

https://doi.org/10.26637/MJM0901/0211

Isolate restrained domination in graphs

S. Palaniammal¹ and B. Kalins^{2*}

Abstract

A dominating set *D* of a graph *G* is said to be a restrained dominating set(RDS) of *G* if every vertex of *V* −*D* has a neighbor in *V* −*D*. A RDS is said to be an isolate restrained dominating set(IRDS) if < *D* > has at least one isolated vertex.

The minimum cardinality of a minimal IRDS of *G* is called the isolate restrained domination number(IRDN), denoted by γ*r*,0(*G*). This paper contains basic properties of IRDS and gives the IRDN for the families of graphs such as paths, cycles, complete *k*-partite graphs and some other graphs.

Keywords

Restrained domination, isolate domination, isolate domination number.

AMS Subject Classification 05C69.

¹ *Department of Mathematics, Sri Krishna Adithya College of Arts and Science, Coimbatore-641042, Tamil Nadu, India.*

²*Department of Science and Humanities, Sri Krishna College of Engineering and Technology, Coimbatore- 641008, Tamil Nadu, India* ***Corresponding author**: ² kalinsbaskaran1985@gmail.com

Article History: Received **13** January **2021**; Accepted **22** March **2021** ©2021 MJM.

Contents

1. Introduction

The concept of isolate domination in graphs has been introduced by Hameed and Balamurugan [[7](#page-3-1)]. A dominating set *D* of a graph *G* is said to be an isolate dominating set(IDS) if $\langle D \rangle$ has at least one isolated vertex [[7](#page-3-1)]. The minimum cardinality of a minimal isolate dominating set of *G* is called the isolate domination number $\gamma_0(G)$. An isolate dominating set of cardinality $\gamma_0(G)$ is called a γ_0 -set.

A dominating set *D* of a graph *G* is said to be RDS if every vertex of $V - D$ has a neighbor in $V - D$. By using the concepts of isolate domination and restrained domination, we introduce a new domination parameter, namely "Isolate Restrained Domination(IRD)". A RDS is said to be an isolate restrained dominating set(IRDS) if $\langle D \rangle$ has at least one isolated vertex.

The minimum cardinality of a IRDS of *G* is called the IRDN, denoted by $\gamma_{r,0}(G)$.

2. Basics of isolate restrained domination

In this section, the IRD number of paths, cycles and com-

plete *k*−partite graphs have been obtained. Also some properties of IRDS are given.

Remark 2.1. *If a graph G of order greater than 2 such that* $\delta(G) \geq 2$ *and has a full vertex, say x. Then* $\{x\}$ *is an IRD set and* $\gamma_{r,0}(G) = 1$ *. Thus the complete graphs(with order not equal to 2) and wheels admit IRDS with IRDN 1.*

Theorem 2.2. *For any graph G, we have* $\gamma_r(G) \leq \gamma_{r,0}(G)$ *and* $\gamma_0(G) \leq \gamma_{r,0}(G)$.

Proof. Since every IRDS of *G* is also an RDS of *G*, we have $\gamma_r(G) \leq \gamma_{r,0}(G)$.

Since every IRDS of *G* is also an IDS of *G*, we have $\gamma_0(G) \leq$ $\gamma_{r,0}(G)$. П

The following results are proved in [\[4\]](#page-3-2).

Proposition 2.3. [\[4\]](#page-3-2) If $n \neq 2$ *is a positive integer, then* $\gamma_r(K_n) = 1.$

Proposition 2.4. *[\[4\]](#page-3-2) If* $n > 2$ *is an integer, then* $\gamma_r(K_{1,n-1}) =$ *n.*

Proposition 2.5. *[\[4\]](#page-3-2) There exists a graph G for which* $\gamma_r(G) - \gamma(G)$ *can be made arbitrarily large.*

The following results are follows from the definition of IRD.

