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Abstract. In this research, we focus on solving a mixed type additive-quadratic functional equation expressed as:

h(381 + 259 + 53) =+ h(381 + 289 — 83) + h(381 — 289 + S3)+h(381 — 289 — 83)
=12h(s1) 4 8h(s2) + 2h(s3) + 12h(s1)

where h(s1) = h(s1) + h(—s1) is derived. We proceed to investigate the generalized Hyers-Ulam stability of this equation
within the framework of Banach spaces, employing the Hyers direct method. Additionally, examples of non-stable cases are
also provided.

AMS Subject Classifications: 39B52, 39B72, 39B82.
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1. Introduction

Ulam’s seminal work on the stability of group homomorphisms [30] sparked a new line of inquiry into the
stability of functional equations. Hyers gave a favorable answer to this topic in the context of Banach spaces,
making significant progress [12]. Credit for extending this research to the broader topic of Generalized Hyers-
Ulam stability inside functional equations belongs to Aoki [2] and Rassias [23]. Aoki expanded Rassias’s original
approach to incorporate additive mappings, which included employing an infinite Cauchy difference for linear
mappings. In 1994, Gavruta [11] proposed the generalized control function ¢(s1, s2) as a substantial alternative
to the boundless Cauchy difference. In 2008, following this work, Ravi et al. [27] used the product and sum
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of two p—norms to prove a particular version of Gavruta’s theorem. Many researchers have thoroughly studied
the stability issues of several functional equations and there are numerous noteworthy outcomes related to this
problem, as seen in [1, 3, 8-10, 13, 16, 18-20, 22, 24-26, 29] and other cited references.

The Cauchy equation, which has the form:

h(s1 4 s2) = h(s1) + h(s2), (1.1)

is one of the most well-known functional equations in mathematics. Functions that have this relationship are
called additive functions.
The quadratic functional equation

h(Sl + 82) + h(Sl — 82) = 2h(81) + 2h(82) (1.2)

is connected to a symmetric bi-additive function, as shown by the work of [1, 17]. Each of the solutions to
this equation is a quadratic function. Skof [28] addressed a stability issue connected to the quadratic functional
equation (1.2) by studying functions h : K — L, where K is a normed space and L is a Banach space. An Abelian
group may stand in for the domain K without affecting the validity of the argument, as noted by Cholewa [6],
who elaborated on Skof’s work. Czerwik [7] adds to the expanding body of evidence supporting the stability of
the quadratic functional equation by demonstrating that it is Hyers-Ulam-Rassias stable.

The quadratic and additive functional equation

]’L(S1 + dSQ) + dh(81 — 82) = h(31 — dSQ) + dh(Sl + 32) (1.3)

was studied by Jun and Kim [14], who examined the general solution and the generalized Hyers-Ulam stability
for any positive integer d with d # —1,0,1. Additionally, Najati and Moghimi [21] investigated the quadratic
and additive functional equation

h(2s1 + s2) + h(2s1 — s2) = 2h(s1 + s2) + 2h(s1 — s2) + 2h(2s1) — 4h(s1). (1.4)
K. Balamurugan et al. [5] obtained the general solution to the cubic functional equation

g(3s1 + 282+ s3) + g(3s1 + 282 — $3) + g(351 — 282 + 83) + 9(381 — 259 — ¢)
= 24[g(s1 + s2) + g(s1 — s2)] + 6[g(s1 + s3) + g(s1 — s3)] + g(s1) (1.5)

and investigated its generalized Hyers-Ulam stability.
M. Arunkumar et al. [4] have recently developed a general solution and generalized Hyers-Ulam stability for
the three-dimensional additive-quadratic functional equation

g(s1 + 282 + 3s3) + g(s1 + 2s2 — 3s3) + g(s1 — 252 + 3s3) + g(—s1 + 259 + 3s3)
=g(s1+ 52+ 53) + g(s1 + 52 — 53) + g(51 — 82+ 53) + g(—51 + 52 + 83)
+2g(s2) +4g(s3) + 5[g(s2) + g(—s2)] + 14[g(s3) + g(—s3)] (1.6)

using a direct and fixed point approach in Banach space and non-Archimedean fuzzy Banach space.
In this study, we provide a general solution to the additive-quadratic functional equation

h(381 + 2s9 + 53) + h(381 + 289 — 53) + h(381 — 289 + 33) + h(351 — 289 — 83)
= 12h(s1) + 8h(s2) + 2h(s3) + 12h(s1), (1.7)

where h(s1) = h(s1) + h(—s1) and investigate the generalized Hyers - Ulam stability of this equation with the
Hyers direct technique. In addition, unstable counterexamples are provided.

In Section 2, we provide a generic solution to (1.7). Using the direct method and the concept of generalized
Hyers-Ulam, we demonstrate the stability of equation (1.7) for odd, even, and mixed mappings, with
counterexamples provided in Sections 3, 4, and 5.
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2. General Solution of (1.7)

This section examines the general solution of the functional equation (1.7) when K and £ are treated as real
vector spaces.

Theorem 2.1. If an odd function h : KK — L meets the requirements of the functional equation (1.7) for all
S1, 89, 83 € K, then it must also meet the functional equation (1.1) for all s1, so € K and vice versa.

Proof. Consider the odd function i : K — L to satisfy the functional equation (1.7). By inputting (s1, s2, s3) as
(0,0,0) in (1.7), we determine that 2(0) = 0. By setting s3 to 0 in (1.7) and using the property that & is odd, we
can deduce that

h(3s1 + 2s2) + h(3s1 — 2s3) = 6h(s1), 2.1
for any s1, so € K. Additionally, by setting s to 0 in this equation, we find that

for any s; € K. By substituting 31 for s; in this equation, we arrive

h (%1) - %h(sl) 2.3)

for any s; € K. Finally, by replacing s; with %1 and sy with % in (2.1) and using (2.3), we can conclude that

h(2s1) = 2h(s1) 2.4)
for any s; € K. Hence, for any positive whole number b,

for any s; € K. By entering (s1, s2) as (%1, %2) into (2.1) and using (2.3), we infer that

h(s1 + s2) + h(s1 — s2) = 2h(s1), (2.6)

for any s1,s2 € K. By switching the positions of s; and s and applying the characteristic of & being an odd
function, we arrive

h(Sl + 82) — h(81 — 82) = 2h(82), (27)

for any s1, so € K. By merging equations (2.6) and (2.7), we reach the desired outcome of (1.1).

Let us suppose, on the other hand, that an atypical odd mapping h : K — L satisfies the conditions stated in
functional equation (1.1). By plugging in s; = 0 and sy = 0 into equation (1.1), we find that ~(0) = 0. By also
plugging in s; for s5 and 2s; for s, into (1.1), we get two new equations:

h(2s1) =2h(s1) and h(3s1) = 3h(s1) (2.8)
for any s; € K. By induction, for any natural number ¢, we have
h(cs1) = ch(sy) 2.9)

for any s; € K. We start with the equation (1.1) and replace the variable so with s5 + s3 and use (1.1). This gives
us

h(51 + 89 + 83) = h(Sl) + h(Sg) + h(Sg) (2.10)
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for any s1, s2, s3 € K. Next, substitute (s1, s2, s3) with (3s1, 252, s3) in (2.10) and we use (2.8) to obtain
h(3s1 + 282 + s3) = 3h(s1) + 2h(s2) + h(s3) (2.11)

for any s1, s, 53 € K. We then change the sign of s, in (2.11) to get

h(3s1 — 2s9 + s3) = 3h(s1) + 2h(—s2) + h(ss3) (2.12)
for any s1, s2, s3 € K and repeat the process with s3 to get

h(3s1 + 2s2 — s3) = 3h(s1) + 2h(s2) + h(—s3) (2.13)
for any s1, s2, s3 € K. We then substitute both so and s3 with their negative versions in (2.11) to obtain

h(3s1 — 289 — s3) = 3h(s1) 4+ 2h(—s2) + h(—s3) (2.14)
for any s1, s2, s3 € K. By adding together equations (2.11), (2.12), (2.13) and (2.14), we arrive at

h(3s1 + 285 + s3) + h(3s1 + 252 — 83) + h(3s1 — 282 + 83) + h(3s1 — 285 — 53)
= 12h(s1) + 4h(s2) + 4h(—s2) + 2h(s3) + 2h(—s3) (2.15)
for any s1, 82, 83 € K. We then add 12h(s1) + 4h(s2) to both sides of equation (2.15) to get
h(381 + 259 + 83) + h(381 + 259 — 53) + h(381 — 289 + 53) + h(381 — 289 — 83) + 12]1(81) + 4h(82)
= 12h(s1) + 4h(s2) + 4h(—s2) + 2h(s3) + 2h(—s3) + 12h(s1) + 4h(s2) (2.16)
for any s1, s2, s3 € K. From (2.15), we can conclude
h(3s1 + 2s2 + s3) + h(3s1 + 252 — s3) + h(3s1 — 252 + s3) + h(3s1 — 259 — s3)
= 12h(81) + 4h(82) + 4h(—82) + 2h(83) + 2h(—83) + 12h(51) + 4h(82) — 12h(81) — 4h($2) 2.17)

for any s1,s9,83 € K. The fact that i is an odd function has allowed us to convincingly demonstrate our
conclusion. m

Theorem 2.2. If an even function h : K — L meets the requirements of the functional equation (1.7) for all
S1, 82,83 € K, then it must also meet the functional equation (1.2) for all s1, so € K and vice versa.

