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Abstract. In this paper, by using three different methods, the DNA codes are obtained from some codes over a family of the
rings Di = D1 [w2, ..., wi] /

〈
w2

i − wi, wiwj − wjwi

〉
, where i = 2, ..., r, j = 1, 2, ...r and D1 = F2 + uF2 + w1(F2 +

uF2), u
2 = 0, w2

1 = w1, uw1 = w1u, F2 = {0, 1}.
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1. Introduction

The transmission and storage of information take place in digital platform and the coding theory is necessary
in order to correct and detect errors in the platform. There is another platform. In the platform, the correcting and
detecting errors are necessary but it does not take place in digital. It is DNA.

It is well known that DNA contains genetic program for the biological development of life and has two strands
which are linked by Watson-Crick pairing so that every A is linked with a T and every C with a G, and vice versa,
where A, T,C,G are the four bases of a DNA sequence.

The idea of computing with DNA was given by T. Head in [7]. L. Adleman performed the computation using
DNA strands in [1].

To perform computation using DNA strands, a specific set of DNA sequences are required with particular
properties. The aim of this paper is to obtain the set of DNA strands satisfying various constraints, by using the
some error correcting codes over a family of finite rings which enjoy DNA properties. One of the constraints is
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reverse constaint. This leads to reversible codes.The other one is reverse complement constraint. This leads to
reversible complement codes.

In order to obtain reversible DNA codes, some authors considered skew cyclic codes. The reversibility
problem for DNA 8-bases and DNA 2s+1k-bases is solved in [4] and [5] respectively by using skew cyclic codes
over the finite rings F16 + uF16 + vF16 + uvF16 where u2 = u, v2 = v, uv = vu and F42k [u1, ..., us]/⟨u1

2 −
u1, ..., us

2 − us⟩ where k, s ⩾ 1, uiuj = ujui. Reversibility problem arises from the fact that the pairing of
nucleotides in two different strands of a DNA sequence is done in opposite direction and reverse order. For
example, let us consider the codeword (DNA string) GTTAGGCA which corresponds to a codeword (a1, a2).
The reverse of (a1, a2) is (a2, a1). However, the vector (a2, a1) corresponds to GGCAGTTA which is not the
reverse of GTTAGGCA. The reverse of GTTAGGCA is ACGGATTG.

In order to obtain the DNA codes, some authors used cyclic DNA codes of length n that enjoy some of the
properties of DNA. In [9], by introducing a map, a family of cyclic codes over the ring F2[u]/ < u4 − 1 > is
mapped to DNA codes.

In [10], the design of linear codes over D1 = F2+uF2+vF2+uvF2, u
2 = 0, v2 = v, uv−vu, F2 = {0, 1}

is presented by using σ-set, where σ is a nontrivial automorphism on the finite ring D1. By using these linear
codes, the authors obtained DNA codes with the other method.

In this paper, firstly, a non-trivial automorphism θi over Di = Di−1 + wiDi−1, where i = 2, 3, ..., r, w2
i =

wi, D1 = F2 + uF2 + w1(F2 + uF2), u
2 = 0, w2

1 = w1, uw1 = w1u, F2 = {0, 1} is defined. By introducing
skew cyclic codes over a family of the finite rings Di = D1 [w2, ..., wi] /

〈
w2

i − wi, wiwj − wjwi

〉
, where

i = 2, ..., r, j = 1, 2, ..., r, the reversible DNA codes are obtained from them. With the other method, the
necessary and sufficient conditions of cyclic codes over Di, where i = 1, ..., r to be reversible and reversible
complement are given. By introducing a map, the DNA codes are obtained from these type codes. As a last, the
linear codes over Di are designed, by using θi-set for i = 2, 3, ..., r. By using these type codes, the reversible or
reversible complement DNA codes are obtained.

2. Preliminaries

A family of the finite rings Di = Di−1+wiDi−1, where i = 2, 3, ..., r, w2
i = wi, D1 = F2+uF2+w1(F2+

uF2), u
2 = 0, w2

1 = w1, uw1 = w1u contains the commutative finite rings with characteristic 2 and cardinality
42

i

for i = 1, 2, ..., r.
The finite rings of the family are written as recursively

Di = Di−1 + wiDi−1

where i = 2, 3, ..., r, w2
i = wi, D1 = F2 + uF2 + w1(F2 + uF2), u

2 = 0, w2
1 = w1, uw1 = w1u, F2 = {0, 1}.