Proposition 2.6. *If* $n \neq 2$ *is a positive integer, then* $\gamma_{r,0}(K_n) =$ 1*.*

Proposition 2.7. *If* $n > 2$ *is an integer, then* $K_{1,n-1}$ *does not admit IRDS.*

Proposition 2.8. *There exists a graph G for which* $\gamma_{r,0}(G)$ − γ(*G*) *can be made arbitrarily large.*

Proof. Let *G* be a graph such that the cycle $C_3(V(C_3))$ $\{v_1, v_2, v_3\}$ such that many pendents are joined with one vertex(say v_1)).

Note that $\{v_1\}$ is a dominating set and so $\gamma(G) = 1$.

Let *D* be a minimum IRDS and *x* be isolated in $\langle D \rangle$.

Suppose $x = v_1$ then no other vertex will be in *D*, *D* will not be retrained(since the pendent vertices have no adjacent vertex outside *D*).

Suppose $x = v_2$, then $v_3, v_1 \notin D$ and

so $D = \{v_2\} \cup \{all\, pendant\, vertices\}$. Thus $\gamma_{r,0}(G) = |V(G)| -$ 2.

Suppose $x = v_3$, then $v_2, v_1 \notin D$ and

so $D = \{v_3\} \cup \{all\ pendent\ vertices\}$. Thus $\gamma_{r,0}(G) = |V(G)| -$ 2.

Suppose *x* is a pendent vertex adjacent to v_1 . In this case, $v_1 \notin D$ and so all the pendent vertices will be in *D*. Since v_1 is adjacent to at least one vertex outside of *D*, either v_2 or v_3 will not be in *D*, without loss of generality, assume that $v_2 \notin D$. In this case, $V(G) - \{v_1, v_2\}$ is a minimum isolate restrained dominating set with $|V(G)| - 2$ elements. \Box

Proposition 2.9. *[\[4\]](#page-3-2) If n*¹ *and n*² *are integers such that* $min\{n_1, n_2\} \geq 2$, then $\gamma_r(K_{n_1,n_2}) = 2$.

Lemma 2.10. *Let* $G = K_{m,n} = (M,N)$ *be a complete bipartite graph. Then G does not admit IRDS.*

Proof. Suppose there exists a minimum IRDS of *G*, say *D*. Let *x* be an isolated vertex in $\langle D \rangle$. With out loss of generality, assume that $x \in M$. Since $x \in D$ is isolated in $\langle D \rangle$, *D* must not have any vertex of *N*. Thus to dominate all the vertices of *M*, *D* must include all the vertices of *M*. Thus $M = D$. In this case, any vertex of *N* will not have a neighbor in $V - D$, a contradiction. \Box

Lemma 2.11. *Let* $k \ge 3$ *be an integer and* $G = K_{m_1, m_2, ..., m_k}$ (*M*1,*M*2,...,*Mk*) *be a complete k*−*partite graph. Then G admits an IRDS with IRDN* $m = min\{mi\}$ *.*

Proof. With out loss of generality, let $m_1 = min\{mi\}$. Since $k \geq 3$, M_1 is a IRDS of *G* and so $\gamma_{r,0}(G) \leq m_1$.

Let *D* be a minimum IRDS of *G* and *x* be an isolated vertex in < *D* >. Then *x* ∈ *Mⁱ* for some *i* with 1 ≤ *i* ≤ *k*. Since $x \in D$ is isolated in $\langle D \rangle$, *D* must not have any vertex of M_j $(j \neq i)$. Thus to dominate all the vertices of M_i , *D* must include all the vertices of M_i . Thus $m_1 \leq |M_i| \leq |D|$ and so $m_1 \leq \gamma_{r,0}(G)$. \Box

Theorem 2.12. Let $n \geq 2$ be an integer and let G be a *disconnected graph with n components* G_1, G_2, \ldots, G_n *such that the first r components* G_1, G_2, \ldots, G_r *admit IRDS. Then* $\gamma_{r,0}(G) = \min_{1 \le i \le r} \{t_i\}$, where $t_i = \gamma_{r,0}(G_i) + \sum_{i=1}^n$ $\sum_{j=1,j\neq i} \gamma_r(G_j)$ for $1 \leq i \leq r$.

