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Isolate restrained domination in graphs

S. Palaniammal'! and B. Kalins?

Abstract

A dominating set D of a graph G is said to be a restrained dominating set(RDS) of G if every vertex of V — D has
a neighbor in V —D. A RDS is said to be an isolate restrained dominating set(IRDS) if < D > has at least one
isolated vertex.

The minimum cardinality of a minimal IRDS of G is called the isolate restrained domination number(IRDN),
denoted by ¥%.0(G). This paper contains basic properties of IRDS and gives the IRDN for the families of graphs
such as paths, cycles, complete k-partite graphs and some other graphs.
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1. Introduction

The concept of isolate domination in graphs has been

plete k—partite graphs have been obtained. Also some proper-
ties of IRDS are given.

Remark 2.1. If a graph G of order greater than 2 such that
6(G) > 2 and has a full vertex, say x. Then {x} is an IRD
set and .o(G) = 1. Thus the complete graphs(with order not
equal to 2) and wheels admit IRDS with IRDN 1.

Theorem 2.2. For any graph G, we have ¥-(G) < ¥.0(G) and
’)/O(G) < '}/r.,O(G)-

introduced by Hameed and Balamurugan [7]. A dominating
set D of a graph G is said to be an isolate dominating set(IDS)
if < D > has at least one isolated vertex [7]. The minimum
cardinality of a minimal isolate dominating set of G is called
the isolate domination number ¥ (G). An isolate dominating
set of cardinality 1(G) is called a y-set.

A dominating set D of a graph G is said to be RDS if
every vertex of V — D has a neighbor in V — D. By using
the concepts of isolate domination and restrained domination, % (Kn) = 1.
we introduce a new domination parameter, namely “Isolate  Proposition 2.4. [4] Ifn > 2 is an integer; then Y (Kipn-1) =
Restrained Domination(IRD)”. A RDS is said to be an isolate 5,
restrained dominating set(IRDS) if < D > has at least one
isolated vertex.

The minimum cardinality of a IRDS of G is called the
IRDN, denoted by %.0(G).

Proof. Since every IRDS of G is also an RDS of G, we have

%(G) < ¥0(G).
Since every IRDS of G is also an IDS of G, we have % (G)

Y0 (G)

The following results are proved in [4].

<
O

Proposition 2.3. [4] If n # 2 is a positive integer, then

Proposition 2.5. [4] There exists a graph G for which
¥(G) — ¥(G) can be made arbitrarily large.

The following results are follows from the definition of
IRD.

2. Basics of isolate restrained domination Proposition 2.6. Ifn # 2 is a positive integer, then Yo(Kp)

In this section, the IRD number of paths, cycles and com- 1.



Proposition 2.7. Ifn > 2 is an integer, then K; ,_1 does not
admit IRDS.

Proposition 2.8. There exists a graph G for which ¥,(G) —
Y(G) can be made arbitrarily large.

Proof. Let G be a graph such that the cycle C3(V(C3) =
{v1,v2,v3} such that many pendents are joined with one ver-
tex(say vi)).

Note that {v; } is a dominating set and so y(G) = 1.

Let D be a minimum IRDS and x be isolated in < D >.
Suppose x = v; then no other vertex will be in D, D will not
be retrained(since the pendent vertices have no adjacent vertex
outside D).

Suppose x = vy, then v3,v; ¢ D and

so D = {vo }U{all pendent vertices}. Thus %.0(G) =|V(G)| —
2.

Suppose x = v3, then vy, v; ¢ D and

so D = {v3}U{all pendent vertices}. Thus %.0(G) =|V(G)| —
2.

Suppose x is a pendent vertex adjacent to v;. In this case,
vi ¢ D and so all the pendent vertices will be in D. Since v; is
adjacent to at least one vertex outside of D, either v, or v3 will
not be in D, without loss of generality, assume that v, ¢ D.
In this case, V(G) — {v, v} is a minimum isolate restrained
dominating set with |V (G)| —2 elements. O

Proposition 2.9. [4] If ny and n, are integers such that
min{ny,ny} > 2, then V(Kn, n,) = 2.

Lemma 2.10. Let G =K, , = (M,N) be a complete bipartite
graph. Then G does not admit IRDS.

Proof. Suppose there exists a minimum IRDS of G, say D.
Let x be an isolated vertex in < D >. With out loss of gen-
erality, assume that x € M. Since x € D is isolated in < D >,
D must not have any vertex of N. Thus to dominate all the
vertices of M, D must include all the vertices of M. Thus
M = D. In this case, any vertex of N will not have a neighbor
in V — D, a contradiction. O

Lemma 2.11. Let k > 3 be an integer and G = Ky, m,.....n;, =
(My,M>,...,My) be a complete k—partite graph. Then G
admits an IRDS with IRDN m = min{mi}.

