫ t

−∞
ϕα(t− s)

[
MgXg(∥v∥2∞)

]
ds

)
+ 4

(∫ t

−∞
ϕ2α(t− s))

[
L′E∥v(s)∥2 + E∥f(s, 0,Pv(s))∥2

]
ds

)
≤2MgXg(∥v∥2∞)∥ϕα∥2L1 + 4∥ϕα∥2L2

(
L′∥v∥2∞ +Mf

)
,

where Mf ≡Mf (µ) = supt∈R E∥f(t, 0, µ)∥2 for all µ ∈ P2(H).
Since v ∈ CΨ(R,L2(Ω,H)) and by invoking condition (H2)-(3), we derive that

lim
|t|→∞

E∥(Sv)(t)∥2

Ψ(t)
≤ lim

|t|→∞

2MgXg(∥v∥2∞)∥ϕα∥2L1 + 4∥ϕα∥2L2

(
L′∥v∥2∞ +Mf

)
Ψ(t)

= 0.

This prove that S : CΨ(R,L2(Ω,H)) → CΨ(R,L2(Ω,H)).

Step 2. We claim that S is continuous on CΨ(R,L2(Ω,H))

Let ϵ > 0. From condition (H1)-(3), there exist a real positive constant δ > 0 such that for each y, z ∈
CΨ(R,L2(Ω,H)) with ∥y − z∥Ψ ≤ δ, we have

∫ t

−∞
ϕα(t− s)E∥g(t, y,Py)− g(t, z,Pz)∥2ds ≤

ϵ

4(∥ϕα∥L1 + 1)
for all t ∈ R,∫ t

−∞
ϕ2α(t− s)E∥f(t, y,Py)− f(t, z,Pz)∥2ds ≤

ϵ

4
for all t ∈ R.
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Now, we obtain that

E∥(Sy)(t)−(Sz)(t)∥2

≤2E∥
∫ t

−∞
Rα(t− s)[g(s, y(s),Py(s))− g(s, z(s),Pz(s))]ds∥2

+ 2E∥
∫ t

−∞
Rα(t− s)[f(s, y(s),Py(s))− f(s, z(s),Pz(s))]dW(s)∥2

≤2

∫ t

−∞
ϕα(t− s)ds

(∫ t

−∞
ϕα(t− s)E∥[g(s, y(s),Py(s))− g(s, z(s),Pz(s))]∥2 ds

)
+ 2

(∫ t

−∞
ϕ2α(t− s)E∥[f(s, y(s),Py(s))− f(s, z(s),Pz(s))]∥2 ds

)
≤2∥ϕα∥L1

(∫ t

−∞
ϕα(t− s)E∥[g(s, y(s),Py(s))− g(s, z(s),Pz(s))]∥2 ds

)
+ 2

(∫ t

−∞
ϕ2α(t− s)E∥[f(s, y(s),Py(s))− f(s, z(s),Pz(s))]∥2 ds

)
≤(2∥ϕα∥L1)×

(
ϵ

4(∥ϕα∥L1 + 1)

)
+ 2×

( ϵ
4

)
≤ϵ.

Which implies that

∥(Sy)−(Sz)∥Ψ =

(
sup
t∈R

1

Ψ(t)
E∥(Sy)(t)− (Sz)(t)∥2

)1/2

−→ 0 as y → z.

This show that S is continuous on CΨ(R,L2(Ω,H)).

Step 3. We show that there is k > 0 such that S (Bk) ⊆ Bk, where

Bk ≡ Bk

(
CΨ(R,L2(Ω,H))

)
:= {z ∈ CΨ(R,L2(Ω,H)) such that ∥z∥Ψ ≤ k}

represents the closed ball with center at 0 and radius k in the space CΨ(R,L2(Ω,H)). Arguing by contradiction,
suppose that for each k > 0 there exist zk ∈ Bk such that ∥Szk∥Ψ > k.
We have

E∥(Szk)(t)∥2 ≤2MgXg(∥v∥2∞)∥ϕα∥2L1 + 4∥ϕα∥2L2

(
L′∥v∥2∞ +Mf

)
.