Proof. With out loss of generality, let $t_1 = \min_{1 \le i \le r} \{t_i\}.$ Let *S* be a $\gamma_{r,0}$ - set of G_1 and D_i be a γ_r - set of G_i for each *i* with 2 ≤ *i* ≤ *n*. Then $S \cup (\bigcup^{n}$ $\bigcup_{i=2}$ *D_i*) is an IRDS of *G* with cardinality $\gamma_{r,0}(G_1) + \sum_{n=1}^{n}$ $\sum_{i=2}^{n} \gamma_r(G_i)$ and so $\gamma_{r,0}(G) \leq \gamma_{r,0}(G_1) + \sum_{i=1}^{n}$ $\sum\limits_{i=2} \gamma_r(G_i) =$ *t*1.

Let *S* be a minimal IRDS of *G*. Then *S* must intersect $V(G_i)$ for each $1 \le i \le n$. Further, there exists an integer *j* such that *S*∩*V*(*G*_{*j*}) is a minimum IRDS of *G*_{*j*} and $1 ≤ j ≤ r$. Also for each $1 \leq i \leq n, i \neq j$, the set $S \cap V(G_i)$ is a minimal restrained dominating set of *Gⁱ* .

Therefore $|S| \geq \gamma_{r,0}(G_j) + \sum_{i=1}^{n}$ $\sum_{i=1, i \neq j} \gamma_r(G_i) \geq t_1$ and hence $\gamma_{r,0}(G) = \min_{1 \le i \le r} \{t_i\}.$ \Box

Proposition 2.13. [\[4\]](#page-3-2) If G is a graph; then $\gamma_r(G) = 1$ if *and only if* $G \equiv K_1 + H$ *where H is a graph with no isolated vertices.*

Lemma 2.14. *If G is a graph of order greater than 2; then* $\gamma_{r,0}(G) = 1$ *if and only if G has a full vertex and delta* $(G) \geq 2$ *.*

Proof. Suppose $\gamma_{r,0}(G) = 1$. Then there exists a vertex $x \in$ $V(G)$ such that $D = \{x\}$ is a minimum IRDS. Clearly *x* is a full vertex. Let $v \in V(G) - D$. Then *v* is adjacent with *x* as well as *v* is adjacent with another of $V(G) - \{x\}$. Thus $deg(v) \geq 2$.

Conversely suppose *G* has a full vertex, say *x* and $\delta(G) \geq 2$. In this case, $\{x\}$ is minimum IRDM(Since $\delta(G) \geq 2$, every vertex *u* \neq *x* is adjacent to a vertex in *V*(*G*) − {*x*}). П

Theorem 2.15. Let G be a connected graph of order $n = 4$. *Then* $\gamma_r(G) = 2$ *if and only if* $G \notin \{K_4, K_{1,3}\}.$

Theorem 2.16. *Let G be a connected graph of order* $n = 4$ *. Then* $\gamma_{r,0}(G) = 2$ *if and only if* $G \notin \{K_4, K_{1,3}, C_4\}$ *.*

Proof. Suppose that $\gamma_{r,0}(G) = 2$. Suppose $\gamma_r(G) = 1$, then *G* has a full vertex and so $\gamma_{r,0}(G) = 1$, a contradiction. Thus $\gamma_r(G) = 2$ and hence by Theorem [2.15,](#page-1-0) $G \neq K_4$ and $G \neq K_{1,3}$. Note that the graph *C*⁴ does not admit IRDS.(For, let *D* be a minimum IRDS of C_4 . Since $\gamma_{r,0}(C_4) = 2$, *D* must be a set of two adjacent vertices or two non adjacent vertices. If *D* contain two adjacent vertices, the $\langle D \rangle$ has no isolated vertex, a contradiction. If *D* contain two non adjacent vertices, then no vertex which lies out of *D* has a neighbor in *D*, a contradiction.) Thus $G \neq C_4$.

