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On existence of extremal integrable solutions and integral inequalities for
nonlinear Volterra type integral equations
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Abstract. We prove the existence of maximal and minimal integrable solutions of nonlinear Volterra type integral equations.
Two basic integral inequalities are obtained in the form of extremal integrable solutions which are further exploited for proving
the boundedness and uniqueness of the integrable solutions of the considered integral equation.
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1. Introduction

The integral inequalities is an important topic discussed in the theory of differential and integral equations
because they have nice applications for proving the boundedness and uniqueness of the solutions of such
nonlinear equations. There exists a good amount of literature on integral inequalities and applications, see for
example, Lakshmikantham and Leela [14] and references therein. The existence of maximal and minimal
solutions of the integral equations play a significant role in the theory of integral inequalities and applications
related to the integral equations. The most of the integral inequalities are about the continuous solutions of the
continuous integral equations, but the study for integrable solutions for discontinuous integral equations is very
rare. Therefore, it is interesting to prove some basic integral inequalities related to Volterra integral equations
involving integrable solutions which is the main motivation of the present paper. The present paper deals with
the extremal integrable solutions and integral inequalities involving integrable solutions related to nonlinear
discontinuous Volterra type integral equations.

Given a closed and bounded interval J = [0, T ] in the real line R, consider the nonlinear Volterra type integral
equation (in short VIE),

x(t) = q(t) + λ

∫ t

0

k(t, s)f(s, x(s)) ds, t ∈ J, (1.1)

where λ ∈ R, λ > 0, the functions q : J → R and f : J × R → R satisfy certain integrability and Chandrabhan
type conditions to be specified later.
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Definition 1.1. By an integrable solution of the VIE (1.1) we mean a function x ∈ L1(J,R) that satisfies the
equation (1.1) on J , where L1(J,R) is the space of Lebesgue integrable real-valued functions defined on J .

The VIE (1.1) is quite known and discussed sufficiently in the literature for different aspects of the solutions.
The existence of an integrable solution has been discussed in Emmanule [11] and Banas [1] via measure of weak
noncompactness whereas existence is discussed in Banas and El-Sayed [2] via Schauder fixed point principle.
However, to the best of authors knowledge, no result is so far proved for maximal and minimal integrable
solutions. Here we prove the existence of the extremal integrable solutions and integral inequalities for the VIE
(1.1) under certain monotonicity condition along with applications. In the following section we present some
preliminaries and notations needed in what follows.

2. Preliminaries

We place the problem of VIE (1.1) in the function space L1(J,R) of Lebesgue integrable real-valued functions
defined on J . We define a standard norm ∥ · ∥L1 in L1(J,R) by

∥x∥L1 =

∫ T

0

|x(t)| dt. (2.1)

Clearly, L1(J,R) becomes a Banach space w.r.t. the norm ∥ · ∥L1 defined above. Next, we introduce an order
relation ⪯ in L1(J,R) by the cone K given by

K = {x ∈ L1(J,R) | x(t) ≥ 0 a. e. t ∈ J}. (2.2)

Thus,
x ⪯ y ⇐⇒ y − x ∈ K,

or equivalently,
x ⪯ y ⇐⇒ x(t) ≤ y(t) a. e. t ∈ J. (2.3)

Lemma 2.1. The partially ordered set
(
L1(J,R),⪯

)
is a Banach lattice.

Proof. Let K be a order cone in L1(J,R) and let x, y ∈ K be such that x ⪯ y, Then, we have

∥x∥L1 =

∫ T

0

|x(t)| dt =
∫ T

0

x(t) dt ≤
∫ T

0

y(t) dt =

∫ T

0

|y(t) dt = ∥y∥L1 .

Hence
(
L1(J,R),⪯

)
is a Banach lattice. □

Lemma 2.2. The partially ordered set
(
L1(J,R),⪯

)
is a complete lattice.