Proof. Consider the even function h : I — L to satisfy the functional equation (1.7). By inputting (s1, S2, $3) as
(0,0,0) in (1.7), we determine that h(0) = 0. By setting (s1, s2, s3) as (0, s1, s2) in (1.7) and using the property
that h is even, we can deduce that

h(2s1 + s2) + h(2s1 — s2) = 8h(s1) + 2h(s2), (2.18)
for any s1, s € K. Additionally, by setting sz to 0 in this equation, we find that

h(281) = 4h(81) (219)
for any s; € K. By substituting %1 for s1 in this equation, we arrive

h (%) _ ih(sl) (2.20)

for any s; € K. Finally, by replacing so with s; in (2.18), we can conclude that

h(3s1) = 9h(s1) (2.21)
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for any s; € K. Hence, for any positive whole number a,

h(asy) = a*h(sy1) (2.22)

for any s; € K. By substituting %1 for s; in equation (2.18) and using (2.20), we arrive at equation(1.2), as
intended.
Let us suppose, on the other hand, that an atypical even mapping h : L — L satisfies the conditions stated
in functional equation (1.2). By substituting s; = 0 and sy = 0 into (1.2), we can determine that A(0) = 0.
Additionally, by inputting s; for s and 2s; for s, into the same equation and taking into account that A is an
even function, we obtain two additional equations:
h(Zsl) = 4h(51) and h(351) = Qh(sl) (223)
for any s; € K. We can prove that for any natural number c through the method of induction, we have
h(cs1) = c*h(s1) (2.24)
for any s; € K. By replacing s; with 3s; and se with 255 in (1.2) and using (2.24), we obtain
h(381 + 282) + h(381 — 282) = 18h(81) + 8h($2) (2.25)
for any s1, s5 € K. Again replacing s; with 3s; + 2s5 and s, with s3 in (1.2), we have
h(381 —|— 252 + 83) —|— h(381 —|— 252 — 53) = 2h(351 + 252) + 2h(83) (226)
for any s1, s2, s3 € K. We then change the sign of s2 in (2.26) to get
h(381 — 289 + 83) + h<381 — 259 — 53) = 2h(3$1 — 282) + 2h(83) 2.27)

for any s1, s2, s3 € K. Adding both (2.26) and (2.27), we obtain

h(381 + 282 + 83) + h(3$1 + 282 - 83) + h(381 - 282 + 83) + h(3$1 - 282 - 83)
= 2[h(3s1 + 2s2) + h(3s1 — 2s2)] + 4h(s3) (2.28)

for any s1, s9, s3 € K. Using (2.25) in (2.28) and the property of h being even, we achieve

h(381 + 282 + 83) + h(381 + 282 - 83) + h(381 - 232 + 83) + h(3$1 - 282 - 53)
= 36h(s1) + 16R(s2) + 4h(s3) = 12h(s1) + 8h(s2) + 2h(s3) + 12h(s1), (2.29)

where h(s1) = h(s1) + h(—s1), for any s, s2, 53 € K. [

Hearafter, throughout this analysis, we will presume that /C is a normed space and £ is a Banach space, and
we will introduce the mapping Dh : K3 — £ in the following manner:

Dh(Sl, S92, 85) :h(381 + 282 + Sd) + h(381 + 282 - 83) + h(381 - 282 + 83)
+ h(3s; — 259 — s3) — 12h(s1) — 8h(sy) — 2h(s3) — 12h(sy),

where (s1) = h(s1) + h(—s1), for all s1, s2, 53 € K.

3
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3. Stability of (1.7) for odd mappings

In this paper, we examine the generalized Hyers-Ulam stability of the functional equation (1.7), in particular
for the case of an odd mapping.

Theorem 3.1. Let s = 41 and £ : K3 — [0, 00) be a mapping such that
o~ € (651,659, 65 s3)

> o < 0 3.1

=0

forall s1,89,83 € K. Let h : I — L be an odd mapping that satisfies
[Dh(s1, s2,83)[| < & (51, 52, 53) (3.2)

for all s1, 82,83 € K. Then there exists a unique additive mapping A : K — L satisfying (1.7) and

1 e 65i
i) = Al < 3 2 63
where 1) : K — L and A(s1) are given by
1
w(sl)26(51781751)+§€(8130781) (34)
and )
A(s1) = Jim 7]1(66;1) (3.5)

for all s1 € K, respectively.

Proof. Assuming that s is equal to 1. By substituting (s1, s2, s3) with (s1, s1, s1) in (3.2) and make use of the
oddness of h, we arrive at the inequality

||h(681) + h(481) + h(281) — 12h(81)H S 5 (81, S1, 81) (36)
for all s; € K. Similarly, substituting (s1, 2, $3) with (s1,0, 1) in (3.2) and using the oddness of h, we get
1
||h(481) + h(281) - Gh(Sl)H S 55 (8170, 81) (37)
for all s; € KC. Combining these two inequalities, we find that

[[7(651) = 6h(s1)[| < [|P(6s1) + h(4s1) + h(2s1) — 12h(s1)|| + [[(4s1) + h(2s1) — 6h(s1) |

1
< &(s1,81,81) + 55 (51,0,81) (3.8)
for all s; € K. Dividing the preceding inequality by 6 yields
h(6

where i
w(sl) = 5 (817 S1, 81) + 56 (81707 81)

for all s; € K. By plugging in 6s; in place of s; and dividing by 6 in (3.9), we acquire

h(62s1)  h(6s1) £(6s1)

H o v : ! ‘ < 621 (3.10)
S
i
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for all s; € K. From (3.9) and (3.10), we obtain

h(6281) h(6281) h(GSl)
O E )|+ |HE ) 2
£(6s1)
<= A1
<! [asn 4 $00) G.11)
for all s; € K. Then, by using induction to a positive integer n, we have
h(6" 1= £(60
(0"51) syl < L3 E050) (3.12)
6" 6 6
=0
1 £(6%s1)
< — -
<52 @
1=0
o o . h(6™s1)
for all s; € K. Substituting 6™s; for s; and dividing by 6™ in (3.12), we see that the sequence o

converges. It follows that for any m and n in the positive integer range, we can conclude that

h(6n+m81) h(6m81) 1 h(6n . 6"”81) m
H 6ntm)—em || 6m o 67
f 6z+m81
<z Z 6(z+m)
€ 67,+m81
<z Z l+m)
—0 as m— oo
h(6n51) . . . .
for all s; € K. Thus is Cauchy. For complete set £, a mapping A : K — L exists with
h(6™
.A(Sl) = lim ( 81), V s1 € K.
n— o0 6

When we plug in (3.12), where n may go to infinity, we get that (3.3) is true for every s; € K. To show that A
satisfies (1.7), we substitute (6™s1, 6" s, 6™s3) for (s1, 2, s3) in (3.2) and divide by 6™ to get

1 1
6" IDA(6"s1,6"s2,6"s3)|| < 675(6”51,6"52,6"33)

for all sy, 52, 83 € K. Using the definition of .A(s1) and the aforementioned inequality, we can show that A(s7)
as n goes to infinity. Hence For all s1, s2, s3 € K, A fulfils (1.7). If A is not unique, we may show that C(s1) is
also an additive mapping fulfilling (1.7) and (3.3), as

[A(s1) = C(s1)]l = i [A(6"s1) = C(6"s1)|

< (A6 1) — h(6"s1)]| + [11(6s1) — C(6751) |}

- 6"
(H—n)sl

£(6
S a Z z+n)

—0 as n— oo

e
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for every s; € K. For this reason, A cannot be found anywhere else. This proves that the theory is correct when
s equals 1. Substituting El for s1 in inequality (3.8) leads to the conclusion that

S 81 81 S1 1 S1 S1
me) —on ()] <€ (55 5) + 3¢ (50 5)
H(sl) h{s)={65%6) " 25\6 "%
for every s; € K. The remainder of the proof for s = —1 is the same as it is for s = 1 . Therefore, the theorem
is valid for both s = 1 and s = —1 . The theorem has been proven at this point. |

The next Corollary is directly derived from Theorem 3.1 concerning the stability of Equation (1.7).

Corollary 3.2. Let t be a positive real value, and assume v > 0. For any s1, 53,53 € K, let h : K — L be a
function that fulfils the inequality

V’
villsull* + [Is2l" + [Issl['}, t# 1
Dh(s1,s2,83)|| < 3.13
1DR(s1, 52,5803 a4 sol s 1, AT
v {lscl[*lls2l[*llss][* + [ls1][* + [[s2]|* + [[ss]|*} , 3¢ # 1.
If so, then for every s; € K, there is a unique additive function A : I — L such that
3v
4 t
gt|81|6|| ) t?’é 1;
[P(s1) = A(s)l < w]sy|t . (3.14)
g
5v||s1*
——— 3t #£ 1.

To demonstrate that (1.7) is not stable at t = 1, as stated in Corollary 3.2, we will now present an illustration.