In [10], the map φ1 was defined as follows

φ1 : D1 −→ (F2 + uF2)
2

a+ bw1 7−→ (a, a+ b)

where a, b ∈ F2 + uF2, u
2 = 0, w2

1 = w1.
We define the map on Di where i = 2, ..., r as follows

φi : Di −→ D2
i−1

xi−1 + yi−1wi 7−→ (xi−1, xi−1 + yi−1)

where xi−1, yi−1 ∈ Di−1, w
2
i = wi for i = 2, 3, ..., r.
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In [10], they defined a ξ1 correspondence between the elements of the finite ring D1 = F2 + uF2 + w1F2 +

uw1F2, where u2 = 0, w2
1 = w1, uw1 = w1u and DNA double pairs as follows

Elements α Gray images DNA double pairs ξ1(α)
0 (0, 0) AA

1 (1, 1) GG

u (u, u) TT

w1 (0, 1) AG

uw1 (0, u) AT

1 + u (1 + u, 1 + u) CC

1 + w1 (1, 0) GA

u+ w1 (u, 1 + u) TC

u+ uw1 (u, 0) TA

w1 + uw1 (0, 1 + u) AC

1 + uw1 (1, 1 + u) GC

1 + u+ uw1 (1 + u, 1) CG

1 + u+ w1 (1 + u, u) CT

1 + w1 + uw1 (1, u) GT

u+ w1 + uw1 (u, 1) TG

1 + u+ w1 + uw1 (1 + u, 0) CA

By using the map φ2 and ξ1, we established ξ2 correspondence between the element of D2 and DNA 4-bases
x1 + y1w2 7−→ (ξ1 (x1) , ξ1 (x1 + y1)) as follows

Elements β DNA 4-bases ξ2(β)
0 AAAA

1 GGGG

u TTTT

w1 AGAG

w2 AAGG

...

By using the matching and the elements of D1 and SD16
= {AA, TT, ..., GG} and by using the Gray map

from Di to D2
i−1, we can define ξi correspondence between the elements of the finite ring Di and DNA 2i-bases

for i = 2, ..., r as follows

ξi : Di −→ D2
i−1 −→ {A, T,G,C}2

i

xi−1 + yi−1wi 7−→ (xi−1, xi−1 + yi−1) 7−→ q

where q = (ξi−1 (xi−1) , ξi−1 (xi−1 + yi−1)).
It can be written that ξi = γiφi, where a map γi is defined from D2

i−1 to 2i-bases as follows,

γi(si−1, ti−1) = (ξi−1(si−1), ξi−1(ti−1))

where si−1, ti−1 ∈ Di−1 for i = 2, ..., r.

In [10], a nontrivial automorphism was defined on D1 as follows

θ1 : D1 −→ D1

x0 + y0w1 7−→ x0 + (1 + w1)y0

334



On the DNA codes

where x0, y0 ∈ F2 + uF2, u
2 = 0.

By defining a nontrivial automorphism on Di as follows, for i = 2, ..., r, we can define the skew cyclic codes
over Di, for i = 2, ..., r.

θi : Di −→ Di

xi−1 + yi−1wi 7−→ θi(xi−1 + yi−1wi) = l

where l = θi−1(xi−1) + (1 + wi)θi−1(yi−1) and xi−1, yi−1 ∈ Di−1, for i = 2, ..., r.
The order of θi, for i = 1, 2, ..., r is 2.
The rings

Di[x, θi] = {bi0 + bi1x+ ...+ bin−1x
n−1 : bij ∈ Di, n ∈ N, i = 2, ..., k, j = 0, 1, ..., n− 1}

are skew polynomial rings with the usual polynomial addition and the multiplication as follows

(aix
s)(bix

j) = aiθ
s
i (bi)x

s+j

where ai, bi ∈ Di, for i = 1, ..., r. They are non-commutative rings.

Definition 2.1. A subset Ci of Dn
i , where i = 1, ..., r is called a skew cyclic code of length n if Ci satisfies the

following conditions,

1. Ci is a submodule of Dn
i

2. If ci = (ci0, c
i
1, ..., c

i
n−1) ∈ Ci, then θi(ci) =

(
θi(c

i
n−1), θi(c

i
0), ..., θi(c

i
n−2)

)
∈ Ci, where θi is the skew

cyclic shift operator.