For all t ∈ R, we get

E∥(Szk)(t)∥2

Ψ(t)
≤ 1

Ψ(t)

(
2MgXg(∥v∥2∞)∥ϕα∥2L1 + 4∥ϕα∥2L2

(
L′∥v∥2∞ +Mf

))

We get that

k < ∥(Szk)∥Ψ = sup
t∈R

E∥(Szk)(t)∥2

Ψ(t)

≤ sup
t∈R

1

Ψ(t)

(
2MgXg(∥v∥2∞)∥ϕα∥2L1 + 4∥ϕα∥2L2

(
L′∥v∥2∞ +Mf

))
= 0.
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Which is a contradiction.

Step 4. We show that S1 is completely continuous and S2 is a contraction.
By similar computations as in the proof of theorem 3.10, it’s easy to see that S2 is a contraction provided
4L′∥vα∥2L2 < 1. On the other hand, it easy to see that S1 : Bk → Bk is continuous.
Let U = S1(Bk) and u(t) = (S1v)(t) for v ∈ Bk and t ∈ R. We aim to prove that U is relatively compact with
the aid of lemma 3.12. For more clarity, we split this step in three claims.

Claim 1. U(t) is a relatively compact subset of L2(Ω,H) for each t ∈ R.
We know that s 7−→ ϕα(s) is integrable on R+. Hence, for ϵ > 0, we can choose b > 0 such that∫ ∞

b

ϕα(s)ds ≤
ϵ

∥ϕα∥L1MgXg(∥v∥2∞) + 1
.

Since for any 0 < a < b <∞, let

ua(t) =

∫ b

a

Rα(s)g(t− s, v(t− s),Pv(t−s))ds+
∫ ∞

b

Rα(s)g(t− s, v(t− s),Pv(t−s))ds,

and

Ua(t) := {ua(t) : 0 < a < b <∞} .

We derive that

E

∥∥∥∥∫ ∞

b

Rα(s)g(t− s, v(t− s),Pv(t−s))ds
∥∥∥∥2 ≤ ∥ϕα∥L1MgXg(∥v∥2∞)

∫ ∞

b

ϕα(s)ds < ϵ.

and by invoking the mean value theorem for Bochner integral, we get

ua(t) ∈ (b− a)co(O) +Bϵ(L2(Ω,H)),

where co(O) represents the convex hull of O and

O := {Rα(s)g(ξ, v, µ) : a ≤ s ≤ b, t− b ≤ ξ ≤ t− a, ∥v∥Ψ ≤ k, µ ∈ P2(H)}

Furthermore, by the compactness of Rα(t) for t > 0, it follows that O is relatively compact. Hence, we deduce
that Ua(t) ⊆ (b− a)co(O) +Bϵ(L2(Ω,H)) is also relatively compact for any a > 0.
By Lebesgue dominated convergence theorem, we have that

E∥u(t)− ua(t)∥2 =E

∥∥∥∥∥
∫ ∞

0

Rα(s)g(t− s, v(t− s),Pv(t−s))ds−
∫ b

a

Rα(s)g(t− s, v(t− s),Pv(t−s))ds

−
∫ ∞

b

Rα(s)g(t− s, v(t− s),Pv(t−s))ds,
∥∥∥∥2

=E

∥∥∥∥∫ a

0

Rα(s)g(t− s, v(t− s),Pv(t−s))ds
∥∥∥∥2

≤∥ϕα∥L1MgXg(∥v∥2∞)

∫ a

0

ϕα(s)ds→ 0 as a→ 0.

Thus there exists relatively compact sets arbitrarily close to the set U(t). This proves that U(t) is relatively
compact.
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Claim 2. U is equicontinuous.
Simple computations yield that

u(t+ r)− u(t)

=

∫ ∞

0

Rα(s)g(t+ r − s, v(t+ r − s),Pv(t+r−s))ds−
∫ ∞

0

Rα(s)g(t− s, v(t− s),Pv(t−s))ds

=

[∫ r

0

Rα(s)g(t+ r − s, v(t+ r − s),Pv(t+r−s))ds

+

∫ a

0

Rα(s+ r)g(t− s, v(t− s),Pv(t−s))ds

+

∫ ∞

a

Rα(s+ r)g(t− s, v(t− s),Pv(t−s))ds
]