Proof. To finish, it is enough to show that
(
L1(J,R),⪯

)
is an abstract L-space. Let x, y ∈

(
L1(J,R),⪯

)
be

such that x ⪰ 0 and y ⪰ 0. Then by definition of the norm ∥ · ∥L1 , we have

∥x+ y∥L1 =

∫ T

0

|x(t) + y(t)| dt

=

∫ T

0

[
x(t) + y(t)

]
dt

=

∫ T

0

x(t) dt+

∫ T

0

y(t) dt

=

∫ T

0

|x(t)| dt+
∫ T

0

|y(t)| dt

= ∥x∥L1 + ∥y∥L1 . (2.4)
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This shows that
(
L1(J,R),⪯

)
is an abstract L-space. Hence by a theorem of uniformly monotone Banach lattice

(Birkhoff [3, page 373]),
(
L1(J,R),⪯

)
is a complete lattice. □

As a consequence of Lemmas 2.1 and 2.2, we obtain the following useful result. See also Dhage [7] and
Dhage and Patil [10] and references therein.

Lemma 2.3 (Birkhoff [3]). A non-empty closed and bounded subset of the complete Banach lattice
(
L1(J,R),⪯)

is a complete lattice.

Now, the basic tool used in this paper is the algebraic fixed point theorem of Tarski [15]. Before stating this
result, we mention a useful concept of isotone mapping on a lattice L into itself.

Definition 2.4. A mapping on a lattice (L,⪯) is called isotone increasing if preserve the order relation ⪯, that
is, if x, y ∈ L with x ⪯ y, then T x ⪯ T y.

Theorem 2.5 (Tarski [15]). Let (L, ⪯) be a partially ordered set and let T : L → L be a mapping. Suppose that

(a) T is isotone increasing,

(b) (L,⪯) is a complete lattice, and

(c) FT = {u ∈ L | T u = u}.

Then FT ̸= ∅ and
(
FT ,⪯

)
is a complete lattice.

In the following section we prove the main results of this paper under suitable conditions.

3. Existence of Extremal Integrable Solutions

We consider the following definitions appeared in Dhage [6, 7] whcich is useful for dealing with the discontinuous
differential and integral equations.

Definition 3.1. A function f : J × R → R is said to be Chandrabhan if

(i) the map t 7→ f(t, x) is measurable for each x ∈ R, and

(ii) the map x 7→ f(t, x) is nondecreasing for almost every t ∈ J .

Furthermore, a Chandrabhan function f(t, x) is called L1
R-Chandrabhan if

(iii) there exists a function h ∈ L1(J,R) such that

|f(t, x)| ≤ h(t) a. e. t ∈ J,

for all x ∈ R.

Similarly, we have

Definition 3.2. A function k : J × J → R is said to satisfy integrability condition if

(i) the map (t, s) 7→ k(t, s) is jointly measurable, and

(iii) there exists a function γk ∈ L1(J,R) such that

|k(t, s)| ≤ γk(s) a. e. t, s ∈ J.
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Lemma 3.3 (Dhage [6, 7]). If f(t, x) is Chandrabhan, then the function t 7→ f(t, x(t)) is measurable. Moreover,
if f(t, x) is L1

R-Chandrabhan, then f(·, x(·)) is Lebesgue integrable on J for each x ∈ L1(J, ,R).

Proof. The proof is similar to an analogous result for Caratheódory functions f(t, x) given in Granas and
Dugundji [13]. We omit the details. □

Definition 3.4. An integrable solution xM ∈ L1(J,R) of the VIE (1.1) is said to be maximal if x is any other
integrable solution, then x(t) ≤ xM (t) for almost every t ∈ J . Similarly, a minimal integrable solution xm of
the VIE (1.1) is defined on J .

We need the following hypotheses in what follows.

(H1) The function q : J → R is Lebesgue integrable.

(H2) The function k is nonnegative and satisfy integrability condition on J × J .

(H3) The function f is L1
R-Chandrabhan on J × R.

Theorem 3.5. Assume that hypotheses (H1) through (H3) hold. Then the VIE (1.1) has a maximal and a minimal
integrable solution defined on J .