Example 3.3. Let £ : R — R be a function defined by

£(51) _ {1/51, if|81‘ <1

v, otherwise

where v > 0 is a constant; the function h : R — R, defined as

h(s1) = Z 5(6(;;31)

n=0

forall s; € R, fulfills the functional inequality
|Dh(s1, 52, 83)| < 432v(|s1| + [s2] + [s3]) (3.15)

for all s1, 82,83 € R. If this is the case, then there cannot be an additive mapping A : R — R with a constant
k > 0 such that
|h(s1) — A(s1)| < kls1] forall sp € R. (3.16)

Proof. It is clear that ¢ is a continuous function and |£(s1)| < v for all s; € R. Now

3
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As a result, it becomes clear that h is bounded. Here, we’ll show that & does, in fact, satisfy (3.15). If s; = s5 =
1
s3 =0, or s1, 82, 83 € R such that |s1| + |s2| +|s3] > G then merely by virtue of the boundedness of i we have

|Dh(s1, 52, 83)| < v x 60 x 6 = 432v

(Isil+ ls2f +ss)) = 5

and hence (3.15) is obvious. Take into account the scenario where

1
0< |51| + |82| + |53‘ < 6

In the above scenario, there is a positive whole number m such that

1 1
WS|51|+|52‘+|83‘<671' (3.17)

1 1 1
This implies that 6™ 1z < G 6mly < & and 6™ 1z < G As a result,

6m71(331 + 2859 + 83), 6m71(381 — 289 + 83), 6m71(3$1 + 289 — 33)7 6m71(381 — 289 — 83),
6" (51), 6™ (=51),6™ (52), 6™ (—52),6™ " (s3), 6™ (—s3)

are all within the range of (—1, 1). Therefore, for every whole number 7 that ranges from 0 to m — 1, the values
of

6”(381 + 259 + 83),671(351 — 289 + 83), 6”(381 + 259 — 83), 6”(381 — 289 — 53),
6"(51),6"(—s1),6"(s2),6"(—s2),6"(s3), 6" (—53)

are also within the range of (—1, 1). Due to the fact that £ is linear over this range, we may conclude that

£(6™(3s1 + 282 + s3)) + £(6™ (381 + 252 — 83)) + £(6™ (381 — 2890 + 83)) + £(6™ (351 — 2892 — 53))
—12[£(6"™ (s1)) + £(6" (—s1))] — 8[€(6™ (s2)) + £(6™ (—s2))] — 2[£(6" (s3)) + £(6™ (—s3))] — 12£(6" (1)) = 0,

forn =0,1,...,m — 1. Using (3.17) and the definition of h, we may calculate

|Dh(81,82,33)| > 1
< g 6™(3s1 + 259 + 83)) + £(6™(351 + 259 — s
(Is1] + [s2] + |s3)) Pt 6" (|s1] + |s2] + |s3]) £(6"(3s1 2 3)) +&(6"(3s1 2 3))

+§(6"(3s1 — 252 + 53)) + £(6" (351 — 252 — 53)) — 12[£(6" (1)) + £(6" (—51))]
— 8[£(6" (s2)) + £(6™ (—s2))] — 2[£(6" (s3)) + £(6" (—s3))] — 126(6" (51))

> 60v . 360v
< < — = 432v.
- kZ:O 656 (|s1] + |s2| + |s3]) — ,; 6"

Consequently, for all s1, 52,53 € R with 0 < |s1] + [s2] + s3] < %, h fulfills (3.15). According to Corollary
3.2, the additive functional equation (1.7) is unstable at ¢ = 1. Let us assume, however, that there is an additive
mapping A : R — R obeying (3.16), where R is the set of all real numbers and x > 0. Since h is bounded
and continuous for every s; € R, when s; is in an open interval containing the origin, A is also bounded and
continuous within the interval. A must have the form .A(s1) = ¢s; for any s; in R, according to Theorem 2.1.
This leads to

[h(s1)] < (k+ |c]) |s1]- (3.18)
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. . o . 1
being true. However, by choosing a positive integer m with mv > & + |c|, we can find s; € (0, 67"1> such

that 6™sy € (0,1) foralln = 0,1,...,m — 1. For this s1, we get

L £(6™s1) U X 6ms
h(s1)=>_ 6n1 =Y o s =mwsy > (K + |e]) 51
n=0 n=0

which defies (3.18). Based on the inequality (3.13), it may be concluded that the equation (1.7) is not stable in
the Hyers-Ulam-Rassias sense while ¢ = 1. |

Here we present an example to show that, as mentioned in Corollary 3.2, the functional equation (1.7) is
unstable for ¢ = 1.

Example 3.4. Suppose t is such that 0 < t < % Then, there exists a function h : R — R and a constant v > 0
such that for all real numbers s, s2,s3 € R,

1—2t

|Dh(s1, 5, 53)| < v|s1]5 |sa|5 |s3| = (3.19)

and for all additive mappings A : R — R

sup 118D =AU (3.20)
81750 |51‘

,if s1,7# 0, and h(0) = 0, then we may deduce that

h _
. oy 120 A )
5170 ‘.73| neN |TL|
n#0

Proof. If we set h(s1) = s11n|s;

h(s) = A(s)] o

— sup [nln|n| —n A1)

neN |7’l|
n#0

=sup [ln|n|—A(1)] = cc.

neN
n#0

We need to show that (3.19).
Case (i): If s1, 82,53 > 01n (3.19) then,

|h(3s1 + 252 + s3) + h(3s1 + 282 — s3) + h(3s1 — 252 + s3) + h(3s1 — 252 — $3)
—12[h(s1) + h(=s1)] — 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)]

= |(3s1 4 282 + s3) In |3s1 + 282 + s3] + (351 + 252 — s3) In|387 + 259 — s3]
+ (351 — 282 + $3) In 381 — 289 + s3] + (351 — 282 — s3) In [3s1 — 259 — s3]
—12[s1In|s1| — s1In| — s1]] — 8[s2In|sz| — s2In| — y|]

—2[s3In|s3| — s3In| — s3]] — 12571 In|s4]|
If we set s1 = 7,52 = k, and s3 = [, then we get
‘h(381 + 259 + 83) + h(381 + 259 — 83) + ]’L(381 — 289 + 53) + h(381 — 289 — 83)
—12[h(s1) + h(—s1)] — 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)]

= [(3s1 + 282 + s3) In |3s1 + 252 + s3| + (381 + 282 — s3) In |3s1 + 259 — s3]
+ (351 — 282 + 83) In |31 — 289 + s3] + (381 — 289 — 83) In |3s1 — 259 — s3]

e
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—12[s1In|s1| — s1In| — s1]] — 8[s2In|sz| — s2In| — y|]
—2[s31n|s3| — s3In| — s3]] — 1251 In|s4]|

= (3j + 2k + 1) In |35 + 2k + 1| + (37 + 2k — ) In 35 + 2k — |
+(3) — 2k +1)In |35 — 2k + 1] + (35 — 2k — 1) In|3j — 2k — 1|
— 12[jln]j| — j1n| — 7] — 8k In k] - kln| — k[
=2[n|l| =IIn| —1|] — 125 In|j|

(35 + 2k + 1) + h(3j + 2k — 1) + h(3j — 2k + 1) + h(3j — 2k — 1)
—12[h(7) + h(=5)] = 8[h(k) + h(=k)] = 2[h(1) + h(=1)] — 12h(j)]

e AL R el PE R PN P b

Case (ii): If s1, 89,583 < 01n (3.19) then,

|h(3s1 + 282 + s3) + h(3s1 + 282 — s3) + h(3s1 — 252 + s3) + h(3s1 — 282 — $3)
—12[h(s1) + h(—s1)] — 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)]

= [(3s1 + 282 + s3) In |3s1 + 252 + s3] + (381 + 282 — s3) In |3s1 + 289 — s3]
+ (351 — 282 + 83) In |31 — 289 + s3] + (381 — 289 — 53) In |38 — 259 — 53|

—12[s1In|s1| — s11In| — s1]] — 8[s2In|sa| — s2In| — y|]
—2[s3In|s3| — s3ln| — s3|] — 1251 In |sq]|
If we set s; = —j, so = —k, and s3 = —I, then we get

|R(3s1 4 252 + s3) + h(3s1 + 259 — s3) + h(351 — 282 + s3) + h(3s1 — 252 — s3)
—12[h(s1) + h(—s1)] — 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)]

= [(3s1 + 282 + s3) In |3s1 + 252 + s3| + (351 + 252 — s3) In |3s1 + 259 — s3]
+ (351 — 282 + 83) In 351 — 289 + s3] + (381 — 289 — 83) In |3s1 — 259 — 53|
—12[s1In|s1| — s1In| — s1]] — 8[s2In|sa| — s2In| — y|]
—2[s3In|s3| — s3ln| — s3|] — 1251 In |sq]|

= |(—j — 2k —1)In| = 3j — 2k — I + (—3j — 2k + 1) In| — 35 — 2k + {|
(=35 + 2k — )In| — 35+ 2k — 1| + (=35 + 2k + ) In| — 3j + 2%k + ]
—12[—jIn| — 4|+ jIn|j|]] — 8[-kIn| — k| + k1n |k|]
=2[-lIn| =1 +In|l|]] +1251n| — j]|

(= — 2k — 1) + h(—3j — 2k + 1) + h(—3j + 2k — 1) + h(—3j + 2k + 1)
—12[h(—=j) + h(j)] — 8[A(=Fk) + h(k)] — 2[h(=1) + h(1)] — 12h(—7)]

1—2t

Ot t 1-2t t t
Svl=jIE [ —k[F | —c[ T =vlsi1|5 [s2]7 [s3] 3
Case (iii): If s1 > 0, 59,53 < 01in (3.19) then,

|h(3s1 + 252 + s3) + h(3s1 + 252 — s3) + h(3s1 — 252 + s3) + h(3s1 — 252 — S3)
—12[h(s1) + h(—s1)] — 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)]

= |(3s1 4 282 + s3) In |3s1 + 282 + s3] + (351 + 252 — $3) In[381 + 252 — s3]
+ (351 — 282 + $3) In 351 — 252 + s3] + (351 — 282 — s3) In [3s1 — 255 — s3]
—12[syInfs1| = s1In| — 51]] = 8[sz In[s2[ — s2In | — y]]