−
[∫ a

0

Rα(s)g(t− s, v(t− s),Pv(t−s))ds+
∫ ∞

a

Rα(s)g(t− s, v(t− s),Pv(t−s))ds
]

=

∫ r

0

Rα(s)g(t+ r − s, v(t+ r − s),Pv(t+r−s))ds

+

∫ a

0

[Rα(s+ r)−Rα(s)]g(t− s, v(t− s),Pv(t−s))ds

+

∫ ∞

a

[Rα(s+ r)−Rα(s)]g(t− s, v(t− s),Pv(t−s))ds

=F1(a, v, t, r) + F2(a, v, t, r),

where

F1(a, v, t, r) =

∫ r

0

Rα(s)g(t+ r − s, v(t+ r − s),Pv(t+r−s))ds

+

∫ a

0

[Rα(s+ r)−Rα(s)]g(t− s, v(t− s),Pv(t−s))ds

F2(a, v, t, r) =

∫ ∞

a

[Rα(s+ r)−Rα(s)]g(t− s, v(t− s),Pv(t−s))ds.

It follows that

E∥u(t+ r)− u(t)∥2 ≤ 2
(
E∥F1(a, v, t, r)∥2 + E∥F2(a, v, t, r)∥2

)
By using Cauchy-Schwartz’s inequality and condition (H2)-(2), we obtain the following estimations

E∥F1(a, v, t, r)∥2

≤2E

∥∥∥∥∫ r

0

Rα(s)g(t+ r − s, v(t+ r − s),Pv(t+r−s))ds
∥∥∥∥2

+ 2E

∥∥∥∥∫ a

0

[Rα(s+ r)−Rα(s)]g(t− s, v(t− s),Pv(t−s))ds
∥∥∥∥2

≤2∥ϕα∥L1

∫ r

0

ϕα(s)E∥g(t+ r − s, v(t+ r − s),Pv(t+r−s))∥2ds

+

(∫ a

0

∥Rα(s+ r)−Rα(s)∥ds
)(∫ a

0

∥Rα(s+ r)−Rα(s)∥ E∥g(t− s, v(t− s),Pv(t−s))∥2ds
)

≤2∥ϕα∥L1MgXg(∥v∥2∞)

∫ r

0

ϕα(s)ds+MgXg(∥v∥2∞)

(∫ a

0

∥Rα(s+ r)−Rα(s)∥ds
)2

,
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and

E∥F2(a, t, r)∥2

=E∥
∫ ∞

a

[Rα(s+ r)−Rα(s)]g(t− s, v(t− s),Pv(t−s))ds∥2

≤
∫ ∞

a

∥Rα(s+ r)−Rα(s)∥ds
∫ ∞

a

∥Rα(s+ r)−Rα(s)∥ E∥g(t− s, v(t− s),Pv(t−s))∥2 ds

≤MgXg(∥v∥2∞)

(∫ ∞

a

∥Rα(s+ r)−Rα(s)∥ds
)2

.

By the continuity of (Rα(t))t≥0 for t > 0 in the operator norm topology, the right side of the above two
inequalities tends to zero as r → 0. Consequently,

lim
r→0

E∥F2(a, v, t, r)∥2 = lim
r→0

E∥F2(a, v, t, r)∥2 = 0.

We deduce that

E∥(S1Φ)(t+ r)− (S1Φ)(t)∥2 =E∥u(t+ r)− u(t)∥2

≤2E∥F1(a, v, t, r)∥2 + 2E∥F2(a, v, t, r)∥2

−→ 0 as r → 0.

This prove that U is equicontinuous.

Claim 3. We show that lim
|t|→∞

E∥u(t)∥2

Ψ(t)
= 0.