Proof. Define a subset S of the complete lattice
(
L1(J,R),⪯

)
by

S =
{
x ∈

(
L1(J,R),⪯

)
| ∥x∥L1 ≤ r

}
(3.1)

where, r = ∥q∥L1 + λ ∥H∥L1T and H(t) = γ(t)h(t), t ∈ J .
By Lemma 2.3, (S,⪯) is a complete lattice. Define an operator T on S by

T x(t) = q(t) + λ

∫ t

0

k(t, s)f(s, x(s)) ds, t ∈ J. (3.2)

Then the VIE (1.1) is transformd into an operator equation

T x(t) = x(t), t ∈ J. (3.3)

We show that T defines a mapping T : S → S. Since the functions k and f are L1
J -Caratheódory and L1

R-
Chandrabhan on J × J and J ×R respectively, the integral on right hand of the equation (3.2) exists. Moreover,
the integral is continuous and hence Lebesgue integrable. Again the sum of two Lebesgue integrable functions is
again Lebesgue integrable on J . Hence T x ∈ L1(J,R). Moreover, we have

|T x(t)| ≤ |q(t)|+ λ

∫ t

0

k(t, s)|f(s, x(s))| ds

≤ |q(t)|+ λ

∫ t

0

γ(s)h(s) ds

≤ |q(t)|+ λ

∫ t

0

H(s) ds

≤ |q(t)|+ λ ∥H∥L1 . (3.4)

Therefore, taking the integral on both sides from 0 to T , we obtain

∥T x∥L1 =

∫ T

0

|T x(t)| dt

≤
∫ T

0

|q(t)| dt+ λ

∫ T

0

∥H∥L1 dt

= ∥q∥L1 + λ ∥H∥L1T,
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which implies that T maps S into itself. Next we show that T is isotone increasing operator on S into itself. Let
x, y ∈ S be such that x ⪯ y. Then, in view of hypotheses (H2) and (H3),

T x(t) = q(t) + λ

∫ t

0

k(t, s)f(s, x(s)) ds

≤ q(t) + λ

∫ t

0

k(t, s)f(s, y(s)) ds

= T y(t) (3.5)

for almost every t ∈ J . This shows that T x ⪯ T y almost everywhere on J . As a result, T is isotone increasing
operator on S. Now by application of Theorem 2.5 implies that T has a fixed point and the set FT of all fixed
points is a complete lattice. Thus, FT ̸= ∅ and

(
FT ,⪯

)
is a complete lattice. Consequently xm = ∧FT and

xM = ∨FT both exist and are respectively the minimal and maximal integrable solutions of the VIE (1.1) on J .
This complete the proof. □

Example 3.6. Let J = [0, 1] ⊂ R and consider he nnlinear Volterra inegral equation,

x(t) = t2 +

∫ t

0

(t− s) tanhx(s) ds, t ∈ [0, 1]. (3.6)

Here, q(t) = t2, k(t, s) = t − s and f(t, x) = tanhx for t ∈ [0, 1] and x ∈ R. Thus the above functions
satisfy all the conditions of Theorem 3.5, whence the VIE (3.6) has maximal and minimal integrable solutions
defined on [0, 1].

4. Integral Inequalities

Next, we prove two basic integral inequalities involving the integrable solutions related to the VIE (1.1) on J .

Theorem 4.1. Assume that the hypotheses (H1)- (H3) hold. If there exists an element u ∈ S such that

u(t) ≤ q(t) + λ

∫ t

0

k(t, s)f(s, u(s)) ds, (4.1)

for every t ∈ J , then there exists a maximal integrable solution xM of the VIE (1.1) such that

u(t) ≤ xM (t) a. e. t ∈ J. (4.2)

Proof. Let P = sup S which does exist since (S,⪯) is a complete lattice. Now consider the lattice interval
[u, P ] which is a closed set and hence a complete lattice. Define an operator T on [u, P ] by (3.2). Then from
(4.1) we get u ⪯ T u everywhere on J . Since T is isotone increasing, it maps the lattice integral [u, P ] into
itself. Now, by an application of Theorem 2.5, T has a maximal fixed point xM in [u, P ] which corresponds to
the maximal integrable solution of the VIE (1.1) in [u, P ]. By nature of xM we have, u(t) ≤ xM (t) a. e. t ∈ J..
This completes proof. □