In polynomial representation, a skew cyclic code of length n over Di is defined as a left ideal of the quotient
ring Diθi,n

= Di[x, θi]/ ⟨xn − 1⟩, if the order of θi divides n, that is, if n is even. If the order of θi does not
divide n, a skew cyclic code of length n over Di is defined as a left Di[x, θi]-submodule of Diθi,n

, since the
set Diθi,n

= Di[x, θi]/ ⟨xn − 1⟩ = {fi(x) + ⟨xn − 1⟩ : fi(x) ∈ Di[x, θi]} is a left Di[x, θi]-module with the
multiplication from left defined by

ri(x)(fi(x) + ⟨xn − 1⟩) = ri(x)fi(x) + ⟨xn − 1⟩

for any ri(x) ∈ Di[x, θi].
In either case, the following holds.

Theorem 2.2. Let Ci be a skew cyclic code over Di and let fi(x) be a polynomial in Ci of minimal degree. If
the leading coefficient of fi(x) is a unit in Di, then Ci = ⟨fi(x)⟩, where fi(x) is a right divisor of xn − 1.

3. Reversible DNA codes

In this section, the reversible DNA codes are obtained by using the skew cyclic codes over Di for i =

1, 2, ..., r.

Definition 3.1. For xi =
(
xi
0, x

i
1, ..., x

i
n−1

)
∈ Dn

i , the vector
(
xi
n−1, x

i
n−2, ..., x

i
1, x

i
0

)
is called the reverse of xi

and is denoted by xr
i . A linear code Ci of length n over Di is said to be reversible if xr

i ∈ Ci for every xi ∈ Ci,
where i = 1, 2, ..., r.
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We can express the matching the elements of D1 and SD16 = {AA, TT, ..., GG} by means of the
automorphism θ1 as follows.

Each element α1 = x+ yw1 ∈ D1, where x, y ∈ F2 + uF2, u
2 = 0 and θ1(α1) are mapped to DNA double

pairs which are reverse of each other. Since a correspondence the elements of the finite ring D1 and DNA double
pairs is ξ1, so we have ξ1(w1) = AG, while ξ1 (θ1(w1)) = GA.

By using a map ξi = γi ◦ φi, where the map γi is from D2
i−1 to 2i-bases as follows,

γi(si−1, ti−1) = (ξi−1(si−1), ξi−1(ti−1))

where si−1, ti−1 ∈ Di−1 for i = 2, ..., r, we can explain a relationship between skew cyclic codes and DNA
codes. ξi(si) and ξi (θi(si)) are DNA reverse of each other si = ai−1 + wibi−1, ai−1, bi−1 ∈ Di−1, where
ai−1, bi−1 ∈ Di−1, i = 2, ..., r.

For si = ai−1 + wibi−1 ∈ Di, i = 2, ..., r, we have

ξi(si) = γi (φi(ai−1 + wibi−1))

= γi (ai−1, ai−1 + bi−1)

= (ξi−1(ai−1), ξi−1(ai−1 + bi−1)) .

On the other hand,

ξi (θi(si)) = ξi (θi−1(ai−1) + (1 + wi)θi−1(bi−1))

= ξi (θi−1(ai−1 + bi−1) + wiθi−1(bi−1))

= γi (φi (θi−1(ai−1 + bi−1) + wiθi−1(bi−1)))

= γi (θi−1(ai−1 + bi−1), θi−1(ai−1))

= (ξi−1 (θi−1(ai−1 + bi−1)) , ξi−1 (θi−1(ai−1)))

where i = 2, ..., r.
This map can be extended as follows. For any di = (di0, ..., d

i
n−1) ∈ Dn

i , where i = 2, ..., r(
ξi(d

i
0), ξi(d

i
1), . . . , ξi(d

i
n−1)

)r
=

(
ξi(θi(d

i
n−1)), . . . , ξi(θi(d

i
1)), ξi(θi(d

i
0))

)
.

Example 3.2. Let i = 2. If d2 = (1 + uw1) + w2(1 + u+ w1) ∈ D2, then we get

ξ2(d2) = γ2 (φ2(d2)) = γ2 (1 + uw1, u+ w1 + uw1)

= (ξ1 (1 + uw1) , ξ1 (u+ w1 + uw1)) = GCTG.

