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Abstract. The continuous Bernoulli distribution, a one-parameter probability distribution defined over the interval [0, 1],
has recently received increased attention in applied statistics. Numerous studies have highlighted both its merits and
limitations, and proposed extended variants. In this article, we present an innovative modification of the continuous
Bernoulli distribution through an inverse transformation, introducing the inverse continuous Bernoulli distribution. The main
feature of this distribution is that it transfers the properties of the continuous distribution to the interval [1,+∞) without the
need for additional parameters. The first part of this article elucidates the mathematical properties of this novel inverse
distribution, including essential probability functions and quantiles. Inference for the associated model is performed using
the famous maximum likelihood estimation. A comprehensive simulation study is carried out to evaluate the effectiveness of
the estimated model. Its performance is then evaluated in a practical context using data sets from a variety of sources. In
particular, our results demonstrate its superior performance to a wide range of analogous models defined over the support
interval [1,+∞), even outperforming the well-established Pareto model.
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1. Introduction

In order to explain the mathematical basis of this investigation, we will first examine the continuous Bernoulli
(CB) distribution, which was originally introduced in the work of [10]. The definition of this distribution can be
succinctly stated as follows:
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Definition 1.1. The cumulative distribution function (cdf) below defines the CB distribution with the parameter
ω ∈ (0, 1):

FCB(x;ω) =



0, x < 0,

x, ω =
1

2
and x ∈ [0, 1],

ωx(1− ω)1−x + ω − 1

2ω − 1
, ω ∈ (0, 1)/

{
1

2

}
and x ∈ [0, 1],

1, x > 1.

(1.1)

Thus, the CB distribution has a support restricted to the interval [0, 1], with a single parameter similar to the
conventional power distribution. This distribution finds applications in a wide variety of fields, with particular
emphasis on machine learning, probability theory and statistics. In the context of variational autoencoders,
it proves to be highly effective in replicating the pixel intensities of real-world images. For a more in-depth
exploration of these topics, see the following references: [10], [8], [12] and [9].

Recently, there have been notable developments in the scientific literature in the area of CB distribution
extensions. Of particular importance is the power CB (PCB) distribution, as elucidated by the authors in [2]. The
PCB distribution introduces a notable extension to the cdf, as shown in Equation (1.1). This extension is achieved
by the inclusion of a shape parameter, which serves to increase the modeling versatility of the CB distribution. In
[2], the authors proposed a statistical methodology to explore the fundamental mathematical properties of the PCB
distribution. Maximum likelihood estimation was also used to explore the nuances of parameter estimation. In
order to illustrate the practical utility of the PCB distribution, an in-depth investigation was carried out using two
different data sets. These data sets include a collection of trade share data and a comprehensive set of polyester
fiber tensile strength data. Through these real-world data fitting exercises, the flexibility and applicability of the
PCB distribution was rigorously assessed. The accuracy of the PCB distribution is underlined by the consideration
of fair competitors. Conventional statistical standards show that the PCB distribution provides superior results.
In addition, the transmuted CB (TCB) distribution introduced in [3] stands out as a highly effective extension. A
notable feature of the CB distribution is its parameter, which orchestrates a linear trade-off between the minimum
and maximum values of two continuous random variables. Using a statistical approach, the authors derive the
fundamental mathematical properties of the TCB distribution. To illustrate the suitability of the model, they
examined three proportional data sets: the time to infection of kidney dialysis patients, records of flood peaks,
and waiting times for service in a bank. The empirical results highlight the superior fit of the TCB distribution to
these data sets compared to well-established competitors. In a related context, [12, Chapter 9] introduced a two-
dimensional CB distribution along with some of its key attributes. In addition, the authors in [9] elaborated an
exponentiated variant of the CB distribution to construct a fractile (quantile) regression model for responses in the
range [0, 1]. More recently, the authors in [4] used the CB distribution to give rise to the Op family, considering
its cdf as a distribution generator. In particular, the OpTL distribution, rooted in the Topp-Leone distribution,
emerged as a novel two-parameter distribution with support in the interval [0, 1]. Notably, the OpTL distribution
demonstrated superior fit performance compared to contemporary models, including the CB distribution itself.
In summary, it is evident that research around the CB distribution will continue to flourish in future, both from a
theoretical and practical perspective.