Proof. With out loss of generality, let m; = min{mi}. Since
k>3, M, is a IRDS of G and s0 %.0(G) < m;.
Let D be a minimum IRDS of G and x be an isolated vertex
in < D >. Then x € M; for some i with 1 < i < k. Since
x € D is isolated in < D >, D must not have any vertex of
M;(j # i). Thus to dominate all the vertices of M;, D must
include all the vertices of M;. Thus m; < |M;| < |D| and so
O

my < %.0(G).

Theorem 2.12. Let n > 2 be an integer and let G be a
disconnected graph with n components G1,G,...,G, such
that the first r components G1,Ga,...,G, admit IRDS. Then

10(G) = min {1}, where 1 = %0(Gi) + ¥ %(Gj) for
1<i<nr

j=1j#
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Proof. With out loss of generality, let 1; = lrgig {t;}.
SISr
Let S be a ¥,.0- set of G and D; be a ¥,- set of G; for each i with
n
2 <i<n. Then SU({J D;) is an IRDS of G with cardinality
i=2

n n

%0(G1) + ,Zz %(Gi) and 50 %.0(G) < ¥0(G1) + _ZZVr(Gi) =

i= i=
1.
Let S be a minimal IRDS of G. Then S must intersect V (G;)
for each 1 < i < n. Further, there exists an integer j such that
SﬁV(Gj) is a minimum IRDS of G; and 1 < j <r. Also for
each 1 <i<n,i# j, the set SNV (G;) is a minimal restrained
dominating set of G;.

S > oG + %
Silgr{ti}. O

Therefore

hence ¥.0(G) = 1
Proposition 2.13. [4] If G is a graph; then ¥.(G) =1 if
and only if G = K| + H where H is a graph with no isolated
vertices.

Lemma 2.14. If G is a graph of order greater than 2; then
Y.0(G) =l ifand only if G has a full vertex and delta(G) > 2.

Proof. Suppose 7%.0(G) = 1. Then there exists a vertex x €
V(G) such that D = {x} is a minimum IRDS. Clearly x is
a full vertex. Let v € V(G) — D. Then v is adjacent with x
as well as v is adjacent with another of V(G) — {x}. Thus
deg(v) > 2.

Conversely suppose G has a full vertex, say x and §(G) > 2.
In this case, {x} is minimum IRDM(Since 6(G) > 2, every
vertex u # x is adjacent to a vertex in V(G) — {x}). O

Theorem 2.15. Let G be a connected graph of order n = 4.
Then v,(G) =2 ifand only if G ¢ {K4,K) 3}.

Theorem 2.16. Let G be a connected graph of order n = 4.
Then ¥.0(G) =2 if and only if G ¢ {K4,K)3,Cs}.

Proof. Suppose that ¥,.0(G) = 2. Suppose %-(G) = 1, then G
has a full vertex and so ¥,0(G) = 1, a contradiction. Thus
7+(G) = 2 and hence by Theorem 2.15, G # K4 and G # K| 3.
Note that the graph C4 does not admit IRDS.(For, let D be
a minimum IRDS of Cy. Since ¥,0(Cs4) = 2, D must be a
set of two adjacent vertices or two non adjacent vertices. If
D contain two adjacent vertices, the < D > has no isolated
vertex, a contradiction. If D contain two non adjacent vertices,
then no vertex which lies out of D has a neighbor in D, a
contradiction.) Thus G # Cj.

Conversely, suppose G ¢ {K4,K 3,Cs}.

If G is a path on four vertices, then the set of two pendent
vertices is a minimum IRDS of G.

If G = K4 — e, where e is any edge of K4, then the set of two
vertices with degree 2 is a minimum IRDS of G.

Otherwise, G is isomorphic to a graph such that the cycle
C3(V(C3) = {v1,v2,v3}) is attached with one pendent v4 with
one vertex, say vy. In this case, the vertex v4 together with a
vertex of degree two forms a minimum IRDS of G. O



Theorem 2.17. [4] Let G be a connected graph of order n.
Then v,(G) = n if and only if G is a star.

Theorem 2.18. Let G be a connected graph of order n. Then
Y-0(G) =n if and only if G = K.

Proof. Let G be a connected graph of order n and suppose
%0(G) = n.
On the contrary assume that n > 2. Let D be a ¥;o-set of G.
Then < D > must contain an isolated vertex, say x. Since G
is connected, |N(x)| > 1 and N(x) "D = ¢. Thus |D| <n—1,
a contradiction. Thus » =1 and so G £ K.
Conversely, suppose G = K. Then %,0(G) = 1.

O

Theorem 2.19. [4] Let G be a connected graph of order n
containing a cycle. Then ¥.(G) =n—2 if and only if G is C4
or Cs or G can be obtained from C3 by attaching zero or more
leaves to at most two of the vertices of the cycle.