On the other hand,

ξ2 (θ2(d2)) = ξ2 (θ1(1 + uw1) + (1 + w2)θ1(1 + u+ w1))

= ξ2 (θ1(u+ w1 + uw1) + w2θ1(1 + u+ w1))

= γ2(φ2 (θ1(u+ w1 + uw1) + w2θ1(1 + u+ w1)))

= γ2 (θ1(u+ w1 + uw1), θ1(1 + uw1))

= (ξ1 (θ1(u+ w1 + uw1)) , ξ1 (θ1(1 + uw1)))

= GTCG.

Example 3.3. Let i = 3. If d3 = [(1 + uw1) + w2(1 + u+ w1)] + w3(1 + w2) ∈ D3, then we get

ξ3(d3) = γ3 (φ3(d3)) = γ3 ((1 + uw1) + w2(1 + u+ w1), uw1 + w2(u+ w1))

= (ξ2 ((1 + uw1) + w2(1 + u+ w1)) , ξ2 (uw1 + w2(u+ w1)))

= GCTGATTG.
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On the other hand,

ξ3 (θ3(d3)) = ξ3 (θ2((1 + uw1) + w2(1 + u+ w1)) + (1 + w3)θ2(1 + w2))

= ξ3 (θ2(uw1 + w2(u+ w1)) + w3θ2(1 + w2))

= γ3(φ3 (θ2(uw1 + w2(u+ w1)) + w3θ2(1 + w2)))

= γ3 (θ2(uw1 + w2(u+ w1)), θ2(1 + uw1 + w2(1 + u+ w1)))

= (ξ2 (θ2(uw1 + w2(u+ w1))) , ξ2 (θ2(1 + uw1 + w2(1 + u+ w1))))

= GTTAGTCG.

Definition 3.4. Let Ci be a code of length n over Di, for i = 1, ..., r. If ξi(di)
r ∈ ξi(Ci) for all di ∈ Ci, then

Ci or equivalently ξi(Ci) is called a reversible DNA code.

Definition 3.5. Let gi(x) = ai0 + ai1x+ ai2x
2 + ...+ aisx

s be a polynomial of degree s over Di. gi(x) is called
a palindromic polynomial if ait = ais−t for all t ∈ {0, 1, ..., s}. gi(x) is called a θi-palindromic polynomial if
ait = θi(a

i
s−t) for all t ∈ {0, 1, ..., s}, for i = 1, ..., r.

As the order of θi is 2, a skew cyclic code of odd length n over Di with respect to θi is an ordinary cyclic
code. So we will take the length n to be even.

The next two theorems show that palindromic and θi-palindromic polynomials generate reversible DNA
codes.

Theorem 3.6. Let Ci = ⟨fi(x)⟩ be a skew cyclic code of length n over Di, where fi(x) is a right divisor of
xn − 1 and deg(fi(x)) is odd. If fi(x) is a θi-palindromic polynomial, then ξi(Ci) is a reversible DNA code, for
i = 1, ..., r.

Proof. Let fi(x) be a θi-palindromic polynomial and fi(x) = ai0+ai1x+...+ai2s−1x
2s−1. So ait = θi(a

i
2s−1−t),

for all t = 0, 1, ..., s−1. Let hi(x) = hi
0+hi

1x+ · · ·+hi
2k−1x

2k−1. Let bil be the coefficient of xl in hi(x)fi(x),
where l = 0, 1, . . . , n− 1. For any p < n/2, the coefficient of xp in hi(x)fi(x) is

bip =

p∑
j=0

hi
jθ

j
i (a

i
p−j)

and the coefficient of xn−p is

bin−p =

p∑
j=0

hi
2k−1−jθ

2k−1−j
i (ai2s−1−(p−j)).

The polynomial hi(x)fi(x) =
∑2k−1

d=0 hi
dx

dfi(x) corresponds to a vector bi = (bi0, b
i
1, ..., b

i
n−1) ∈ Ci.

The vector ξi(bi)
r = ((ξi(b

i
0), ..., ξi(b

i
n−1)))

r is equal to the vector ξi(zi), where the vector zi corresponds
to the polynomial

∑2k−1
d=0 θi(h

i
d)x

2k−1−dfi(x).
So ξi(Ci) is a reversible DNA code. ■

Theorem 3.7. Let Ci = ⟨fi(x)⟩ be a skew cyclic code of length n over Di, where fi(x) is a right divisor of
xn − 1 and deg(fi(x)) is even. If fi(x) is a palindromic polynomial, then ξi(Ci) is a reversible DNA code, for
i = 1, ..., r.