In this article, we use the CB distribution to formulate a novel one-parameter distribution defined over
the interval [1,+∞). To achieve this goal, we focus on the conventional inverse scheme, a well-established
methodology known for its invaluable contributions to the modeling and analysis of data in various domains.
The inverse scheme not only facilitates the exploration of reciprocal relationships, but also provides valuable
insights into the characteristics of skewed and heavy-tailed distributions. Moreover, its practical utility extends
to important domains such as finance, reliability and extreme value analysis. In the specific context of this study,
we briefly present our approach: Starting with a random variable X following the CB distribution, we introduce
the concept of an inverse CB (ICB) distribution, characterized by the distribution of the inverse random variable
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Y = 1/X . The cdf of the ICB distribution, denoted as FICB(x;ω), is expressed as a function of FCB(x;ω),
represented as FICB(x;ω) = 1− FCB(1/x;ω). The exact definition is explained below.

Definition 1.2. The cdf given below defines the ICB distribution with parameter ω ∈ (0, 1):

FICB(x;ω) =


0, x < 1,

1− 1

x
, ω =

1

2
and x ≥ 1,

1− ω1/x(1− ω)1−1/x + ω − 1

2ω − 1
, ω ∈ (0, 1)/

{
1

2

}
and x ≥ 1.

This cdf is at the core of the theory and inference of the ICB distribution, which will be explained in detail
in this article. In particular, the support of the ICB distribution lies within the interval [1,+∞), making it a
direct rival to the Pareto distribution. The creation of such distributions, i.e., with support [1,+∞), is crucial
for modeling various real-world phenomena, such as reliability analysis and survival data, where non-negative
outcomes beyond a lower bound are of primary interest. Such distributions provide a robust framework for
handling situations where values cannot be less than one, thus ensuring a more accurate representation of the
underlying processes. In our research, we empirically demonstrate that the ICB distribution can provide a more
robust and accurate fit to real-world data compared to the Pareto distribution, thus supporting its importance in
statistical modeling.

The subsequent organization of the article unfolds as follows: Section 2 deals with the basic probability
functions that govern the ICB distribution. Section 3 is dedicated to the parameter estimation, simulations and
real-world applications. Finally, our study ends in Section 4, where we present our final results.

2. Probability Functions

This section deals with the analysis of the probability density function (pdf), hazard rate function (hrf) and
quantile function (qf) associated with the ICB distribution.

First, the pdf relevant to the ICB distribution is obtained by differentiating FICB(x;ω) as follows:

fICB(x;ω) =


0, x < 1,
1

x2
, ω =

1

2
and x ≥ 1,

cω
1

x2
ω1/x(1− ω)1−1/x, ω ∈ (0, 1)/

{
1

2

}
and x ≥ 1,

(2.1)

where

cω =
2arctanh(1− 2ω)

1− 2ω

(
or, equivalently, cω =

ln(1− ω)− ln(ω)

1− 2ω

)
.

Such a pdf with support [1,+∞) is essential for modeling and analyzing random variables that are restricted to
positive values, such as durations, lifetimes and various natural phenomena. It provides insight into the probability
of observing certain outcomes within this constrained range, making it a valuable tool in fields such as reliability
analysis and survival studies.

By manipulating fICB(x;ω) and FICB(x;ω), we obtain the hrf corresponding to the ICB distribution. More
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precisely, we have

hICB(x;ω) =
fICB(x;ω)

1− FICB(x;ω)

=


0, x < 1,
1

x
, ω =

1

2
and x ≥ 1,

c∗ω
ω1/x(1− ω)1−1/x

x2
[
1− ω − ω1/x(1− ω)1−1/x

] , ω ∈ (0, 1)/

{
1

2

}
and x ≥ 1,

where

c∗ω = 2arctanh(1− 2ω) (or, equivalently, c∗ω = ln(1− ω)− ln(ω)) .