—2[s31n|s3| — s3In| — s3]] — 1251 In|s4]|
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If we set s1 = j, s0 = —k, and s3 = —I, then we get

|h(3s1 + 289 4 s3) + h(3s1 + 282 — s3) + h(3s1 — 282 + s3) + h(3s1 — 289 — 83)
—12[h(s1) + h(—s1)] — 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)]
= |(3s1 4 282 + s3) In |3s1 + 282 + s3] + (351 + 252 — s3) In {387 + 259 — s3]
+ (351 — 282 4 83) In |31 — 282 + s3] + (351 — 282 — 83) In |3s1 — 259 — 53|
—12[s1In|s1| — s1In| — s1|] — 8[s2 In|sa| — soln| — y|]
—2[s3In|ss| — s3ln| — s3|] — 1251 In |sq]|
= (35 — 2k — ) In |35 — 2k — 1| + (3§ — 2k + 1) In |3 — 2k + |
+(3j 42k — D)In |35 + 2k — 1| + (35 + 2k + 1) In |35 + 2k + 1|
— 1201 |j] - jln| - j{] - 8[~K1n| — k| + Kn k]
—2[-lIn| 1| +!Inl]] — 125 In|j]|
|h(3j —2k —1)+h(3j —2k+ 1)+ h(3j + 2k —1)+ h(35 + 2k +1)
—12[h(j) + h(=j)] = 8[h(=k) + h(k)] — 2[n(=1) + h(1)] — 12h(j)|

1-—2t

< vl [ = k|5 | = ¢ 3

t t 1—2t
= v|s1]% |sa]? [s3] @

Case (iv): If s1 <0, 53,53 > 01in (3.19) then,

|h(3s1 + 252 + s3) + h(3s1 + 2s2 — s3) + h(3s1 — 252 + s3) + h(3s1 — 252 — $3)
—12[h(s1) + h(—s1)] — 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)]

= |(3s1 4+ 282 + s3) In |3s1 + 282 + s3] + (351 + 252 — $3) In {387 + 289 — s3]
+ (381 — 282 + s3) In|3s1 — 289 + s3] + (351 — 282 — s3) In |31 — 289 — s3]
—12[s1In|s1| — s1In| — s1]] — 8[s2In|sz| — s2In| — y|]

—2[s31In|s3| — s3In| — s3]] — 1251 In|s4]|
If we set s = —j, so = k, and s3 = [, then we get

|h(3s1 + 252 + s3) + h(3s1 + 282 — s3) + h(3s1 — 252 + s3) + h(3s1 — 252 — S3)
—12[h(s1) + h(—s1)] — 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)|

= |(3s1 4 282 + s3) In |3s1 + 282 + s3] + (351 + 252 — $3) In|387 + 259 — s3]
+ (351 — 282 + $3) In 351 — 282 + s3] + (381 — 282 — 83) In |38 — 259 — 53|
—12[s1In|s1| — s1In| — s1]] — 8[s2In|sa| — s2In| — y|]
—2[s3In|ss| — s3ln| — s3|] — 1251 In |sq]|

= |(=3j + 2k + 1) In| — 35 + 2k + 1| + (=3 + 2k — 1) In| — 3j + 2k — |
+(=3j—2k+0)In|—-3j —2k+1|+ (-3j —2k—1)In| - 35 — 2k — ]
—12(—j1n| - j| + j1n| - j]) — 8[kn|K| — Kln| — k]
o] — iln| - I] + 12§ In| — ]|

|h(=3j + 2k +1) + h(=3j + 2k —1) + h(=3j — 2k +1) + h(=3j — 2k — 1)
120(—j) + B(=)] — $[(E) + h(—F)] — 2[h(D) + h(~D)] — 12h(7)|

1—2t

< vl =I5 k|5 IS

t t 1—2t
= v|s1]% [sa]? [s3| 7
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Case (v): If s; = so = s3 = 01in (3.19), then the statement is obvious. [ |

Here we present an example to show that, as mentioned in Corollary 3.2, the functional equation (1.7) is

unstable for ¢ = 1.

Example 3.5. Let £ : R — R be a function defined by

5(81) — {VS]_, lflSl‘ <1

v, otherwise

where v > 0 is a constant; the function h : R — R, defined as
o &(67s1)
h(s1) = ;_0 o

for all s; € R, fulfills the functional inequality
|Dh(s1, s, 53)| < 4320 (113 [52]% [s3]% + [s1] + 2] + |s3]) (3.21)

for all s1, 82,83 € R. If this is the case, then there cannot be an additive mapping A : R — R with a constant
k > 0 such that
|h(s1) — A(s1)| < kls1] forall sp € R. (3.22)

Proof. It is clear that £ is a continuous function and |£(s1)| < v for all s; € R. Now

— [£(6"51)] _ = v bv
\h(S1)|§ZW§ 67"23
n=0 n=0

As a result, it becomes clear that & is bounded. Here, we’ll show that h does, in fact, satisfy (3.15). If s; =
1

o = s3 = 0, Or 51, 52, 53 € R such that |s|3 |s|3|s3]|3 + |s1| 4 |so| + |ss| > 5 then merely by virtue of the

boundedness of h we have

[ Dh(s1, 52, 53)| <% 60 x 6 = 4320
(Is1]3]s2]3]s3|5 + [s1] + [s2] + [ss]) ~ 5

and hence (3.15) is obvious. Take into account the scenario where
1 1 1 1
0 <[s1f]s2|%[ss]% + |sa] +[s2] + s3] < 5

In the above scenario, there is a positive whole number m such that

1 1 1 1
5D = 1] 3] 3[s3] ¥ + 1] + 2] + [s3] < o (3.23)

1 1 1 1
This implies that 6mflsf‘y%z% < 2,6m7lr < 5 6m 1y < 5 and 6™ 1z < 5 As aresult,

[

6m71(351 + 252 + 83), 6m71(351 - 282 + 53), 6m71(351 + 282 - 53)76m71(381 - 282 - 53),
6™ (51), 6™ (—51), 6™ (52), 6™ (—52), 6™ (s3), 6™ (—s3)

are all within the range of (—1, 1). Therefore, for every whole number 7 that ranges from 0 to m — 1, the values
of

6" (381 + 282 + 83),6™ (351 — 282 + 83),6" (351 + 282 — $3),6" (351 — 289 — 53),

e
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6" (s1),6"(—s1),6"(s2),6™(—s2),6"(s3),6"(—s3)
are also within the range of (—1, 1). Due to the fact that £ is linear over this range, we may conclude that

£(6™ (351 + 252 + 83)) + 5(6”(381 + 289 — 83)) + 5(6”(381 — 289 + 83,))
+&(6" (351 — 252 — s3)) — 12[£(6" (s1)) + £(6™(—51))] — 8[£(6"(52)) + £(6" (—s2))]
—2[£(6"(s3)) +£(6"(—s3))] — 12£(6"(s1)) = 0,

forn =0,1,...,m — 1. Utilising (3.17) and the definition of h, we may calculate

|Dh(81,$2,83)|
(Is1]3|s2]5]s3|5 + [s1] + [s2] + |ss])
o0

1
< g ‘5(6”(381+252+53))
67 (|51 |s2|3 |s3]5 + |s1| + |s2| + |s3])

+ 5(6n(351 + 282 - 53)) + 5(6”(351 - 252 + 53)) + 5(6“(381 — 252 — 53))
— 12[(6" (s1)) + £(6" (—51))] — 8[€(6" (52)) + £(6" (—s2))]
— 2[£(6" (s3)) + £(6™(=s3))] — 125(6”(81))’

i 60v ) SZ 601/ 1390,

= 6k6m™ (|51]5|s2|3 s3] + |s1] + |s2| + s3]

Consequently, for all s1, 53, 53 € R with 0 < |s1]3 |s5]% |ss|5 +|s1]+|s2|+|ss] < , h fulfills (3.15). According

1
to Corollary 3.2, the additive functional equation (1.7) is unstable at t = —. Let us assume, however, that there

is an additive mapping A : R — R obeying (3.16), where R is the set of all real numbers and « > 0. Since h is
bounded and continuous for every s; € R, when s; is in an open interval containing the origin, A is also bounded
and continuous within the interval. .4 must have the form A(s;) = ¢s; for any s; in R, according to Theorem
2.1. This leads to

|h(s1)] < (K + [c]) [s1]- (3.24)

being true. However, by choosing a positive integer m with mv > k + |¢|, we can find 1 € (O7 6,,1%1) such that
6"s; € (0,1) forallm =0,1,...,m — 1. For this s1, we get

o'} m—1
£(6"s1) v X 6"s;
h(sy) = E o > E L (k+ |c]) s1
n=0 =0

which defies (3.18). Based on the inequality (3.13), it may be concluded that the equation (1.7) is unstable in the

Hyers-Ulam-Rassias sense while £ = 3 |

4. Stability of (1.7) for even mappings

In this paper, we examine the generalized Hyers-Ulam stability of the functional equation (1.7), in particular
for the case of an even mapping.

Theorem 4.1. Let s = 1 and £ : K3 — [0, 00) be a mapping such that

i 5 (68i81,68i82,65i83) .

62si

=0
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forall s1,89,83 € K. Let h : KK — L be an even mapping fulfills
[ Dh(s1, s2,83)|| < & (s1,52,53) 4.2)

forall s1, s, s3 € K. Then there is only one quadratic mapping B : K — L that fulfills (1.7) and

1 < ¥ (6%s
i)~ Bl < o >0 L) @3)
where 1 : IC — L and B(s1) are defined by
1
w(sl)25(51781751)‘5‘55(81,0,81) (4.4)
and ‘
h(6%s1)

B(s1) = lim

i—soo 625t

4.5
for all s1 € K, respectively.