We have that

E∥u(t)∥2

Ψ(t)
≤
MgXg(∥v∥2∞)∥ϕα∥2L1

Ψ(t)
−→ 0 as |t| → ∞.

and this convergence in independent of v ∈ Bk(CΨ(R,L2(Ω,H))).
Hence, by claims 1, 2, 3 and lemma 3.12, we deduce that U is relatively compact in CΨ(R,L2(Ω,H)). Hence
S1 is completely continuous
Step 5. S has a fixed point in WSABPω,k(R,L2(Ω,H), ρ) ∩Bk

Ψ

From Theorem 3.3 and 3.6, for each v ∈ WSABPω,k(R,L2(Ω,H), ρ), the stochastic processes
s 7→ f(s, v(s),Pv(s)), s 7→ g(s, v(s),Pv(s)) belongs to WSABPω,k(R,L2(Ω,H), ρ). From Lemmas 3.7, 3.8
and 2.4-(a), we obtain

S(WSABPω,k(R,L2(Ω,H), ρ)) ⊆ WSABPω,k(R,L2(Ω,H), ρ).

From step 1, it follows that

S
(
WSABPω,k(R,L2(Ω,H), ρ) ∩Bk

)
⊆
(
WSABPω,k(R,L2(Ω,H), ρ) ∩Bk

)
.

On the other hand, by the continuity of S, we have that

S
(
WSABPω,k(R,L2(Ω,H), ρ) ∩Bk

Ψ
)
⊆ S (WSABPω,k(R,L2(Ω,H), ρ) ∩Bk)

Ψ

⊆ WSABPω,k(R,L2(Ω,H), ρ) ∩Bk
Ψ
.

Thanks to Krasnoselski Theorem 3.13, we deduce that S admits a fixed point

v ∈ WSABPω,k(R,L2(Ω,H), ρ) ∩Bk
Ψ
.
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Step 7. We prove that v ∈ WSABPω,k(R,L2(Ω,H), ρ).
Let {vn} ⊂ WSABPω,k(R,L2(Ω,H), ρ) ∩Bk such that ∥vn − v∥Ψ → 0. We obtain

E∥(Svn)(t)− v(t)∥2 = E∥(Svn)(t)− (Sv)(t)∥2

≤2∥ϕα∥L1

(∫ t

−∞
ϕα(t− s)E∥[g(s, vn(s),Pvn(s))− g(s, v(s),Pv(s))]∥2 ds

)
+ 2

(∫ t

−∞
ϕ2α(t− s)E∥[f(s, vn(s),Pvn(s))− f(s, v(s),Pv(s))]∥2 ds

)
.

By using (H2)-(3), we derive that {Svn} converges to {Sv} uniformly in R. Thus,
v = Sv ∈ WSABPω,k(R,L2(Ω,H), ρ) is mild solution of the problem (1.1). ■

Remark 3.15. By taking kω = π, we can derive some existence results for square-mean weighted pseudo S-
asymptotically ω-antiperiodic mild solutions to problem (1.1) from Theorems 3.10 and 3.14. Moreover, choosing
kω = 2π, we can derive some existence results for square-mean weighted pseudo S-asymptotically ω-periodic
mild solutions to problem (1.1) from Theorems 3.10 and 3.14.

For example, we have the following results.

Corollary 3.16. Suppose that the operator A generates a compact α-resolvent operator {Rα(t)}t≥0 ⊂ B(H)

for t > 0 such that ∥Rα(t)∥ ≤ ϕα(t) where ϕα ∈ L1(R+)∩L2(R+) for t ≥ 0 and the functions g, f ∈ BC(R×
L2(Ω,H) × P2(H),L2(Ω,H)) verify assumptions (H*0)-(H2). Moreover, suppose that g satisfies condition
(H*1), and there exists constants L′ > 0 such that for any v1, v2 ∈ L2(Ω,H) and µ1, µ2 ∈ P2(H),

E∥f(t, v1, µ1)− f(t, v2, µ2)∥2 ≤ L′
(
E∥v1 − v2∥2 +W2

2(ν1, ν2)

)
.

Then the problem (1.1) has at least one square-mean weighted pseudo S-asymptotically ω-antiperiodic mild
solution provided that 2L′J < 1..