The qf corresponding to the ICB distribution is obtained as

QICB(x;ω) = F−1
ICB(x;ω)

=


1

1− x
, ω =

1

2
and x ∈ [0, 1],

c∗ω
ln(1− ω)− ln[(2ω − 1)(1− x) + 1− ω]

, ω ∈ (0, 1)/

{
1

2

}
and x ∈ [0, 1].

(2.2)

Having an analytical expression for the qf in distributions with support [1,+∞) is important for efficient risk
assessment and decision making, especially in scenarios involving reliability and tail risk analysis where accurate
modeling of extreme events is paramount.

In addition, the qf in Equation (2.2) is used to generate random samples of size n from the ICB distribution.
Analytically, for a fixed value of the parameter ω, we obtain the median, lower, and upper quartiles of the ICB
distribution when x takes the values 1/2, 1/4, and 3/4, respectively, in this qf.
Furthermore, the Galton skewness and Moor kurtosis as proposed by [7] and [11], respectively, can be obtained
by utilizing Equation (2.2) as follows:

SG =
Q(6/8;ω)− 2Q(4/8;ω) +Q(2/8;ω)

Q(6/8;ω)−Q(2/8;ω)

and

KM =
Q(7/8;ω)−Q(5/8;ω) +Q(3/8;ω)−Q(1/8;ω)

Q(6/8;ω)−Q(2/8;ω)
.

Table 1 shows the summary statistics of the ICB distribution for different choice of the parameter value ω.

Table 1: Summary statistics of the ICB distribution for varying values of ω

ω Q(1/2;ω) Q(1/4;ω) Q(3/4;ω) SG KM

0.1 3.7381 2.0000 8.7429 0.4845 2.1481
0.2 2.9495 1.6769 6.6765 0.4909 2.1558
0.3 2.5182 1.5141 5.4966 0.4957 2.1633
0.4 2.2239 1.4094 4.6599 0.4989 2.1690
0.51 1.9802 1.3267 3.9405 0.4999 2.1714
0.6 1.8171 1.2732 3.4425 0.4986 2.1678
0.7 1.6587 1.2224 2.9453 0.4935 2.1527
0.8 1.5129 1.1762 2.4772 0.4823 2.1139
0.9 1.3652 1.1292 2.0000 0.4579 2.0148
0.99 1.1746 1.0659 1.4188 0.3841 1.6875
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This table shows that the median, lower and upper quartiles of the ICB distribution are monotonically
decreasing functions of the parameter ω, while the skewness and kurtosis are monotonically increasing functions
for ω ∈ [0, 0.5) and decreasing for ω ∈ (0.5, 1).

3. Parameter Estimation, Simulations and Applications

3.1. Parameter Estimation

Here, we adapt the maximum likelihood estimation method in estimating the parameter ω of the ICB distribution,
which is supposed to be unknown. Let x1, x2, . . . , xn be n independent observations of size n from a random
variable X following the ICB distribution. Then, the likelihood function associated to Equation (2.1) is specified
by

L(ω;x1, . . . , xn) =

n∏
i=1

fICB(xi;ω)

=



[
n∏

i=1

1

x2
i

]
, ω =

1

2
,

cnω

[
n∏

i=1

1

x2
i

]
ω
∑n

i=1
1
xi (1− ω)

n−
∑n

i=1
1
xi , ω ∈ (0, 1)/

{
1

2

}
,

(3.1)

and min(x1, . . . , xn) ≥ 1.
By taking the natural logarithm of Equation (3.1), the corresponding log-likelihood function is obtained as

ℓ(ω;x1, . . . , xn) =

n∑
i=1

ln[fICB(xi;ω)]

=


−2

n∑
i=1

ln(xi), ω =
1

2
,

n ln(cω)− 2

n∑
i=1

ln(xi) + ln(ω)

n∑
i=1

1

xi
+ ln(1− ω)

(
n−

n∑
i=1

1

xi

)
, ω ∈ (0, 1)/

{
1

2

}
,

(3.2)

and min(x1, . . . , xn) ≥ 1. The maximum likelihood estimate (MLE) of ω, say ω̂, can be obtained by maximizing
ℓ(ω;x1, . . . , xn) with respect to ω. In our case, this can be achieved by taking the first derivative of Equation
(3.2) with respect to ω and equating the corresponding expression to zero, i.e., ∂ℓ(ω;x1,...,xn)

∂ω = 0.