Conversely, suppose $G \notin \{K_4, K_{1,3}, C_4\}.$

If *G* is a path on four vertices, then the set of two pendent vertices is a minimum IRDS of *G*.

If $G \cong K_4 - e$, where *e* is any edge of K_4 , then the set of two vertices with degree 2 is a minimum IRDS of *G*.

Otherwise, *G* is isomorphic to a graph such that the cycle $C_3(V(C_3) = \{v_1, v_2, v_3\})$ is attached with one pendent v_4 with one vertex, say v_1 . In this case, the vertex v_4 together with a vertex of degree two forms a minimum IRDS of *G*. П

Theorem 2.17. *[\[4\]](#page-3-2) Let G be a connected graph of order n. Then* $\gamma_r(G) = n$ *if and only if G is a star.*

Theorem 2.18. *Let G be a connected graph of order n. Then* $\gamma_{r,0}(G) = n$ *if and only if* $G \cong K_1$.

Proof. Let *G* be a connected graph of order *n* and suppose $γ_{r,0}(G) = n$.

On the contrary assume that $n \geq 2$. Let *D* be a $\gamma_{r,0}$ -set of *G*. Then $\langle D \rangle$ must contain an isolated vertex, say *x*. Since *G* is connected, $|N(x)| \ge 1$ and $N(x) \cap D = \emptyset$. Thus $|D| \le n - 1$, a contradiction. Thus $n = 1$ and so $G \cong K_1$.

Conversely, suppose $G \equiv K_1$. Then $\gamma_{r,0}(G) = 1$.

 \Box

Theorem 2.19. *[\[4\]](#page-3-2) Let G be a connected graph of order n containing a cycle. Then* $\gamma_r(G) = n - 2$ *if and only if G is* C_4 *or C*⁵ *or G can be obtained from C*³ *by attaching zero or more leaves to at most two of the vertices of the cycle.*

Theorem 2.20. *Let G be a graph such that G can be obtained from* $C_n(V(C_n) = \{u_1, u_2, \ldots, u_n\})$ *by attaching zero or more leaves to some or all the vertices of the cycle* C_n *. Then* $\gamma_{r,0}(G) = n-2$ *if and only if G can be obtained from* C_3 *by attaching zero or more leaves to at most two vertices of C*3*.*

Proof. Suppose $\gamma_{r,0}(G) = n - 2$. Let *D* be a IRDS of *G* such that $|D| = n - 2$ and *x* is isolated in $\langle D \rangle$.

Case 1: Suppose $n \geq 5$.

Sub case 1.1: Suppose $x = u_i$ for some *i* with $1 \le i \le n$.

With out loss of generality, let us assume $x = u_1$. Then $N(u_1) = \{u_2, u_n\}$ and $u_2, u_n \notin D$. In this case the set $V(G)$ − {*u*2,*u*3,*un*} is an IRDS with less than *n*−2 elements, a contradiction.

Sub case 1.2: Suppose x is adjacent to u_i for some i with $1 \leq i \leq n$.

With out loss of generality, let us assume *x* is adjacent to *u*1. In this case, $u_1 \notin D$ and so all the pendent vertices adjacent to u_1 are in *D*. Since *D* is restrained, u_1 must be adjacent with some other vertex which is not in *D* and it must be either *u*² or u_n and without loss of generality, let it be u_2 . In this case the set $V(G) - \{u_1, u_2, u_n\}$ is an IRDS with less than $n-2$ elements, a contradiction.

Case 2: Suppose $n = 4$.

Sub case 2.1: Suppose $x = u_i$ for some *i* with $1 \le i \le 4$.

With out loss of generality, let us assume $x = u_1$. Then $N(u_1) = \{u_2, u_4\}$ and $u_2, u_4 \notin D$. Thus $D = V(G) - \{u_2, u_4\}.$ In this case both the vertices u_2 and u_4 do not have neighbors in $V - D$, a contradiction to the definition of restrained dominating set.

Sub case 2.2: Suppose x is adjacent to u_i for some i with $1 \le i \le n$.