Corollary 3.17. Suppose that the operator A generates a compact α-resolvent operator {Rα(t)}t≥0 ⊂ B(H)

for t > 0 such that ∥Rα(t)∥ ≤ ϕα(t) where ϕα ∈ L1(R+) ∩ L2(R+) for t ≥ 0 and the functions g, f ∈
BC(R × L2(Ω,H) × P2(H),L2(Ω,H)) verify assumptions (H**0)-(H2). Moreover, suppose that g satisfies
condition (H*1), and there exists constants L′ > 0 such that for any v1, v2 ∈ L2(Ω,H) and µ1, µ2 ∈ P2(H),

E∥f(t, v1, µ1)− f(t, v2, µ2)∥2 ≤ L′
(
E∥v1 − v2∥2 +W2

2(ν1, ν2)

)
.

Then the problem (1.1) has at least one square-mean weighted pseudo S-asymptotically ω-periodic mild solution
provided that 2L′J < 1..

4. Example

To illustrate our theoretical results, we consider

ρ(t) = 1 + t2 for t ∈ R.

Then, ρ ∈ Λ∞ and satisfies (Hρ).
Let H = L2[0, π], 1 < α < 2, ν > 0 and consider the following problem

∂αt v(t, ξ) = −ν v(t, ξ)− ν2

4

∫ t

−∞

(t− s)α−1

Γ(α)
v(t, ξ)ds

+g
(
t, v(t, ξ,Pv(t,ξ)

)
+ f

(
t, v(t, ξ),Pv(t,ξ)

)∂W(t)

∂t
, (t, ξ) ∈ R× (0, π)

v(t, 0) = v(t, π) = 0,

(4.1)
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where W(t) is a two-sided and standard one-dimensional Brownian motion defined on the filtered probability

space (Ω,F ,P,Ft). The problem (4.1) can be written into the form (1.1) with v(t)(ξ) = v(t, ξ), b(t) =
ν

4

tα−1

Γ(α)
and A = −νI , I is the identity operator on the Hilbert space H. It follows from [24, Example 4.17], that A
generates a α−resolvent family {Rα(t)}t≥0 with its Laplace transform satisfying

R̂α(λ) =
λα

(λα + ν/2)2
=

λα−ν/2

(λα + ν/2)
· λα−ν/2

(λα + ν/2)

and

Rα(t) = (r ∗ r)(t) where r(t) = t
α
2 Eα,α/2

(
− ν

2
tα
)

and Eα,α/2(·) is the Mittag-Leffter function (see [26]). From [23, Theorem 4.12], there exists a constant C > 0,
depending only on α, such that, for t ≥ 0

∥Rα(t)∥ ≤ C

1 + νtα
:= ϕα(t).

Simple calculations yield that :

∥ϕα∥L1 =
C

αν1/α
B

(
1

α
, 1− 1

α

)
<∞

and

∥ϕα∥2L2 =
C2

αν(1/α)−1
B

(
1

α
, 2− 1

α

)
<∞,

where B(·, ·) denotes the Beta function.
First, to illustrate the Theorem 3.10, let take the forcing terms are follows:

f(t, z,Pz)(ξ) =M1(t, z)(ξ) + M̃1(t, z,Pz)(ξ) and

g(t, z,Pz)(ξ) =M2(t, z)(ξ) + M̃2(t, z,Pz)(ξ),

where M1(t, z)(ξ) = γ(t)σ1(z(t)(ξ)), M2(t, z)(ξ) = γ(t)σ2(z(t)(ξ))

M̃1(t, z,Pz)(ξ) =
γ(t)

1 + t2

[
cos(z(t)(ξ)) +

∫
L2(0,π)

ℓ(x)Pz(t,ξ)(dx)

]
and

M̃2(t, z,Pz)(ξ) =
γ(t)

1 + t2

[
sin(z(t)(ξ)) +

∫
L2(0,π)

ℓ(x)Pz(t,ξ)(dx)

]
.

We suppose that γ(t) is bounded continuous function such that γ(t+ω) = γ(t) with ω ∈ R and ℓ : L2(0, π) → R
is a 1-Lipschitz continuous function. Furthermore, the functions σi (i = 1, 2) are such that

σi(e
ikωx) = eikωσi(x), and E∥σi(u)− σi(v)∥2H ≤ Li E∥u− v∥2H, Li ≥ 0 for i = 1, 2.