3.2. Monte Carlo Simulation Study

One of the most important aspects of any statistical model is the performance of its parameter estimate(s). Here
we perform a Monte Carlo simulation study to examine the asymptotic behavior of the MLE of ω from the ICB
distribution. To achieve this, random samples were generated from the ICB distribution using Equation (2.2).
The simulation is repeated 1000 times for different sample sizes (n = 30, 50, 100, 200 and 500) and different
choices of the parameter value (ω = 0.1, 0.4, 0.6 and 0.8). The performance of the MLE ω̂ is examined in terms
of mean estimate, average bias, mean square error (MSE), and coverage probability. The numerical computation
of these quantities is displayed in Tables 2, 3, 4 and 5, respectively.
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Table 2: Mean estimate of the MLE ω̂

n ω = 0.1 ω = 0.4 ω = 0.6 ω = 0.8

30 0.1116 0.4023 0.5984 0.7801
50 0.1084 0.4021 0.5977 0.7908
100 0.1042 0.4014 0.5968 0.7940
200 0.1037 0.4007 0.5946 0.7960
500 0.1013 0.4006 0.6002 0.7999

Table 3: Average bias of the MLE ω̂

n ω = 0.1 ω = 0.4 ω = 0.6 ω = 0.8

30 0.0116 0.0023 -0.0016 -0.0198
50 0.0084 0.0021 -0.0023 -0.0091
100 0.0042 0.0014 -0.0032 -0.0059
200 0.0037 0.0007 -0.0054 -0.0040
500 0.0013 0.0006 0.0002 -0.0006

Table 4: MSE of the MLE ω̂

n ω = 0.1 ω = 0.4 ω = 0.6 ω = 0.8

30 0.0045 0.0208 0.0202 0.0119
50 0.0028 0.0126 0.0137 0.0063
100 0.0012 0.0069 0.0069 0.0034
200 0.0007 0.0035 0.0034 0.0017
500 0.0002 0.0013 0.0013 0.0006

Table 5: Coverage probability of the 100(1− α)% confidence interval of the MLE ω̂

1− α n ω = 0.1 ω = 0.4 ω = 0.6 ω = 0.8

0.95 30 0.910 0.896 0.898 0.903
50 0.916 0.920 0.909 0.921
100 0.932 0.933 0.931 0.943
200 0.947 0.942 0.946 0.951
500 0.945 0.954 0.955 0.952

0.90 30 0.879 0.856 0.843 0.864
50 0.870 0.876 0.858 0.884
100 0.896 0.875 0.871 0.883
200 0.903 0.885 0.892 0.904
500 0.904 0.901 0.906 0.906

Remarks:

i.) In Table 2, the data reveal a converging trend as n increases, with the mean estimate ω̂ approaching the true
parameter value.
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ii.) The findings in Table 3 shed light on the relationship between sample size and bias. As n increases, we
observe a corresponding decrease (increase) in average bias. In addition, this table illustrates the existence
of both negative and positive biases for the MLE ω̂.

iii.) The results in Table 4 show a notable trend as n increases, with the MSE steadily approaching zero.

iv.) Table 5 provides insights into the coverage probability of two different confidence intervals for the estimator
ω̂. As n increases, our observations indicate a convergence of the coverage probability towards the nominal
levels associated with the 95% and 90% confidence intervals, respectively.