Theorem 2.20. Let G be a graph such that G can be ob-
tained from C,(V(C,) = {u1,ua,...u,}) by attaching zero or
more leaves to some or all the vertices of the cycle C,. Then
Y.0(G) = n—2 if and only if G can be obtained from C3 by
attaching zero or more leaves to at most two vertices of Cs.

Proof. Suppose ¥,0(G) =n—2. Let D be a IRDS of G such
that |[D| =n—2 and x is isolated in < D >.

Case 1: Suppose n > 5.

Sub case 1.1: Suppose x = u; for some i with 1 <i<n.
With out loss of generality, let us assume x = u;. Then
N(u1) = {u2,un} and ua,u, ¢ D. In this case the set V(G) —
{up,u3,u,} is an IRDS with less than n — 2 elements, a con-
tradiction.

Sub case 1.2: Suppose x is adjacent to u; for some i with
1<i<n.

With out loss of generality, let us assume x is adjacent to u;.
In this case, u; ¢ D and so all the pendent vertices adjacent to
uy are in D. Since D is restrained, u; must be adjacent with
some other vertex which is not in D and it must be either u,
or u, and without loss of generality, let it be u;. In this case
the set V(G) — {uj,uz,u,} is an IRDS with less than n —2
elements, a contradiction.

Case 2: Suppose n =4.

Sub case 2.1: Suppose x = u; for some i with 1 <i <4,
With out loss of generality, let us assume x = u;. Then
N(ul) = {ug,u4} and up,uUq §é D. Thus D = V(G) — {Mz,u4}.
In this case both the vertices uy and u4 do not have neighbors
in V — D, a contradiction to the definition of restrained domi-
nating set.

Sub case 2.2: Suppose x is adjacent to u; for some i with
1<i<n.

With out loss of generality, let us assume x is adjacent to u;.
In this case, u; ¢ D and so all the pendent vertices adjacent to
uy are in D. Since D is restrained, u; must be adjacent with
some other vertex which is not in D and it must be either u,
or us and without loss of generality, let it be u;.
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Sub case 2.2.1: Suppose the vertex u3 is adjacent with some
pendent vertices, then V(G) — {u1,up,us} is an IRDS with
less than n — 2 elements, a contradiction.

Sub case 2.2.2: Suppose the vertex uy is adjacent with some
pendent vertices, then V(G) — {uy,uz,u3} is an IRDS with
less than n — 2 elements, a contradiction.

Sub case 2.2.3: Suppose both the vertices u3 and uy4 are not ad-
jacent pendent vertices, then V(G) — {u1,uz,us } is an IRDS
with less than n — 2 elements, a contradiction.

Case 3: Suppose n = 3 and suppose all the three vertices uy,u;
and u3 are adjacent to some pendant vertices.

Sub case 3.1: Suppose x = u; for some i with 1 <i < 3.
With out loss of generality, let us assume x = u;. In this case,
any pendent vertex which is adjacent to u; (= x) will not have
a neighbor outside D, a contradiction.

Sub case 3.2: Suppose x is adjacent to u; for some i with
1<i<3.

In this case, all the pendent vertices forms a IRDS with less
than n — 2 elements, a contradiction.

From the above cases, it is concluded that G can be obtained
from C3 by attaching zero or more leaves to at most two ver-
tices of C3.

Conversely, suppose G can be obtained from Cz by attaching
zero or more leaves to at most two vertices of Cs.

Assume that u; is the vertex such that u; is not adjacent with
pendent vertex. Let NV be the set all pendent vertices which
are adjacent to up and u3. In this case, the set N U {u;} is an
IRDS of G with n— 2 elements. Thus ¥%.0(G) < n—2. From
Theorem 2.19 and Theorem 2.2, we have n —2 = %(G) <
’ﬁ()(G) =n—2. O

Lemma 2.21. [4] If n > 1 is an integer, then ¥,(P,) =n —
)

Lemma 2.22. [4] Ifn >3, then ¥,(C,) =n—2|5].
Here, we obtained the IRDN of paths and cycles.

Lemma 2.23. Let P, be a path of n vertices for n > 3 and
k > 1 be an integer. Then Y.o(P,) =k+1ifn=73k+1,
Yro(B) =k+2ifn=3k+2,

Yro(Py) =k+2if n=73k

Proof. (a). LetV(P,) = {vi,v2,...,Vn}.

Case 1: Suppose n=3k~+ 1. Note that D = {v3;;; : 0<i <k}
is a minimum IRDS with k+ 1 elements. Thus ¥,0(B,) <
k+1.

Let D be any minimum IRDS of B,. Then D must be a domi-
nating set. Note that every vertex of D can dominate a maxi-
mum of 3 vertices. Thus to dominate 3k vertices, D must have
k vertices. Hence, to dominate the remaining one vertex of
P,, D must have one more vertex and so |[D| > k+ 1. Thus
%70(Pn) >k+1.