Proof. Assuming that s is equal to 1. By substituting (s1, s2, s3) with (s1, s1, s1) in (4.2) and make use of the
evenness of h, we arrive at the inequality

|1h(6s1) + h(4s1) + h(2s1) — 56h(s1)| < & (s1,81,51) (4.6)

for all s; € K. Similarly, substituting (s1, $2, s3) with (s1,0, s1) in (4.2) and using the even property of h, we
get

1
||h(481> + h(281) — 20h(81)|| < 56 (81, 0, 81) “@.7
for all s; € K. Combining these two inequalities, we find that
|1h(6s1) — 36Rh(s1)]| = ||h(6s1) + h(4s1) + h(2s1) — 56h(s1)]| + ||h(4s1) + h(2s1) — 20h(s1)||

1
§§(51,81781)+§€ (51,0,51) (4.8)

for all s; € K. Dividing the preceding inequality by 62 yields

h(6s1) ¥(s1)
H 1) (o) ’ < 4.9)
where 1
P(s1) =& (s1,81,51) + 55 (51,0,51)
for all s; € K. By plugging in 6s; in place of s; and dividing by 6 in (4.9), we acquire
h(6281) h(GSl) 5(681)
H T | < e (4.10)
for all s; € K. From (4.9) and (4.10), we obtain
h(62s1) h(6s1) h(6%s1)  h(6s1)
R TS N
1 &(6s
<& {5(51) + (621)} @.11)
S
V=)
MJM
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for all s; € K. Then, by induction to a postive integer n, we have

h(6™s1) f (6s1)
H : h(sl)H <& Z 6211 (4.12)

62n
1=0

S62z:§62z

h(6™
for all s; € K. Substituting 6™s; for s; and dividing by 62 in (4.12), we see that the sequence { (6251) }

converges. It follows that for any m and n in the positive integer range, we can conclude that

62n — h(6m81)

62(n+m) 62m

Hh(6n+m51) h(ﬁmsl)

’ 1

52

g 61+m81 g 6'L+msl
62 Z 62 Ta2(i4m) = 62 Z 62(i+m)

1=0

—0 as m— o

h(6n51)
62n

for all s; € K. Thus { } is Cauchy. For complete set £, a mapping B : K — L exists with

B(s1) = lim h(6"s1)

n— 00 62

, V.s1 €K

When we plug in (4.12), where n may go to infinity, we get that (4.3) is true for every s; € K. To show that A
satisfies (1.7), we substitute (6™s1, 6" sq,6™s3) for (s1, 52, s3) in (4.2) and divide by 62" to get

1
§(6n81, 6”82, 6“53)

||Dh( 81,6n82,6n53)” < 62n

62rL
for all s1, 82, s3 € K. Using the definition of B(s;) and the aforementioned inequality, we can show that B(sy)
as n goes to infinity. Hence For all s1, s2, s3 € K, B fulfils (1.7). If B is not unique, we may show that D(s;) is
also an additive mapping fulfilling (1.7) and (4.3), as

[B(s1) = D(s1)l| = 6% [1B(6"s1) —D(6"s1)||
< 6% {[1B(6"s1) — h(6™s1)|| + [[h(6"s1) — D(6"s1)][}
f z+n
§62Z 62(“‘") —0 as n— oo

for all s; € K. For this reason, B cannot be found anywhere else. This proves that the theory is correct when s
equals 1. Substituting %1 for s1 in inequality (4.8) leads to the conclusion that

e =on ()] <€ (55 5) + 3¢ (5-0.5)

for all s; € K. The remainder of the proof for s = —1 is the same as it is for s = 1 . Therefore, the theorem is
valid for both s = 1 and s = —1 . The theorem has been proven at this point. |

The next Corollary is directly derived from Theorem 4.1 concerning the stability of Equation (1.7).

3

s
2
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Corollary 4.2. Let t be a positive real value, and assume v > 0. For any s1, 82,53 € K, let h : K — L be a
function that fulfills the inequality

V?

v sl flsell + [1sall*} 142
Dh(s1,89,s3)] < 4.13
e KT spo D

v{llsall“llsal[*llssl” + {Is][*" + [ls2l* + [lss||*} } . 3t # 2.

If so, then for every s1 € K, there is a unique quadratic function B : IC — L such that

3v

4 t

il 1o,

1h(s1) = Blsi)ll < § ]y " 3t 2 2: 4.14)

‘63’5 62|’ ’

Sv||s1l*

731& 2.

[EETEi

To demonstrate that (1.7) is not stable at t = 1, as stated in Corollary 4.2, we will now present an illustration.

Example 4.3. Let £ : R — R be a function defined by

E(s1) = {Vs%, if |s1] < 1

v, otherwise

where v > 0 is a constant, and the function h : R — R, which is defined as

£(6"
Z 6251

for all s; € R fulfills the functional inequality

15552v
7

|Dh(s1, s2,53)| < (Is1]® + [s2]? + [s3]?) (4.15)

for all s1,s2,s3 € R. If this is the case, then there cannot be a quadratic mapping B : R — R with a constant

Kk > 0 such that
|h(s1) — B(s1)| < k|s1|*> forall s, €R. (4.16)

Proof. It is clear that ¢ is a continuous function and |£(s1)| < v for all s; € R. Now
|€(6™s7) v 36v
< = —.
h(s1)l Z |62n| = Z 62n 35

As a result, it becomes clear that h is bounded. Here, we’ll show that & does, in fact, satisfy (4.15). If s; = s5 =
1
53 =0, 0r 51, 82,53 € R such that |s1|? + |s2|? + |s3]% > & then merely by virtue of the boundedness of h we

have

|Dh($1,82,53)‘ 36v 2 _ 15552y
< — x60x6
(Is1? + [s2]? +[s3]?) = 35 T

and hence (4.15) is obvious. Take into account the scenario where

0 < |s1]* + |s2]® + |s3]*> <

e
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In the above scenario , there is a positive whole number m such that

7 < lstl? 4 [saf” + [ss]* < (4.17)

62(m+1 62m”

1 1 1
This implies that 6™ 1z < G 6mly < & and 6™ 1z < G As a result,
6m_1(381 + 259 + 83), 6m_1(381 — 289 + 83), 6m_1(381 + 259 — 83)7 6m_1(381 — 259 — 53),
6™ 1 (s1),6™ " (—51),6™ " (52),6™ " (—s2),6™ " (s3), 6™ (—s3)

are all within the range of (—1, 1). Therefore, for every whole number 7 that ranges from 0 to m — 1, the values
of

6”(381 + 252 + 83),6n(381 - 252 + 53), 6“(351 + 282 - 53), 6”(381 - 252 - 83),
6" (s1),6"(=s1),6" (s2),6" (—52),6" (s3),6"(—s3)

are also within the range of (—1, 1). Due to the fact that £ is quadratic over this range, we may conclude that

§(6n(351 + 282 =+ 83)) =+ §(6n(351 + 282 — 83)) =+ €(6n(351 — 252 + 53))
+ (6" (351 — 252 — s3)) — 12[6(6" (51)) + £(6" (—51))] — 8[€(6" (52)) + £(6" (—s2))]
— 2[€(6"(s3)) + £(6"(—s3))] — 126(6" (1)) = 0,

for integers n = 0 — m — 1. Utilising (4.17) and the definition of i, we may calculate

‘Dh(81,82753)| > 1 n n
< 6" (351 + 259 + +&(6™(3s1 + 252 —
(|81|2 + ‘32|2 + |S3|2) = Z 36n(|81‘2 + |82|2 + |83‘2) é—( ( S1 52 53)) g( ( S1 52 53))

+&(6" (351 — 252 + 53)) + £(6" (351 — 252 — 53)) — 12[£(6"(51)) + £(6" (—51))]
— 8[£(6" (s2)) + £(6™(—s2))] — 2([£(6" (s3)) + £(6" (—s3))] — 12£(6" (1))

n=m

o0

60v Z 2160v _ 15552v

< =
= kZ:O 367367 ([s1]2 + [s2]? + [sal?) — &= 36F 7

Consequently, for all s1, s9, 53 € R with 0 < [s1]? + |s2|* +[s3] < %, h fulfills (4.15). According to Corollary
4.2, the quadratic functional equation (1.7) is unstable at t = 1. Let us assume, however, that there is a quadratic
mapping B : R — R obeying (4.16), where R is the set of all real numbers and « > 0. Since A is continuous and
bounded for every s; € R, when s; is in an open interval containing the origin, B is also continuous and bounded
within the interval. B must have the form B(s1) = cs? for any s; in R, according to Theorem 2.1. This leads to

|h(s1)] < (k+ |c]) s7. (4.18)

being true. However, by choosing a positive integer m with mv > k + |c|, we can find 1 € (0, 6%1) such that
6"s1 € (0,1) foralln = 0,1,...,m — 1. For this s;, we get

o) m—1
£(6™s1) v x 62"g?
o) =) e 2 Y — e =mwsi > (k+ ) st
n=0 n=0
which defies (4.18). Based on the inequality (4.13), it may be concluded that the equation (1.7) is unstable in the
Hyers-Ulam-Rassias sense while t = 1. |
S
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Here we present an example to show that, as mentioned in Corollary 4.2, the functional equation (1.7) is

unstable for t = 2.