Proof. Let fi(x) be a palindromic polynomial with even degree so that fi(x) = ai0 + ai1x + ... + ai2sx
2s and

ait = ai2s−t, for all t = 0, 1, ..., s. Let hi(x) = hi
0 + hi

1x + · · · + hi
2kx

2k. Let bil be the coefficient of xl in
hi(x)fi(x), where l = 0, 1, . . . , n− 1. For any p < n/2, the coefficient of xp in hi(x)fi(x) is
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bip =

p∑
j=0

hi
jθ

j
i (a

i
p−j)

and the coefficient of xn−p is

bin−p =

t∑
j=0

hi
(2k)−jθ

(2k)−j
i (ai2s−(p−j)).

The polynomial hi(x)fi(x) =
∑2k

d=0 h
i
dx

dfi(x) corresponds to a vector bi = (bi0, b
i
1, ..., b

i
n−1) ∈ Ci.

The vector ξi(bi)
r = ((ξi(b

i
0), ..., ξi(b

i
n−1)))

r is equal to the vector ξi(zi), where the vector zi corresponds
to the polynomial

∑2k
d=0 θi(h

i
d)x

2k−dfi(x). So ξi(Ci) is a reversible DNA code. ■

Theorem 3.8. Let xn−1 = hi(x)fi(x) ∈ Di[x, θi], where the degree of fi(x) is odd. If fi(x) is a θi-palindromic
polynomial, then hi(x) is a palindromic polynomial.

Proof. Let fi(x) = ai0 + ai1x + ... + ai2s−1x
2s−1. As the length n is even, then hi(x) = hi

0 + hi
1x + · · · +

hi
2k−1x

2k−1. Since fi(x) is a θi-palindromic polynomial, then ait = θi(a
i
2s−1−t) for all t = 0, 1, ..., s − 1. Let

bil be the coefficient of xl in hi(x)fi(x), where l = 0, 1, . . . , n − 1. For any p < n/2, the coefficient of xp in
hi(x)fi(x) is

bip =

p∑
j=0

hi
jθ

j
i (a

i
p−j)

and the coefficient of xn−p is bin−p =
∑p

j=0 h
i
2k−1−jθ

2k−1−j
i (ai2s−1−(p−j)). By using the fact that bi0 = bin = 0

and bit = 0 for all t = 1, 2, ..., n− 1, it can be shown that hi
t = hi

2k−1−t for all t = 0, 1, .., k− 1 by induction, as
in [6]. ■

4. Reversible and reversible complement codes over Dr

In this section, the necessary and sufficient conditions of cyclic codes over Di to be reversible and reversible
complement are given. By using the map, the DNA codes are obtained from these codes.

In [10], they characterized the reversible codes over D1 as follows.

Theorem 4.1. [10] Let C1 = w1C
1

0 ⊕ (1 + w1)C
2

0 be a cyclic code of arbitrary length n over D1. Then C1 is
reversible if and only if C

1

0 and C
2

0 are reversible codes over F2+uF2, u
2 = 0 and both of them are cyclic codes

over F2 + uF2, u
2 = 0.

In [3] and [8], the necessary and sufficient conditions of cyclic codes over the ring F2 + uF2, u
2 = 0 to be

reversible were given in case of the length n is odd or even, respectively.

In [2], the reversible codes over D2 were characterized as follows;

Theorem 4.2. [2] Let C2 = w2C
1

1 ⊕ (1 + w2)C
2

1 be a cyclic code of arbitrary length n over D2. Then C2 is
reversible if and only if C

1

1 and C
2

1 are reversible codes over D1 and both of them are cyclic codes over D1.

Firstly, we characterize the reversible codes over Di, where i = 3, ..., r.