Now, for (i = 1, 2), we have that

Mi(t+ ω, z)(ξ) = γ(t+ ω)σi(z)(ξ) = γ(t)eikωσi(e
−ikωz)(ξ) = eikωMi(t, e

−ikωz)(ξ),

397



M.M Mbaye, A. Diop and M. Dieye

then we get following estimation for z ∈ L2(Ω,H) and r > 0:

1

m(r, ρ)

∫ r

−r
E∥f(t+ ω, z,Pz)− eikωf(t, e−ikωz,Peikωz)∥2Hρ(t)dt

=
1

m(r, ρ)

∫ r

−r
E∥γ(t+ ω)M1(z) + M̃1(t+ ω, z,Pz)

− eikω
(
γ(t)M1(e

−ikωz) + M̃1(t, e
−ikωz,Peikωz)

)
∥2H ρ(t)dt

=
1

m(r, ρ)

∫ r

−r
E∥M̃1(t+ ω, z,Pz)− eikωM̃1(t, e

−ikωz,Peikωz)∥2H ρ(t)dt

≤ ∥γ∥2∞
m(r, ρ)

∫ r

−r
E

∥∥∥∥∥ 1

ρ(t+ ω)

[
cos(z) +

∫
L2(0,π)

ℓ(x)Pz(dx)

]

− 1

ρ(t)
eikω

[
cos(e−ikωz) +

∫
L2(0,π)

ℓ(x)Pe−ikωz(dx)

]∥∥∥∥∥
2

H

ρ(t)dt

≤ 2∥γ∥2∞
m(r, ρ)

∫ r

−r

E

∥∥∥∥∥ 1

ρ(t+ ω)

[
cos (z) +

∫
L2(0,π)

ℓ(x)Pz(dx)

]∥∥∥∥∥
2

H

+ E

∥∥∥∥∥ 1

ρ(t)
eikω

[
cos(e−ikωz) +

∫
L2(0,π)

ℓ(x)Pe−ikωz(dx) (ξ)

]∥∥∥∥∥
2

H

 ρ(t)dt.

By lemma 2.2, Hölder’s inequality and the representation of Wasserstein distance in terms of random variables,
we have ∫

L2(0,π)

ℓ(x)Pz(dx) ≤ W1(Pz, 0) ≤ W2(Pz, 0) ≤ (E∥z∥2)1/2 <∞

1

m(r, ρ)

∫ r

−r
E∥f(t+ ω, z,Pz)− eikωf(t, e−ikωz,Peikωz)∥2Hρ(t)dt

≤ 2∥γ∥2∞
m(r, ρ)

∫ r

−r

(∣∣∣∣ 1

1 + (t+ ω)2

∣∣∣∣2 2(1 + E∥z∥2H) +
∣∣∣∣ 1

1 + t2

∣∣∣∣2 2(1 + E∥eikωz∥2H)

)
ρ(t)dt

≤4 (1 + E∥z∥2H)∥γ∥2∞
m(r, ρ)

∫ r

−r

(∣∣∣∣ 1

1 + (t+ ω)2

∣∣∣∣2 + ∣∣∣∣ 1

1 + t2

∣∣∣∣2
)
ρ(t)dt.

We have

1

m(r, ρ)

∫ r

−r

∣∣∣∣ 1

1 + t2

∣∣∣∣2 ρ(t)dt = 1

m(r, ρ)

∫ r

−r

dt

1 + t2
=

arctan(r)

r + r3

3

→ 0 as r → ∞. (4.2)

Note that by the assumption (Hρ), there exits a constant b > 0 such that for a.e t ∈ R, we have

ρ(t− ω)

ρ(t)
≤ b,

m(t− |ω|, ρ)
m(t, ρ)

≤ b.
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Then

1

m(r, ρ)

∫ r

−r

∣∣∣∣ 1

1 + (t+ ω)2

∣∣∣∣2 ρ(t)dt
≤m(r + |ω|, ρ)

m(r, ρ)

(
1

m(r + |ω|, ρ)

∫ r+|ω|

−r−|ω|

∣∣∣∣ 1

1 + t2

∣∣∣∣2 ρ(t− ω)

ρ(t)
ρ(t)dt

)
≤ b2

m(r + |ω|, ρ)

∫ r+|ω|

−r−|ω|

∣∣∣∣ 1

1 + t2

∣∣∣∣2 ρ(t)dt→ 0 as r → ∞ (similarly to (4.2)).