Example 4.4. Suppose t is such that 0 < t < % Then, there exists a function h : R — R and a constant v > 0
such that for all real numbers s1, sz, 53 € R,

|Dh(s1, 52, 53)| < v]s1|5 |sa] 5 |s3] 5 (4.19)
and for all quadratic mappings B : R — R
h _
qup s Z BVl _ | (4.20)

5170 [51]
Proof. If we set h(s1) = s7 In|sq], if s1 # 0, and h(0) = 0, then we may deduce that

aup 1) =Bl [ (n) B (n)
z#£0 |s1] neN |n
n#0

[n?In|n| —n? B (1)
= sup

neN |’I’L|
n#0

= sup |In|n|—B(1)] = cc.

neN
n#0

We need to show that (4.19).
Case (i): If s1, s2,s3 > 0in (4.19) then,

|h(3s1 + 282 + s3) + h(3s1 + 282 — s3) + h(381 — 252 + s3) + h(3s1 — 282 — $3)
—12[h(s1) + h(=s1)] = 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)]

= |(351 + 289 + 53)2 In|3s1 + 289 + s3] + (351 + 289 — 53)2 In |3s1 + 282 — s3]
+ (351 — 255 + 53)%In |351 — 285 + 53| + (351 — 259 — 53)%In [351 — 255 — s3]
—12[s?In|sy| + s7In| — s1|] — 8[s5In |so| 4+ s31n | — so]]

—2[s3In|s3| + s51In | — s3]] — 1257 In [s4]|
If we set s; = 7,52 = k, and s3 = [, then we get

|h(3s1 + 282 + s3) + h(3s1 + 282 — s3) + h(3s1 — 252 + s3) + h(3s1 — 282 — S3)
—12[h(s1) + h(—s1)] — 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)|
= |(3s1 + 252 + s3)> In |3s1 + 255 + s3] + (351 + 252 — 53)° In[3s1 + 252 — s3]
+ (351 — 259 + 53)%In [351 — 285 + 53| + (351 — 259 — 53)* In [351 — 255 — s3]
—12[sIn|sy| + s3In| — s1|] — 8[s5In|s2| + s31n| — sa]]
—2[s21n|s3| + s2In| — s3]] — 1257 1n Bl
=[(3j+2k+1)*In[3j + 2k + 1| + (3j + 2k — 1)’ In[3j + 2k — |
+ (35 =2k +1)*In|35 — 2k + 1| + (35 — 2k — 1)*In |35 — 2k — ||
—12[%In |j[ + j* In| — j[] - 8[k* In k| + k*In | — k]
=2 |I| + *In| — I]] — 125% In|j||
(35 + 2k + 1) + h(3j + 2k — 1) + h(3) — 2k + 1) + h(3j — 2k — 1)
—12[h(G) + P(=j)] = 8[h(k) + h(=K)] = 2[n(1) + h(=1)] = 12A(j)|

e
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2—2t

< wlj|3 k|5 1|3

t t 2—2t
=v|s1|? [s2|? [s3] 3

Case (ii): 1If s1, 52,53 < 01n (4.19) then,

|h(3s1 + 282 + s3) + h(3s1 + 282 — s3) + h(381 — 252 + s3) + h(3s1 — 282 — $3)
—12[h(s1) + h(=s1)] — 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)|

= [(3s1 + 252 + s3)> In [3s1 + 255 + s3] + (351 + 252 — 53)° In[3s1 + 252 — s3]
+ (3s1 — 282 + 83)2 In|3sy — 289 + s3] + (387 — 289 — 53)2 In|3s1 — 259 — s3]

— 12[5% In |s1| + s% In| —s1]] — 8[3% In |so| + s% In| — s2]
—2[s3In|s3| + s51In | — s3]] — 1257 In [s4]|
If we set s1 = —j, so = —k, and s3 = —I, then we get

|h(381 + 282 + s3) + h(3s1 + 282 — s3) + h(381 — 252 + s3) + h(3s1 — 282 — $3)
—12[h(s1) + h(=s1)] = 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)]

= |(351 + 259 4 53)2In |35 + 255 + s3] + (351 4 250 — 53)?In|3s1 + 255 — s3]
+ (351 — 255 + 53)%In [351 — 285 + 53| + (351 — 259 — 53)%In [351 — 255 — s3]
—12[s71In|sy| + s3In| — s1|] — 8[s3In|s2| + s31n| — sa]]
—2[s31In|s3| + s31In| — s3]] — 1257 In [s4]|

=[(=3j =2k —1)’In| = 3j — 2k — 1| + (-3 — 2k + )*In| — 3j — 2k + (|
4 (=35 + 2k — 1)2In| — 35 + 2k — I + (=35 + 2k + 1)2In| — 3j + 2k + (|
—12[j%In|j[ + j* In| — j[] — 8[k* In k| + k* In | — k]
—2[*In|l| + *In| — I|] — 125° In 5|

(=35 — 2k — 1) + h(—3j — 2k + 1) + h(—3j + 2k — 1) + h(—3j + 2k + 1)
—12[h(—j) + h(G)] — 8[A(—E) + h()] — 2(h(~1) + h()] — 12(~)

2—2t

<wljls | KIS | =17

2—2t

= vs1|7 [s2]7 |s5| 7
Case (iii): 1If s1 > 0, 59,53 < 01in (4.19) then
‘h(331 + 289 + 83) + h(381 + 289 — 83) + h(381 — 289 + 53) + h(381 — 289 — 83)
—12[h(s1) + h(—s1)] — 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)]
= |(3s1 + 252 + s3)> In [3s1 + 255 + s3] + (351 + 252 — 53)° In[3s1 + 252 — s3]
+ (351 — 259 + 53)%In [351 — 285 + 53| + (351 — 259 — 53)* In [351 — 255 — s3]

— 12[3% In|s1| + s2In| — s1l] — 8[8% In |so| + s% In| — s2]
—2[s21n|s3| + s2In| — s3]] — 1257 1n |51
If we set s1 = j, s0 = —k, and s3 = —[, then we get

|h(3s1 + 282 + s3) + h(3s1 + 282 — s3) + h(381 — 252 + s3) + h(3s1 — 282 — $3)
—12[h(s1) + h(—s1)] — 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)]

= |(3s1 + 252 + s3)> In |3s1 + 255 + s3] + (351 + 252 — 53)° In[3s1 + 252 — s3]
+ (351 — 259 + 53)%In [351 — 285 + 53| + (351 — 259 — 53)* In [351 — 255 — s3]
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—12[s%1In|sy| + s?In| — s1|] — 8[s3In |s2| + s51n| — s2]]
—2[s3In |s3| + s31In | — s3|] — 127 In |5y ]|

=[(3j — 2k —1)*In[3j — 2k — 1)] + (3j — 2k + 1) In|j — 2k + |
+(3j 4+ 2k —1)*In |35 + 2k — | + (35 + 2k + 1)*In |35 + 2k + |
—12[52In |j| + j%In| — j|] — 8[k*In|k| + k*In| — k]
=2 |I| + P In| — ] — 125°In|j||

|h(3j — 2k = 1)+ h(3j — 2k + 1) + h(3j + 2k — 1) + h(3j + 2k + 1)
—12[h(j) + h(=7)] —8[h(—k)+h(k)} = 2[h(=1) + h(1)] — 12A(j)]

< vljfs | — ki

= v]s1]3 |55

Case (iv): If s1 <0, 59,53 > 0in (4.19) then,

|h(3s1 + 282 + s3) + h(3s1 + 282 — s3) + h(381 — 252 + s3) + h(3s1 — 282 — $3)
—12[h(s1) + h(—s1)] — 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)]

= |(351 + 289 + 33)2 In |3s1 + 2s2 + s3| + (381 + 289 — 53)2 In |3s1 + 252 — s3]
+ (351 — 259 + 53)%In [351 — 285 + 53| + (351 — 259 — 53)% In [351 — 255 — s3]

—12[s?In|sy| + s7In| — s1|] — 8[s3In |so| 4+ s3In | — so]]
—2[s3In s3] + s31In| — s3]] — 1257 In [s4]|
If we set s = —j, s2 = k, and s3 = [, then we get

|R(3s1 4 282 + s3) + h(3s1 + 252 — s3) + h(351 — 282 + s3) + h(3s1 — 252 — s3)
—12[A(s1) + h(—s1)] — 8[h(s2) + h(—s2)] — 2[h(s3) + h(—s3)] — 12h(s1)|

= |(351 + 289 4 53)% In 351 + 255 + s3] + (351 4 259 — 53)%In|357 + 255 — s3]
+ (351 — 259 + 53)%In [351 — 285 + 53| + (351 — 259 — 53)* In [351 — 255 — s3]
—12[s31n|s1| + s7In| — z|] — 8[s31In|sz| + s51In | — s5]]
—2[s21n|s3| + s2In| — s3]] — 1257 1n |51
=|(=3j+2k+1)°In| = 3j + 2k + 1|+ (—3j + 2k — )*In| — 3j + 2k — |
+ (=37 =2k +1)*In| —3j — 2k + 1| + (=3j — 2k — )*In| — 35 — 2k — ||
1202 In| — j| + 7 In 5[] — 8k In [k] + K In| — k|
—2[ I |I| + P In| —[] — 125%In| — j||

(=37 + 2k + 1) + h(=3j + 2k — 1) + h(=3j — 2k + 1) + h(—3j — 2k — 1)
—12[h(=j) + h(j)] = 8[A(k) + h(=K)] = 2[h(1) + h(=1)] — 12h(=3)]

< vl —jl% k|5

= v]s1]5 |5

Case (v): If s1 = s = s3 = 01in (4.19), then the statement is obvious. [ |

Here we present an example to show that, as mentioned in Corollary 4.2, the functional equation (1.7) is

unstable for t = %
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Example 4.5. Let £ : R — R be a function defined by