Case 2: Suppose n =3k + 2. Note that D = {v3;41 : 0 <i <
k} U {vags2} is @ minimum IRDS with k + 2 elements. Thus
'Yr,O(Pn) <k+2.

Let D be any minimum IRDS of P,.
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Sub case 2.1: Suppose vi,v, € D, then to dominate the re-
maining n — 3 = 3(k — 1) + 2 vertices namely, v4,Vs,...,Vp,
D must include another k vertices. Thus |D| > k+ 2.

Sub case 2.2: Suppose v, € D and v; ¢ D, then there does
not exist neighbor for v{ in V — D and so D is not a restrained
dominating set, a contradiction.

Sub case 2.3: Suppose v; € D and v, ¢ D. Then there exists
a neighbor for v, in V — D and it must be v3. Thus v3 ¢ D
and so v4 € D. Suppose vs € D, then as in the proof of Sub
casel, we can prove that |D| > k+2. If vs ¢ D, then vg should
not be in D and so v; € D. Proceeding like this, we have
V1,V4,V7,...,3k+1 are in D. In this case, the vertex vsgio
does not have a private neighbor in V — D and so v3;4, € D.
Thus |D| > k+2 and so %.0(P,) > k+2.

Case 3: Suppose n = 3k. Note that D = {v3;1; : 0 <i <
k—1}U{v3_1,v3} is a minimum IRDS with k + 2 elements.
Thus %.0(F) < k+2.

Let D be any minimum IRDS of P,.

Sub case 3.1: Suppose vy, v, € D, then as in the proof of Sub
case 3 of Case 2, we can prove that vo,vs,vg,...,v3r2. In
this case v3; does not have a private neighbor in V — D and so
vk € D. Thus |[D| > 1+k+1=k+2.

Sub case 3.2: Suppose v2 € D and v ¢ D, then there does
not exist neighbor for vi in V — D and so D is not a restrained
dominating set, a contradiction.

Sub case 3.3: Suppose v; € D and v, ¢ D. As in the proof of
Sub case 3 of Case 2, we can prove that, vi,v4,v7,...,V3;_2
are in D. In this case, both the vertices v3;_ and v3; must be in
D(otherwise the vertex not belongs to D does not have a neigh-
borin V — D). Thus |[D| > k+2 and so }.0(F,) > k+2. O

Lemma 2.24. Let k > 1 be an integer and C,, be a cycle(n > 3).
Then

Y0(Cp) =k if n = 3k,

Y0(Cp) =k+1ifn=3k+1,

Y0(Ch) =k+2ifn=3k+2.

Proof. (a). Let V(Cy,) = {vi,v2,...,vn}

Case 1: Suppose n = 3k. By Lemma 2.22, %,.(C,) =n—
2|%] =3k—2[%] = 3k—2k = k. Thus by Theorem 2.2,
k=1(Ca) < %0(Gn)-

Let D be any minimum IRDS of C,. Then D must be a
dominating set. Note that every vertex of D can dominate a
maximum of 3 vertices. Thus to dominate 3k vertices, D must
have k vertices and so |D| > k. Thus k > ¥,.0(C,).

Case 2: Suppose n = 3k + 1. Note that the graph C4 does not
admit IRDS. Assume that k > 2. By Lemma 2.22, v,(C,) =
n—2[%] =3k+1-235 | =3k+1—2k=k+1. Thus by
Theorem 2.2, k+ 1 = %.(Cp) < %:0(Cy).

Note that D = {v3;4: 0 <i<k—1}U{v3;_;} is a minimum
IRDS with k+ 1 elements. Thus %.0(C,,) < k+ 1.

Case 3: Suppose n = 3k + 2. Note that the graph Cs does not
admit IRDS. Assume that k > 2. By Lemma 2.22, (C,) =
n—Q2|%5t)) =3k+2— (2| FFL)) =3k +2-2(k) =k+2.
Thus by Theorem 2.2, k+2 = 1,(C,) < 7:0(Cy).

Note that D = {v3;41: 0 <i<k—1}U{v3;_1,v3;} is a mini-
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mum IRDS with & + 2 elements. Thus ¥,0(C,) < k+2.
0

Lemma 2.25. For any integer k > 1, there exists a graph G
such that Y(G) = ¥%.0(G) = %(G) =k

Proof. As Proved in Lemma 2.24, ¥,0(Cs;) = k.
By Lemma 2.22, % (Cy) = 3k —2| 3 | = 3k — 2k = k.
LetV(Cy) ={vi,v2,...,vn}. Then D ={v3;1 : 0<i<k—1}
is a minimum dominating set with k elements. Thus y(Cs;) =
k.

O
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