With out loss of generality, let us assume *x* is adjacent to *u*1. In this case, $u_1 \notin D$ and so all the pendent vertices adjacent to u_1 are in *D*. Since *D* is restrained, u_1 must be adjacent with some other vertex which is not in *D* and it must be either *u*² or *u*⁴ and without loss of generality, let it be *u*2.

Sub case 2.2.1: Suppose the vertex u_3 is adjacent with some pendent vertices, then $V(G) - \{u_1, u_2, u_4\}$ is an IRDS with less than *n*−2 elements, a contradiction.

Sub case 2.2.2: Suppose the vertex u_4 is adjacent with some pendent vertices, then $V(G) - \{u_1, u_2, u_3\}$ is an IRDS with less than *n*−2 elements, a contradiction.

Sub case 2.2.3: Suppose both the vertices u_3 and u_4 are not adjacent pendent vertices, then $V(G) - \{u_1, u_2, u_4\}$ is an IRDS with less than *n*−2 elements, a contradiction.

Case 3: Suppose $n = 3$ and suppose all the three vertices u_1, u_2 and u_3 are adjacent to some pendant vertices.

Sub case 3.1: Suppose $x = u_i$ for some *i* with $1 \le i \le 3$.

With out loss of generality, let us assume $x = u_1$. In this case, any pendent vertex which is adjacent to $u_1(=x)$ will not have a neighbor outside *D*, a contradiction.

Sub case 3.2: Suppose x is adjacent to u_i for some *i* with $1 \leq i \leq 3$.

In this case, all the pendent vertices forms a IRDS with less than *n*−2 elements, a contradiction.

From the above cases, it is concluded that *G* can be obtained from C_3 by attaching zero or more leaves to at most two vertices of C_3 .

Conversely, suppose *G* can be obtained from *C*³ by attaching zero or more leaves to at most two vertices of *C*3.

Assume that u_1 is the vertex such that u_1 is not adjacent with pendent vertex. Let *N* be the set all pendent vertices which are adjacent to *u*₂ and *u*₃. In this case, the set $N \cup \{u_1\}$ is an IRDS of *G* with *n*−2 elements. Thus $\gamma_{r,0}(G) \leq n-2$. From Theorem [2.19](#page-2-0) and Theorem [2.2,](#page-0-2) we have $n - 2 = \gamma_r(G) \leq$ $\gamma_{r,0}(G) = n - 2.$

Lemma 2.21. *[\[4\]](#page-3-2) If* $n \ge 1$ *is an integer, then* $\gamma_r(P_n) = n - 1$ $2\left\lfloor \frac{n-1}{3} \right\rfloor$.

Lemma 2.22. *[\[4\]](#page-3-2) If* $n \ge 3$ *, then* $\gamma_r(C_n) = n - 2\left\lfloor \frac{n}{3} \right\rfloor$ *.*

Here, we obtained the IRDN of paths and cycles.

Lemma 2.23. Let P_n be a path of *n* vertices for $n \geq 3$ and $k \ge 1$ *be an integer. Then* $\gamma_{r,0}(P_n) = k + 1$ *if* $n = 3k + 1$ *,* $\gamma_{r,0}(P_n) = k + 2$ *if* $n = 3k + 2$, $\gamma_{r,0}(P_n) = k + 2$ *if* $n = 3k$.

Proof. (a). Let $V(P_n) = \{v_1, v_2, \ldots, v_n\}.$

Case 1: Suppose $n = 3k + 1$. Note that $D = \{v_{3i+1} : 0 \le i \le k\}$ is a minimum IRDS with $k + 1$ elements. Thus $\gamma_{r,0}(P_n) \leq$ $k+1$.

Let *D* be any minimum IRDS of P_n . Then *D* must be a dominating set. Note that every vertex of *D* can dominate a maximum of 3 vertices. Thus to dominate 3*k* vertices, *D* must have *k* vertices. Hence, to dominate the remaining one vertex of *P_n*, *D* must have one more vertex and so $|D| \geq k + 1$. Thus $\gamma_{r,0}(P_n) \geq k+1$.