5(51) _ {VS% if|51‘ <1

v, otherwise

where v > 0 is a constant; the function h : R — R, defined as

> 6“51

for all s1 € R, fulfills the functional inequality

15552
7

for all s1, s2,s3 € R. If this is the case, then there cannot be a quadratic mapping B : R — R with a constant
k > 0 such that

|Dh(s1, s, 53)| < (Is1]%]s2]5]s3] 5 + |s1]? + [s2]% + |s3]?) 4.21)

|h(s1) — B(s1)| < ks forall s; €R. (4.22)

Proof. It is clear that ¢ is a continuous function and |£(s1)| < v for all s; € R. Now

(6" 36
Z 62:|1 - Z 612/n = 37;

As a result, it becomes clear that h is bounded. Here, we’ll show that & does, in fact, satisfy (4.15). If s; = s5 =

1
s3 = 0, Or 51, 2,53 € R such that |sy |3 |sa| |sg]F + [s1]2 + [s2]? + [s3]2 > — @ , then merely by virtue of the
boundedness of h we have
IDh(s1s0.) S o 15552
(Is1[3]s2]3 s3] +[s1] +[s2]* + [s3]?) — 35 7

and hence (4.15) is obvious. Take into account the scenario where
2 2 2 2 2 2
0 <[sfF]s2|¥[s3]3 + [s1]” + [sof” + [ss]” < o5

In the above scenario, there is a positive whole number m such that

2 2 2
< |81‘§|82|§‘83|§ +‘81|2+|82|2+‘83|2 < (4.23)

62(m+1) 62m’

1 1 1
6l < E,Gm_ly < G and 6™ 1z < G As a result,

6m71(351 + 252 + 83) 6 (351 - 252 + 53), 6m 1(351 + 252 - 53)76m71(381 - 252 - 53),
6m—1(81)76m—1(_81)76m 1(82),6m 1( )76m 1( 3),6m_1(—83)

AN
s

are all within the range of (—1, 1). Therefore, for every whole number 7 that ranges from 0 to m — 1, the values
of

6”(381 + 259 + 53)76n(351 — 289 + 83), 6”(381 + 259 — 83)7 6"(381 — 289 — 53),
6"(51),6"(—s1),6"(s2),6"(—s2),6"(s3), 6" (—53)

are also within the range of (—1, 1). Due to the fact that £ is quadratic over this range, we may conclude that

5(6”(381 + 259 + 83)) + 5(6”(381 + 2859 — 83,)) + §(6"(381 — 289 + 83))

e
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+£(6" (351 — 252 — 53)) — 12[£(6" (51)) 4 (6" (—51))] — 8[€(6" (52)) 4 £(6" (—52))]
— 2[£(6" (s3)) + £(6™(—s3))] — 12£(6"(s1)) = 0,
forn =0,1,...,m — 1. Utilising (4.17) and the definition of h, we may calculate
|Dh(81,32,$3)| e 1

<
(IsalEloalFsaf? o fsaf2 o+ foal s+ aaf?) =5 62 (jon sl lsal o+ Jsu 2+ fsof? + f?)

‘5(6”(351 + 280 + 53)) + £(6™ (351 + 250 — 53))

+ £(6n(351 — 282 + 53)) —+ £(6n(351 — 282 — 53))
—12[£(6" (s1)) + &(6™ (—51))] — 8[€(6" (s2)) + (6™ (—52))]
— 2[£(6" (s3)) + £(6"(—s3))] — 12£(6™(51))

- Z 60v
T £ 36K36™ (|s1]5 [52] 5[5] 5 + [s1]2 + [s2]2 + |s3]2)

Z 21600 15552
= £ 36k .

. 1
Consequently, for all 51, 59,535 € R with 0 < [s1]5]s2|3|s3]3 + |s1]> + [s2|? + |s3]2 < gz b fulfills (4.15).

2
According to Corollary 4.2, the quadratic functional equation (1.7) is unstable at £ = —. Let us assume, however,

that there is a quadratic mapping 3 : R — R obeying (3.16), where R is the set of all real numbers and x > 0.
Since h is bounded and continuous for every s; € R, when s; is in an open interval containing the origin, B is
also bounded and continuous within the interval. 3 must have the form B(s;) = cs? for any s; in R, according
to Theorem 2.1. This leads to

|h(s1)] < (k+ |c]) s7. (4.24)

being true. However, by choosing a positive integer m with mv > k + |c|, we can find s; € (O, G 1) such that
6"s1 € (0,1) foralln = 0,1,...,m — 1. For this s1, we get

£(6™s1) = v x 622
Z 62n - Z 62n L= mysl ('Li + |C|)
n=0

which defies (4.18). Based on the inequality (4.13), it may be concluded that the equation (1.7) is unstable in the

Hyers-Ulam-Rassias sense while t = —. |

5. Stability of (1.7) for mixed mappings

In this section, we will examine the generalised Hyers-Ulam stability of the functional equation (1.7) in the
case where the mapping is a mixture of odd and even mappings.

Theorem 5.1. Let s = 1 and £ : K3 — [0, 00) be a mapping such that

;5(6 817251.8276 83) < oo and Z§<6 81722;2’6 83) < 00 6.1

forall s1,s9,s3 € K. Let h : K — L be a mapping satisfying the inequality

| Dh(s1,52,53)| <& (s1,52,53) (5.2)

3
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forall s1, 82,83 € K. Then, a unique additive mapping A : K — L and a unique quadratic mapping B : K — L
exist with

oo

o) = Als2) = Bl < 5 3 { gty + g [0 6) + 0 (-6%s)]

. 1—s
=3

where 1 (s1) , A(s1) and B(s1) are defined as in (3.4), (3.5) and (4.5) for all s1 € K, respectively.
Proof. Define a mapping h, : K — H by
ha(s1) = 5[h(s1) — h(=51)] 5.3)
for all s; € K. Then h,(0) = 0 and hy(—s$1) = —ha(s1) forall s; € K. Hence
| Dhq(s1,52,53)| <

[€ (51,52, 83) + & (—x, =52, —53)] (54)

for all s; € K. By Theorem 3.1, we have

[ha(s1) = Als)]| < (5.5

1 > ﬂ) (65i81) + 1// (—65i81)
Z 6(si+1)

where 1) (s1) and A(s1) are defined as in (3.4) and (3.5) for all s; € K, respectively. Also, define a mapping
hq : K — H by

als1) = (1) + h(—51)] 5.6)

for all s; € K. Then hy(0) = 0 and hy(—s1) = hg(s1) forall s; € K. Hence

1
| Dhy(s1,52,583)| < 3 [€ (51,52,83) + & (=51, =82, —53)] 5.7
for all s; € K. By Theorem 4.1, we have
1 > P (651'31) + 1/) (—6Si51)
Ihg(s1) = Bs)| < 5 > ) (5.8)

where ¢ : K — L and B(s;) are defined as in (3.4) and (4.5) for all s; € KC, respectively. From (5.3) and (5.5),
we have

h(s1) = ha(s1) + he(s1) (5.9
for all s; € K. Using (5.5), (5.8) and (5.9), we get

[h(s1) = A(s1) = B(s1)|| = [[ha
< |lha

s1) + hq(s1) — A(s1) — B(s1) ||
s1) — A(s1)|| + [[hq(s1) — B(s1)|

o0

1 1 1 s1 S1
< 92 Z {6(si+1) + 62(si+1)} [1/) (6 81) +9 (_6 51)]

—s

2

—~

=

where v (s1) ,.A(s1) and B(s;) are defined as in (3.4), (3.5) and (4.5) for all s; € K, respectively. [ |
The Corollary that follows is a direct result of Theorem 4.1, which pertains to the stability of equation (1.7).
S
(V<)
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Corollary 5.2. Assume that t be a positive real value and v > 0. Let h : K — L be a function fulfills the
inequality

1/7
v{llsill* +ls2ll* + [[ssl[*} t#1,2
< .
|‘Dh(81782,$3)“ = V‘|51||t‘|82”t||83||t, 3t ?é 1,2; (5.10)

v{llsul[*lls2llllssl* + {Isal** + [Is2l [ + llss]|*} }, 36 # 1,2

forall s1, 89,53 € K. Then, a unique additive mapping A : K — L and a unique quadratic mapping B : K — L
exist with
3y 1 n 1
10 ' 70
4v||s1]|t ! + ! t#1,2;
W r=e Trme) s TR

1 1
3t 3t#1,2;
VH81|| (|63t_6| + 63t_62|)7 7é )
5|3y 1 ( a1

|h(s1) — A(s1) — B(s1)]| < (5.11)

637 — 6| + 63" — 62|
forall s; € K.

To demonstrate that (1.7) is not stable at t = 1, as stated in Corollary 4.2, we will now present an illustration.