Hence

lim
r→∞

1

m(r, ρ)

∫ r

−r
E∥f(t+ ω, z,Pz))− eikωf(t, e−ikωz,Peikωz))∥2Hρ(t)dt = 0.

Similarly, we have

lim
r→∞

1

m(r, ρ)

∫ r

−r
E∥g(t+ ω, z,Pz))− eikωg(t, e−ikωz,Peikωz))∥2Hρ(t)dt = 0.

Therefore f, g satisfy (H0). Let u, v ∈ L2(Ω,H) and t ∈ R and µ1, µ2 ∈ P2(H), then we have following
estimation:

E∥f(t, u, µ1)− f(t, v, µ2)∥2H

≤ 3∥γ∥2∞
(
E∥σ1(u)− σ1(v)∥2H

+ E∥ cos(u)− cos(v)∥+

∥∥∥∥∥
∫
L2(0,π)

ℓ(x)µ1(dx)−
∫
L2(0,π)

ℓ(x)µ2(dx)

∥∥∥∥∥
2

H

)
≤ 3∥γ∥2∞

(
L1E∥u− v∥2H + E∥u− v∥2H +

∥∥ ∫
L2(0,π)

ℓ(x)µ1(dx)−
∫
L2(0,π)

ℓ(x)µ2(dx)
∥∥2
H

)
≤ 3∥γ∥2∞

(
L1E∥u− v∥2H + E∥u− v∥2H +

∥∥ ∫
L2(0,π)

ℓ(x)(µ1 − µ2)(dx)
∥∥2
H

)
.

By Lemma 2.2 and Hölder’s inequality, we have that

E∥f(t, u, µ1)− f(t, v, µ2)∥2H ≤ 3∥γ∥2∞
[(
L1 + 1

)
E∥u− v∥2H +W2

1(µ1, µ2)

]
≤ 3∥γ∥2∞

(
L1 + 1

)[
E∥u− v∥2H +W2

2(µ1, µ2)

]
.

Similarly, we obtain

E∥g(t, u, µ1)− g(t, v, µ2)∥2H ≤ 3∥γ∥2∞
(
L2 + 1

)(
E∥u− v∥2H +W2

2

(
µ1, µ2

))
.

Putting L = 3∥γ∥2∞
(
L2 + 1

)
and L′ = 3∥γ∥2∞

(
L2 + 1

)
, we obtain that

∥ϕα∥2L1L+ L′∥ϕα∥2L2

:=
C

αν1/α
B

(
1

α
, 1− 1

α

)
3∥γ∥2∞

(
L1 + 1

)
+ 3∥γ∥2∞

(
L2 + 1

) C2

αν(1/α)−1
B

(
1

α
, 2− 1

α

)
.

Hence, condition (3.1) of Theorem 3.10 is fulfilled by choosing ∥γ∥∞ is small enough. Therefore, by Theorem
3.10, the problem (4.1) has a unique square-mean weighted pseudo S-asymptotically Bloch type periodic mild
solution on R.
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[12] H. R. HENRÍQUEZ, C. LIZAMA, Compact almost automorphic solutions to integral equations with infinite
delay, Nonlinear Analysis: Theory, Methods & Applications,. 71(12)(2009), 6029–6037.

[13] H. P. MCKEAN JR, A class of Markov processes associated with nonlinear parabolic equations, Proc Natl
Acad Sci U S A., 56(6)(1966), 1907–1911.

[14] N. U. AHMED, X.DING, A semilinear McKean-Vlasov stochastic evolution equation in Hilbert space,
Stochastic Process. Appl., 60(1)(1995), 65–85.

[15] N. U. AHMED, A general class of McKean-Vlasov stochastic evolution equations driven by Brownian motion
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[18] M. KOSTIĆ AND D. VELINOV, Asymptotically Bloch-periodic solutions of abstract fractional nonlinear
differential inclusions with piecewise constant argument, Funct. Anal. Approx. Comput., 9(2017), 27–36.
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