3.3. Applications

In this part, we assess the suitability of the ICB distribution in the context of a real-life scenario, employing two
distinct data sets. Specifically, we examine the fits of the Pareto and New Pareto (NP) distributions. The NP
distribution is derived from [1]. Both of them share the same support interval of [1,+∞) with the ICB
distribution. These distributions are evaluated for their capacity to model the data sets alongside the ICB
distribution.

Data sets:
Data set I comprises 31 recorded flood peak exceedances (measured in m3/s) for the Wheaton River in the
vicinity of Carcross, located within the Yukon Territory, Canada. The data set spans the years from 1958 to
1984. For this data set, the authors in [5] conducted an investigation employing this specific data set to assess
the suitability of the generalized Pareto distribution. In a separate study, the authors in [6] harnessed this same
data set to elucidate the adaptability of a generalized Lindley distribution. The data set is organized and
presented as follows: 2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4,
2.7, 64.0, 1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.

On the other hand, Data set II consists of the time-to-failure (103 h) of turbocharger of one type of engine
given in [13]. The data set is shown as follows: 1.6, 2.0, 2.6, 3.0, 3.5, 3.9, 4.5, 4.6, 4.8, 5.0, 5.1, 5.3, 5.4, 5.6, 5.8,
6.0, 6.0, 6.1, 6.3, 6.5, 6.5, 6.7, 7.0, 7.1, 7.3, 7.3, 7.3, 7.7, 7.7, 7.8, 7.9, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.7, 8.8, 9.0.

To facilitate model comparison, we employ the following information criteria: the maximized log-likelihood
(ℓ∗), the Akaike information criterion (AIC), the corrected Akaike information criterion (AICc), the Bayesian
information criterion (BIC), and the Hannan-Quinn information criterion (HQIC). These criteria are rigorously
defined as follows:

AIC = −2ℓ∗ + 2k, AICc = AIC +
2k (k + 1)

n− k − 1
,

BIC = −2ℓ∗ + k ln (n) , HQIC = −2ℓ∗ + 2k ln [ln (n)] ,

where n is the sample size and k is the number of parameter(s) in the considered model.

A smaller value of AIC, AICc, BIC and HQIC indicates a better fit of the respective distributions to the
analyzed data set. Table 6 provides a comprehensive summary of the goodness of fit results for the ICB, Pareto
and NP models applied to the two data sets considered.
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Table 6: Summary results for Data sets I and II

Data set I
Models MLE ℓ∗ AIC AICc BIC HQIC

ICB ω̂ = 0.004 -120.8408 243.6816 243.6897 247.8962 245.3354

NP α̂ = 0.6305 -125.1094 252.2187 252.2268 256.4333 253.8725

Pareto θ̂ = 0.4054 -135.4429 272.8858 272.8939 277.1005 274.5397

Data set II
ICB ω̂ = 0.0058 -114.3882 230.7765 230.7845 234.9911 232.4303

NP α̂ = 0.8611 -126.3683 254.7366 254.7447 258.9512 256.3904

Pareto θ̂ = 0.5165 -143.8719 289.7438 289.7518 293.9384 291.3976

From this table, it can be seen that the AIC, AICc, BIC and HQIC values associated with the ICB
distribution show a significant reduction compared to those of the Pareto and NP distributions. As a result,
the ICB distribution consistently outperforms its competitors in analising the two data sets considered.

4. Conclusion

In conclusion, the introduction of the ICB distribution represents an advance in the field of probability
distributions. This considered modification has allowed us to extend the properties of the CB distribution to the
interval [1,+∞) without the need for additional parameters. Through a study of its mathematical properties,
including quantiles, we have laid the foundation for understanding and using this novel distribution.

Our article has also shown that the ICB distribution can be effectively used in statistical modeling. The use of
maximum likelihood estimation for inference proved to be a robust and practical approach. Through a thorough
simulation study, we provided empirical evidence of the model’s performance, which was consistently superior
to both the Pareto and new Pareto models when applied to diverse real-world data sets. These results show the
potential of the ICB distribution as a valuable tool for modeling data in various domains. This article provides the
foundations for further exploration and adoption of the ICB distribution in statistical and data analysis contexts.
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