Theorem 4.2. Assume that the hypotheses (H1)- (H3) hold. If there exists an element v ∈ S such that

v(t) ≥ q(t) + λ

∫ t

0

k(t, s)f(s, v(s)) ds, (4.3)

for every t ∈ J , then there exists a minimal integrable solution xm of the VIE (1.1) such that

v(t) ≥ xm(t) a. e. t ∈ J. (4.4)
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Proof. The proof is similar to Theorem 4.1 with appropriate modifications. We omit the details. □

Next, we apply the integral inequality stated in Theorem 4.1 to the VIE (1.1) for proving the boundedness
and uniqueness of the integrable solutions on J . Now, consider the scaler VIE

r(t) = p(t) + λ

∫ t

0

k(t, s)F (s, r(s)) ds, t ∈ J, (4.5)

where p : J → R+ is Lebesgue integrable and F : J × R+ → R+ is a Chandrabhan function.

Theorem 4.3. Assume that all hypotheses of Theorem 3.5 are satisfied with q and f replaced by p and F given
in (1.1) and (4.5) respectively. Further suppose that the functions q, f and p, F satisfy the inequalities

|q(t)| ≤ p(t) a. e. t ∈ J,

|f(t, x)| ≤ F (t, |x|) a. e. t ∈ J,

}
(4.6)

Then for any integrable solution u of the VIE (1.1), we obtain

|u(t)| ≤ rM (t) a. e. t ∈ J, (4.7)

where rM is a maximal integrable solution of the VIE (4.6) on J .

Proof. By Theorem 3.5, the scalar VIE (4.5) has a maximal integrable solution rM on J . Let u ∈ L1(J,R) be
any integrable solution of the VIE (1.1) on J . Then we have

u(t) = q(t) + λ

∫ t

0

k(t, s)f(s, u(s)) ds, t ∈ J.

Therefore, by Theorem 4.1,

|u(t)| ≤ |q(t)|+ λ

∫ t

0

k(t, s)|f(s, u(s))| ds

≤ p(t) + λ

∫ t

0

k(t, s)F (s, |u(s)|) ds

≤ rM (t)

for almost every t ∈ J . This completes the proof. □

Finally, we prove uniqueness result for the integrable solution of the VIE (1.1) on J .

Theorem 4.4. Assume that all hypotheses of Theorem 3.5 are satisfied with q and f replaced by p and F given
in (1.1) and (4.5) respectively. Further suppose that the functions f and F satisfy the inequality

|f(t, x)− f(t, y)| ≤ F (t, |x− y|) a. e. t ∈ J, (4.8)

for all x, y ∈ R. Further, if identically zero function is the only solution of the VIE (4.5) with p ≡ 0 on J , then
the VIE (1.1) has a unique integrable solution on J .

Proof. Suppose that u and v are two integrable solutions of the VIE (1.1) on J . Then we have

u(t) = q(t) + λ

∫ t

0

k(t, s)f(s, u(s)) ds, t ∈ J,

and

v(t) = q(t) + λ

∫ t

0

k(t, s)f(s, v(s)) ds, t ∈ J.
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Therefore, by inequality (4.8), we obtain

|u(t)− v(t)| ≤ λ

∫ t

0

k(t, s)|f(s, u(s)− f(s, v(s)| ds

≤ λ

∫ t

0

k(t, s)F (s, |u(s)− v(s)|) ds,

for almost every t ∈ J . Now, applying integral inequality given in Theorem 4.1 yields that u(t) = v(t) a. e. t ∈
J. This completes the proof. □

Remark 4.5. Under the hypotheses (H1)- (H3), the results of this paper may be extended to nonlinear integral
equation of Fredholm type

x(t) = q(t) + λ

∫ T

0

k(t, s)f(s, x(s)) ds, t ∈ J, (4.9)

using the similar arguments with appropriate modifications.
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