Theorem 4.3. Let Ci = wiC
1

i−1⊕(1+wi)C
2

i−1 be a cyclic code of arbitrary length n over Di, where i = 3, ..., r.
Then Ci is reversible if and only if C

1

i−1 and C
2

i−1 are reversible codes over Di−1, where i = 3, ..., r and both of
them are cyclic codes over Di−1, where i = 3, ..., r.
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Proof. Let C
1

i−1,C
2

i−1 be reversible codes. For any bi ∈ Ci, bi = wib
1
i−1+(1+wi)b

2
i−1, where b1

i−1 ∈ C1
i−1,

b2
i−1 ∈ C

2

i−1. As C
1

i−1, C
2

i−1 are reversible codes,
(
b1
i−1

)r ∈ C1
i−1,

(
b2
i−1

)r ∈ C
2

i−1, so br
i = wi

(
b1
i−1

)r
+

(1 + wi)
(
b2
i−1

)r ∈ Ci. Hence Ci is reversible codes.
On the other hand, let Ci be a reversible code over Di. So for any bi = wib

1
i−1 + (1 + wi)b

2
i−1 ∈ Ci,

where b1
i ∈ C1

i−1,b2
i−1 ∈ C

2

i−1, we get br
i = wi

(
b1
i−1

)r
+ (1 + wi)

(
b2
i−1

)r ∈ Ci. Let br
i = wi

(
b1
i−1

)r
+

(1 + wi)
(
b2
i−1

)r
= wis

1
i−1 + (1 + wi)s

2
i−1 ,where s1i−1 ∈ C1

i−1,s2i−1 ∈ C
2

i−1. Therefore C
1

i−1 and C
2

i−1 are
reversible codes over Di−1. ■

In [10] and [2], they characterized the reversible complement codes over D1 and D2, respectively. Secondly,
we characterize the reversible complement codes over Di, where i = 3, ..., r.

Definition 4.4. For xi =
(
xi
0, x

i
1, ..., x

i
n−1

)
∈ Dn

i , the vector
(
xi
n−1, x

i
n−2, ..., x

i
1, x

i
0

)
is called the reversible

complement of xi and is denoted by xrc
i , where xi

j represents the complement of the elements xi
j , 0 ≤ j ≤ n− 1.

A linear code Ci of length n over Di is said to be reversible complement if xrc
i ∈ Ci, for every xi ∈ Ci.

Lemma 4.5. For any ci ∈ Di,where i = 1, ..., r we have ci + ci = u.

Lemma 4.6. Let ai, bi ∈ Di, where i = 1, ..., r, then ai + bi = ai + bi + u.

Theorem 4.7. [10] Let C1 = w1C
1

0 ⊕ (1 + w1)C
2

0 be a cyclic code of arbitrary length n over D1. Then C1 is
reversible complement if and only if C1 is reversible and (0, 0, ..., 0) ∈ C1, where C

1

0 , C
2

0 are both cyclic codes
over F2 + uF2, u

2 = 0.

Theorem 4.8. [2] Let C2 = w2C
1

1 ⊕ (1 + w2)C
2

1 be a cyclic code of arbitrary length n over D2. Then C2 is
reversible complement if and only if C2 is reversible and (0, 0, ..., 0) ∈ C2, where C

1

1 , C
2

1 are both cyclic codes
over D1.

Theorem 4.9. Let Ci = wiC
1

i−1⊕(1+wi)C
2

i−1 be a cyclic code of arbitrary length n over Di, where i = 3, ..., r.
Then Ci is reversible complement if and only if Ci is reversible and (0, 0, ..., 0) ∈ Ci, where C

1

i−1, C
2

i−1 are both
cyclic codes over Di−1, i = 3, ..., r.

Proof. Since Ci is reversible complement, for any di = (di0, ...d
i
n−1) ∈ Ci,d

rc
i = (din−1, ..., di0) ∈ Ci. Since

Ci is a linear code, so (0, 0, ..., 0) ∈ Ci. By using Lemma 4.5, we get

dr
i = (din−1, ....., d

i
0) = (din−1, ..., di0) + (u, u, u, ..., u) ∈ Ci.

Hence for any di ∈ Ci, we have dr
i ∈ Ci.

On the other hand, let Ci be reversible code over Di. So, for any di = (di0, ...d
i
n−1) ∈ Ci, then dr

i =

(din−1, ...., d
i
0) ∈ Ci. For any di ∈ Ci,

drc
i = (din−1, ..., di0) = (din−1, ....d

i
0) + (u, ..., u) ∈ Ci.

So, Ci is reversible complement code over Di. ■

By a cyclic DNA code over Di of length n, we mean a cyclic code that has the reverse complement property,
where i = 1, 2, .., r.