Example 5.3. Let £ : R — R be a function defined by

v
—(s1+82), ifls1] < 1
(o) = { 551+ ), fleal <
v, otherwise
where v > 0 is a constant, and the function h : R — R, which is defined as
0 6"
=3 O ey
n=0
forall s; € R, satisfies the functional inequality

936 x 6v
|Dh(s1, 52, 83)] < f(lﬁ\ + [s2] + s3]) (5.12)

for all s1,82,83 € R. Then there is no existence of an additive mapping A : R — R, a quadratic mapping
B : R — R and a constant k > 0 such that

|h(s1) — A(s1) — B(s1)| < k(|s1] +|s1]?) forall s, €R. (5.13)

Proof. It is clear that ¢ is a continuous function and |£(s1)| < v for all s; € R. Now

|6"+1| w6 +1) T8
o< 3 e < 3 ) = 5.

n=0
As a result, it becomes clear that h is bounded. Here, we’ll show that & does, in fact, satisfy (5.12). If s; = s5 =
1
sg =0, or s1, 2, 53 € R such that |s1| + |s2| + s3] > 5 then merely by virtue of the boundedness of i we have
|Dh(s1, s2, 83)| o 8 T8y 936 x 6v

X 60 X 6 =
(|$1‘+|82‘+|83|) - 35 7

e
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and hence (5.12) is obvious. Take into account the scenario where

1
0 < |s1]+ |s2| + |s3] < 6

In the above scenario , there is a positive whole number m such that

1 1
6(m+1) < |81| + |82‘ + |83‘ < 677" (5.14)

1 1 1
This implies that 6™~ 1s; < & 6m sy < & and 6™ g3 < G As a result,
6m71(351 + 282 + 83), 6m71(381 — 252 + 53), 6m71(381 + 252 - 83)76m71(381 - 282 — 83),
6™ (51),6™ " (=51),6™ " (s2),6™ " (—s52),6™ " (s3),6™ " (—s3)

are all within the range of (—1, 1). Therefore, for every whole number 7 that ranges from 0 to m — 1, the values
of

6" (351 + 289 + 83),6™ (351 — 282 + 83),6™ (351 + 282 — $3),6" (351 — 2589 — S3),
6" (51),6"(—s1),6"(s2),6"(—s2),6"(s3), 6" (—53)
Due to the fact that £ is additive-quadratic over this range, we may conclude that
E(6™ (351 + 282+ 83)) + £(6™ (351 + 282 — s3)) + £(6™ (351 — 252 + 83))
+£(6"(3s1 — 252 — s3)) — 12[£(6" (51)) + £(6" (—51))] — 8[€(6"(52)) + £(6" (—s2))]
— 2[€(6" (s3)) +&£(6" (—s3))] — 12£(6" (s1)) =0,

forn =0,1,...,m — 1. Utilising (5.14) and from the definition of h, we may calculate
|Dh(s1, s2, 83)| - (6™ +1)
< 6" (351 + 259 + 53)) + £(6™(351 + 259 — s
(oal+ Toal 130D = 2 57 (Jon] Ja] & Joap) [F(6 351 + 282+ ) +€(6" B o+ 262 = 53))

n=m

4 E(6"(351 — 255+ 53)) + £(6"(351 — 285 — s3)) — 12[€(6™(51)) + £(6™(—51))]
— 8[£(6"(s2)) + &£(6" (—s2))] — 2[£(6" (s3)) + (6™ (—s3))] — 12£(6" (s1))

> (6™ + 1)60v 78v 60 936 x 6v
< < — X
B ,;62"(\51|+|82|+|53I) T35 0 6™ (fsaf +s2f+ss)) T 7

Consequently, for all s1, 52,53 € Rwith 0 < |s1] + [s2] + |s3] < %, h fulfills (5.12). According to Corollary
5.2, the the additive-quadratic functional equation (1.7) is unstable at ¢ = 1. Let us assume, however, that there
exist an additive mapping A : R — R, a quadratic mapping B : R — R and a constant < > 0 that satisfies (5.13).
Since h is continuous and bounded for every s; € R, when s; is in an open interval containing the origin, .A and
B are also continuous and bounded within the interval. A must have the form A(s1) = ¢s; and B must have the
form B(s1) = cs? for any s; in R, according to Theorem 2.1. This leads to

A5l < (5 + [e]) (|s1] + |s]?).- (5.15)

,we can find s; € (0, 6,,%1) such that

being true. However, by choosing a positive integer m with myv > k + |c

6"s1 € (0,1) foralln = 0,1,...,m — 1. For this s;, we get

00 m—1
6" +1) en v(6"+1) n n

D (67) > Y (6 + 67

n=0 n=0

h(s1) =

e
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— 11/6”+1

(s1+ 6”5?) v(s1 + s%)

oMi

n=0
mu(s1 + 1) > (5 +[c]) (51 + 81)

which defies (5.15). Based on the inequality (5.10), it may be concluded that the equation (1.7) is unstable in the
Hyers-Ulam-Rassias sense while ¢ = 1. |

Here we present an example to show that, as mentioned in Corollary 5.2, the functional equation (1.7) is
unstable for ¢ = 2

Example 5.4. Let £ : R — R be a function defined by

v, otherwise

§ls1) = { S+ s il <1

where v > 0 is a constant, and the function h : R — R, which is defined as

s = 3 T Ve

n=0
for all s; € R, satisfies the functional inequality

31536 x 6%v
259

for all s1,s9,83 € R. Then there is no existence of an additive mapping A : R — R, a quadratic mapping
B : R — R and a constant k > 0 such that

|Dh(81,82,83)| < (‘81|2 + |82|2 + ‘83|2) (5.16)

|h(s1) — A(s1) — B(s1)] < &(|s1]| + |81|2) forall s €R. 5.17)

Proof. It is clear that ¢ is a continuous function and |£(s1)| < 2v for all s; € R. Now

1627 + 1], o > 62”+ 1)  2628v
< 6 s < = .
Sl | nzo |64n Ig = g 1205
As aresult, it becomes clear that h is bounded. Here, we’ll show that h does, in fact, satisfy (5.16). If s1 = 5o =
1
s3 =0, 0r 81, 82,53 € R such that |s1|? + [s2]? + |s3]? > — & , then merely by virtue of the boundedness of h we

have

2
|Dh(s1, s2, $3)] < 2628 60 % 62 — 31536 x 6%
(Is1]? + [s2]% +[s3]%) — 1295 259

and hence (5.16) is obvious. Take into account the scenario where

1
0 < [s1]* + [so|* + s3] < 62
In the above scenario , there is a positive whole number m such that
o < st 5ol + sl < (5.18)
62(m+1) — 1 2 3 62m” :

1 1 1
This implies that 6™ 1s; < & 6™ lsy < & and 6™ 1s3 < G As a result,

6™ 1 (351 + 255 + 53),6™ 1 (351 — 285 + 53),6™ 1 (351 + 289 — 53),6™ 1 (351 — 289 — 53),

3

s
2
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6™ (1), 6™ (—51),6™ 1 (s52),6™ " (—s2), 6™ (s3),6™ " (—s3)

are all within the range of (—1, 1). Therefore, for every whole number 7 that ranges from 0 to m — 1, the values
of

"(3s1 4 289 + 83),6™ (351 — 282 + 83),6™ (351 + 282 — 83),6™ (351 — 282 — S3),
"(s1),6"(—s1),6"(s2),6"(—s2),6"(s3),6"(—s3)

are also within the range of (—1, 1). Due to the fact that & is additive-quadratic over this range, we may conclude
that

6
6

€(6n(381 + 289 + 83)) + €(6n(3$1 + 289 — 83)) + §(6n(381 — 289 + 83))
+&(6"(351 — 282 — s3)) — 12[£(6" (1)) + £(6™(—51))] — 8[£(6" (52)) + £(6" (—s2))]
—2[£(6"(s3)) +&£(6"(—s3))] — 12£(6"(s1)) = 0,

forn =0,1,...,m — 1. Utilising (5.18) and from the definition of h, we may calculate

‘Dh(51,82,53)| > (62n + 1)
< 6" (3s1 + 252 + +£(6™(3s1 + 289 —
(|51|2 ¥+ |82|2 ¥ |53|2) = Z 64n(|81|2 ¥ |82|2 ¥ |83|2) E( ( S1 S2 83)) f( ( S1 S2 53))

+&(6" (351 — 252 + 53)) + £(6" (351 — 282 — s3)) — 12[£(6" (1)) + §(6" (—51))]
— 8[€(6" (s52)) +&£(6™(—s2))] — 2[6(6" (s3)) + £(6™(—s3))] — 12£(6" (51))

n=m

= (62" +1) 60v
< X
_7; 64" (Is1]* + [s2]? + [s3]?)

26280 60 31536 x 6%v
= 1295 7 62 (|s1)2 + [s2|2 + |s3]?) 259

1
Thus h satisfies (5.16) with 0 < |s1]? + [s2]? + |s3]> < & for all s1, s2, 53 € R. We assert that the additive-

quadratic functional equation (1.7) is not stable when ¢ = 2 as stated in Corollary 5.2. To contradict this, let’s
assume that there exists an additive mapping A : R — R, a quadratic mapping B : R — R and a constant x > 0
that satisfies (5.17). Since h is bounded and continuous for all s; € R, A and Bare bounded within a range and
continuous at the origin when s; is in an open interval containing the origin. In light of Theorem 5.1, A must
have the form A(s1) = cs; and B(s1) = cs? for any s; in R. This leads to

(h(s1)] < (5 + [e]) (Is1] + |s1]?). (5.19)

being true. However, by choosing a positive integer m with my > k + |c|, we can find s; € (O7 6,,1%1) such that
6"s; € (0,1) forallm =0,1,...,m — 1. For this s1, we get

> 62” + o 62” +1)
h(s1) = Z £(6%" s, Z 62”51 + 6152)

v(6%" + 1)
62n

Mw

m—1
(51 +62"s7) ZV$1+$1
n=0

(=)

v(s1+s7) > (K +c]) (s1+ 57)

I
2 i

which contradicts (5.19). Therefore, the additive-quadratic functional equation (1.7) is not stable in the sense of
Hyers-Ulam-Rassias when ¢ = 1, as stated in the inequality (5.10).

i
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