Case 2: Suppose $n = 3k + 2$. Note that $D = \{v_{3i+1} : 0 \le i \le k\}$ k } ∪ { v_{3k+2} } is a minimum IRDS with $k+2$ elements. Thus $\gamma_{r,0}(P_n) \leq k+2.$

Let *D* be any minimum IRDS of P_n .

Sub case 2.1: Suppose $v_1, v_2 \in D$, then to dominate the remaining $n - 3 = 3(k - 1) + 2$ vertices namely, $v_4, v_5,..., v_n$, *D* must include another *k* vertices. Thus $|D| \geq k + 2$.

Sub case 2.2: Suppose $v_2 \in D$ and $v_1 \notin D$, then there does not exist neighbor for v_1 in $V - D$ and so *D* is not a restrained dominating set, a contradiction.

Sub case 2.3: Suppose $v_1 \in D$ and $v_2 \notin D$. Then there exists a neighbor for v_2 in $V - D$ and it must be v_3 . Thus $v_3 \notin D$ and so $v_4 \in D$. Suppose $v_5 \in D$, then as in the proof of Sub case1, we can prove that $|D| \geq k+2$. If $v_5 \notin D$, then v_6 should not be in *D* and so $v_7 \in D$. Proceeding like this, we have $v_1, v_4, v_7, \ldots, v_{3k+1}$ are in *D*. In this case, the vertex v_{3k+2} does not have a private neighbor in *V* − *D* and so $v_{3k+2} \in D$. Thus $|D| \geq k+2$ and so $\gamma_{r,0}(P_n) \geq k+2$.

Case 3: Suppose $n = 3k$. Note that $D = \{v_{3i+1} : 0 \le i \le k\}$ $k-1$ }∪ { v_{3k-1}, v_{3k} } is a minimum IRDS with $k+2$ elements. Thus $\gamma_{r,0}(P_n) \leq k+2$.

Let *D* be any minimum IRDS of P_n .

Sub case 3.1: Suppose $v_1, v_2 \in D$, then as in the proof of Sub case 3 of Case 2, we can prove that v_2 , v_5 , v_8 ,..., v_{3k+2} . In this case v_{3k} does not have a private neighbor in $V - D$ and so v_{3k} ∈ *D*. Thus $|D|$ ≥ 1 + k + 1 = k + 2.

Sub case 3.2: Suppose $v_2 \in D$ and $v_1 \notin D$, then there does not exist neighbor for v_1 in $V - D$ and so D is not a restrained dominating set, a contradiction.

Sub case 3.3: Suppose $v_1 \in D$ and $v_2 \notin D$. As in the proof of Sub case 3 of Case 2, we can prove that, $v_1, v_4, v_7, \ldots, v_{3k-2}$ are in *D*. In this case, both the vertices v_{3k-1} and v_{3k} must be in *D*(otherwise the vertex not belongs to *D* does not have a neighbor in *V* −*D*). Thus |*D*| ≥ *k* +2 and so γ*r*,0(*Pn*) ≥ *k* +2.

Lemma 2.24. *Let* $k \ge 1$ *be an integer and* C_n *be a cycle*($n \ge 3$). *Then*

 $γ_{r,0}(C_n) = k$ *if* $n = 3k$, $\gamma_{r,0}(C_n) = k+1$ *if* $n = 3k+1$, $\gamma_{r,0}(C_n) = k + 2$ *if* $n = 3k + 2$ *.*

Proof. (a). Let $V(C_n) = \{v_1, v_2, \ldots, v_n\}.$

Case 1: Suppose $n = 3k$. By Lemma [2.22,](#page-2-1) $\gamma_r(C_n) = n 2\lfloor \frac{n}{3} \rfloor = 3k - 2\lfloor \frac{3k}{3} \rfloor = 3k - 2k = k$. Thus by Theorem [2.2,](#page-0-2) $k = \gamma_r(C_n) \leq \gamma_{r,0}(C_n).$

Let *D* be any minimum IRDS of C_n . Then *D* must be a dominating set. Note that every vertex of *D* can dominate a maximum of 3 vertices. Thus to dominate 3*k* vertices, *D* must have *k* vertices and so $|D| \geq k$. Thus $k \geq \gamma_{r,0}(C_n)$.