Corollary 4.10. Let Ci be a cyclic DNA code of length n over Di and minimum Hamming distance d, where
i = 1, 2, .., r. Then ξi(Ci) is a DNA code of length 2in over the alphabet {A, T,C,G} with minimum Hamming
distance at least d.
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5. Reversible and Reversible Complement DNA Codes

In [10], the design of linear codes over D1 was presented. It was obtained DNA codes from them.
In this section, we will design linear codes over Di, where i = 2, ..., r , by using θi-set, where θi is a non

trivial automorphism for i = 2, .., r in order to obtain DNA codes.

Definition 5.1. Let f0,1, ..., f0,2i be polynomials dividing xn − 1 over F2 + uF2, u
2 = 0 and fi−1,1, fi−1,2

be polynomials with deg fi−1,1 = ti−1,1,deg fi−1,2 = ti−1,2 and both are over Di−1, for i = 2, ..., r. Let
fi = wifi−1,1 + (1 + wi)fi−1,2 ∈ Di[x] and

fi−1,1 = wi−1fi−2,1 + (1 + wi−1)fi−2,2,

fi−1,2 = wi−1fi−2,3 + (1 + wi−1)fi−2,4,

fi−2,1 = wi−2fi−3,1 + (1 + wi−2)fi−3,2,

fi−2,2 = wi−2fi−3,3 + (1 + wi−2)fi−3,4,

fi−2,3 = wi−2fi−3,5 + (1 + wi−2)fi−3,6,

fi−2,4 = wi−2fi−3,7 + (1 + wi−2)fi−3,8,

...

f1,1 = w1f0,1 + (1 + w1)f0,2,

f1,2 = w1f0,3 + (1 + w1)f0,4,

...

f1,2i−1 = w1f0,2i−1 + (1 + w1)f0,2i .

Let mi = min{n− ti−1,1, n− ti−1,2}. The set L(fi) is called a θi-set and is defined as

L(fi) = {E0, E1, ..., Emi−1, F0, F1, ..., Fmi−1},

where Ej = xjfi, Fj = xjθi(hi), 0 ≤ j ≤ mi − 1, i = 2, ..., r.

If deg f0,2s ≥ degf0,2s−1,

hi,1,s = w1x
degf0,2s−degf0,2s−1f0,2s−1 + (1 + w1)f0,2s

otherwise,
hi,1,s = w1f0,2s−1 + (1 + w1)x

degf0,2s−1−degf0,2sf0,2s

where s = 1, 2, ..., 2i−1 and
if deghi,1,2t ≥ deghi,1,2t−1

hi,2,t = w2x
deghi,1,2t−deghi,1,2t−1hi,1,2t−1 + (1 + w2)hi,1,2t

otherwise,
hi,2,t = w2hi,1,2t−1 + (1 + w2)x

deghi,1,2t−1−deghi,1,2thi,1,2t

where t = 1, 2, ..., 2i−2 and
...

if deghi,i−2,2v ≥ deghi,i−2,2v−1

hi,i−1,v = wi−1x
deghi,i−2,2v−deghi,i−2,2v−1hi,i−2,2v−1 + (1 + wi−1)hi,i−2,2v
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otherwise,
hi,i−1,v = wi−1hi,i−2,2v−1 + (1 + wi−1)x

deghi,i−2,2v−1−deghi,i−1,2vhi,i−2,2v

where v = 1, 2 and
If deghi,i−1,2 ≥deghi,i−1,1,

hi = wix
deghi,i−1,2−deghi,i−1,1hi,i−1,1 + (1 + wi)hi,i−1,2

otherwise,
hi = wihi,i−1,1 + (1 + wi)x

deghi,i−1,1−deghi,i−1,2hi,i−1,2.

L(fi) generates a linear code Ci over Di, where i = 2, ..., r. It will be denoted by Ci = ⟨fi⟩θi or Ci =

⟨L(fi)⟩. It means that it is Di-submodule generated by the set L(fi), where i = 2, ..., r.
Let fi = ai0 + ai1x + ... + aitx

t ∈ Di[x], θi(hi) = bi0 + bi1x + ... + bisx
s, where i = 2, .., r. The

Di-submodule can be considered to be generated by the rows of the following matrix

L(fi) =



E0

F0

E1

F1

E2

F2

· · ·



=


ai0 ai1 a2 · · · ait 0 · · · · · · · · · 0

bi0 bi1 · · · · · · bit bit+1 · · · bis 0 · · · 0

0 ai0 ai1 ai2 · · · ait 0 0 · · · 0

0 bi0 bi1 bi2 · · · · · · · · · · · · bis · · · 0
... · · · · · · · · ·

... · · · · · · · · · · · ·
...

.

Theorem 5.2. Let f0,1, ..., f0,2i be self reciprocal polynomials dividing xn − 1 over F2 + uF2, u
2 = 0. So

Ci = ⟨L(fi)⟩ is a linear code over Di and ξi(Ci) is a reversible DNA code, where ξi is from Ci to S2in
D4

, for
i = 2, ..., r.

Proof. It is proved as in the proof of the Theorem 4.3 in [10]. ■

Corollary 5.3. Let f0,1, ..., f0,2i be self reciprocal polynomials dividing xn − 1 over F2 + uF2, u
2 = 0 and

Ci = ⟨L(fi)⟩ be a cyclic code over Di. If uxn−1
x−1 ∈ Ci, then ξi(Ci) is a reversible complement DNA code.

Example 5.4.

f0,1(x) = x+ 1,

f0,2(x) = x2 + x+ 1,

f0,3(x) = x6 + x3 + 1,

f0,4(x) = x+ 1,

where all of them divide x9 − 1 over F2. Hence

f2 = w2 (w1f0,1 + (1 + w1) f0,2) + (1 + w2) (w1f0,3 + (1 + w1) f0,4)

over D2. That is

f2 = w1 (1 + w2)x
6 + w1 (1 + w2)x

3 + w2 (1 + w1)x
2 + (w1 (1 + w2) + 1)x+ 1.
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Since h2,1,1 = w1xf0,1 + (1+w1)f0,2 and h2,1,2 = w1f0,3 + x5(1 +w1)f0,4, we get h2 = w2h2,1,1 + (1+

w2)h2,1,2 Then we have h2 = x6 + (1 + w1 + w1w2)x
5 + x4 (1 + w1)w2 + (1 + w2)w1x

3 +w1 (1 + w2). So
θ2 (h2) = x6 + (1 + w2 (1 + w1))x

5 + w1 (1 + w2)x
4 + (1 + w1)w2x

3 + w2 (1 + w1).
Since m2 = 3, we consider the generator matrix of C,

E0

F0

E1

F1

E2

F2


where E0 = F2, E1 = xf2, E2 = x2f2, F0 = θ2(h2), F1 = xθ2(h2), F2 = x2θ2(h2). If we take α0 = 0, α1 =

1, α2 = 1, β0 = 0, β1 = 0, β2 = 1, then α0E0 + α1E1 + α2E2 + β0F0 + β1F1 + β2F2 = x+ x2 (w1 + w2) +

w2 (1 + w1)x
3 + (w1 + w2)x

4 + (w1 + w2)x
5 +w1 (1 + w2)x

6 + (1 + w1 + w2)x
7 + (1 + w1 + w1w2)x

8.
It is correspondence to the codeword

d1 =

(
0, 1, w1 + w2, w2 (1 + w1) , w1 + w2, w1 + w2,

w1 (1 + w2) , 1 + w1 + w2, 1 + w1 + w1w2

)
.

Hence ξ2(d1) = AAAAGGGGAGGAAAGAAGGAAGGAAGAAGAAGGAGG.
Moreover θ2 (α0)F2+θ2 (α1)F1+θ2 (α2)F0+θ2 (β0)E2+θ2 (β1)E1+θ2 (β2)E0 = 1+w2 (1 + w1)+

x (1 + w1 + w2)+x2 (w2 (1 + w1))+x3 (w1 + w2)+x4 (w1 + w2)+x5 (1 + w1 + w2)+x6 (1 + w1 + w2)+x7

correspondences to the codeword

d2 =

(
1 + w2 (1 + w1) , 1 + w1 + w2, w2 (1 + w1) , w1 + w2,

w1 + w2, 1 + w1 + w2, 1 + w1 + w2, 1, 0

)
.

Hence ξ2(d2) = GGAGGAAGAAGAAGGAAGGAAGAAAGGAGGGGAAAA.
So (ξ2(d2))

r
= ξ2(d1).

6. Conclusion

By using three different methods, the DNA codes are obtained from the some error correcting codes over the
family of finite rings.
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