Case 2: Suppose $n = 3k + 1$. Note that the graph C_4 does not admit IRDS. Assume that $k \geq 2$. By Lemma [2.22,](#page-2-1) $\gamma_r(C_n)$ = *n*−2 $\lfloor \frac{n}{3} \rfloor$ = 3*k* + 1 − 2 $\lfloor \frac{3k+1}{3} \rfloor$ = 3*k* + 1 − 2*k* = *k* + 1. Thus by Theorem [2.2,](#page-0-2) $k + 1 = \gamma_r(C_n) \leq \gamma_{r,0}(C_n)$.

Note that $D = \{v_{3i+1} : 0 \le i \le k-1\} \cup \{v_{3k-1}\}\$ is a minimum IRDS with $k+1$ elements. Thus $\gamma_{r,0}(C_n) \leq k+1$.

Case 3: Suppose $n = 3k + 2$. Note that the graph C_5 does not admit IRDS. Assume that $k \geq 2$. By Lemma [2.22,](#page-2-1) $\gamma_r(C_n)$ = *n*−(2<u>|ⁿ⁻¹</u>]) = 3*k*+2−(2| $\frac{3k+2-1}{3}$]) = 3*k*+2−2(*k*) = *k*+2. Thus by Theorem [2.2,](#page-0-2) $k+2 = \gamma_r(C_n) \leq \gamma_{r,0}(C_n)$. Note that $D = \{v_{3i+1} : 0 \le i \le k-1\} \cup \{v_{3k-1}, v_{3k}\}\$ is a mini-

mum IRDS with
$$
k+2
$$
 elements. Thus $\gamma_{r,0}(C_n) \leq k+2$.

 \Box

Lemma 2.25. *For any integer* $k \geq 1$ *, there exists a graph G such that* $\gamma(G) = \gamma_{r,0}(G) = \gamma_r(G) = k$.

Proof. As Proved in Lemma [2.24,](#page-3-4) $\gamma_{r,0}(C_{3k}) = k$. By Lemma [2.22,](#page-2-1) $\gamma_r(C_{3k}) = 3k - 2\left[\frac{3k}{3}\right] = 3k - 2k = k$. Let $V(C_n) = \{v_1, v_2, \ldots, v_n\}$. Then *D* = {*v*_{3*i*+1} : 0 ≤ *i* ≤ *k*−1} is a minimum dominating set with *k* elements. Thus $\gamma(C_{3k}) =$ *k*.

 \Box

References

- [1] B.H. Arriola, Isolate domination in the join and corona of graphs, *Applied Mathematical Sciences*, 9 (2015), 1543– 1549.
- [2] G.Chartrand, Lesniak, *Graphs and Digraphs,* Fourth ed., CRC press, Boca Raton, 2005.
- [3] E.J.Cockayne, S.T.Hedetniemi, D.J.Miller, Properties of hereditary hypergraphs and middle graphs, *Canad. Math. Bull.*, 21 (1978) 461–468.
- [4] Gayla S. Domke, Johannes H. Hattingh, Stephen T. Hedetniemi, Renu C. Laskar, Lisa R. Markus, Restrained domination in graphs, *Disc. Math.,* 203 (1999), 61–69.
- [5] T.W.Haynes, S.T. Hedetniemi, P.J.Slater, *Fundamental of Domination in Graphs,* Marcel Dekker, New York, 1998.
- [6] I.Sahul Hamid, S.Balamurugan, Isolate domination in Unicycle Graphs, *International Journal of Mathematics and Soft Computing*, 3 (2013), 79–83.
- [7] I.Sahul Hamid, S.Balamurugan, Isolate domination in graphs, *Arab. J Math Sci.*, 22 (2016), 232–241.

