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Isolate restrained domination in graphs
S. Palaniammal1 and B. Kalins2*

Abstract
A dominating set D of a graph G is said to be a restrained dominating set(RDS) of G if every vertex of V −D has
a neighbor in V −D. A RDS is said to be an isolate restrained dominating set(IRDS) if < D > has at least one
isolated vertex.
The minimum cardinality of a minimal IRDS of G is called the isolate restrained domination number(IRDN),
denoted by γr,0(G). This paper contains basic properties of IRDS and gives the IRDN for the families of graphs
such as paths, cycles, complete k-partite graphs and some other graphs.
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1. Introduction
The concept of isolate domination in graphs has been

introduced by Hameed and Balamurugan [7]. A dominating
set D of a graph G is said to be an isolate dominating set(IDS)
if < D > has at least one isolated vertex [7]. The minimum
cardinality of a minimal isolate dominating set of G is called
the isolate domination number γ0(G). An isolate dominating
set of cardinality γ0(G) is called a γ0-set.

A dominating set D of a graph G is said to be RDS if
every vertex of V −D has a neighbor in V −D. By using
the concepts of isolate domination and restrained domination,
we introduce a new domination parameter, namely “Isolate
Restrained Domination(IRD)”. A RDS is said to be an isolate
restrained dominating set(IRDS) if < D > has at least one
isolated vertex.

The minimum cardinality of a IRDS of G is called the
IRDN, denoted by γr,0(G).

2. Basics of isolate restrained domination
In this section, the IRD number of paths, cycles and com-

plete k−partite graphs have been obtained. Also some proper-
ties of IRDS are given.

Remark 2.1. If a graph G of order greater than 2 such that
δ (G) ≥ 2 and has a full vertex, say x. Then {x} is an IRD
set and γr,0(G) = 1. Thus the complete graphs(with order not
equal to 2) and wheels admit IRDS with IRDN 1.

Theorem 2.2. For any graph G, we have γr(G)≤ γr,0(G) and
γ0(G)≤ γr,0(G).

Proof. Since every IRDS of G is also an RDS of G, we have
γr(G)≤ γr,0(G).
Since every IRDS of G is also an IDS of G, we have γ0(G)≤
γr,0(G).

The following results are proved in [4].

Proposition 2.3. [4] If n ̸= 2 is a positive integer, then
γr(Kn) = 1.

Proposition 2.4. [4] If n > 2 is an integer, then γr(K1,n−1) =
n.

Proposition 2.5. [4] There exists a graph G for which
γr(G)− γ(G) can be made arbitrarily large.

The following results are follows from the definition of
IRD.

Proposition 2.6. If n ̸= 2 is a positive integer, then γr,0(Kn) =
1.
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Proposition 2.7. If n > 2 is an integer, then K1,n−1 does not
admit IRDS.

Proposition 2.8. There exists a graph G for which γr,0(G)−
γ(G) can be made arbitrarily large.

Proof. Let G be a graph such that the cycle C3(V (C3) =
{v1,v2,v3} such that many pendents are joined with one ver-
tex(say v1)).
Note that {v1} is a dominating set and so γ(G) = 1.
Let D be a minimum IRDS and x be isolated in < D >.
Suppose x = v1 then no other vertex will be in D, D will not
be retrained(since the pendent vertices have no adjacent vertex
outside D).
Suppose x = v2, then v3,v1 /∈ D and
so D= {v2}∪{all pendent vertices}. Thus γr,0(G)= |V (G)|−
2.
Suppose x = v3, then v2,v1 /∈ D and
so D= {v3}∪{all pendent vertices}. Thus γr,0(G)= |V (G)|−
2.
Suppose x is a pendent vertex adjacent to v1. In this case,
v1 /∈ D and so all the pendent vertices will be in D. Since v1 is
adjacent to at least one vertex outside of D, either v2 or v3 will
not be in D, without loss of generality, assume that v2 /∈ D.
In this case, V (G)−{v1,v2} is a minimum isolate restrained
dominating set with |V (G)|−2 elements.

Proposition 2.9. [4] If n1 and n2 are integers such that
min{n1,n2} ≥ 2, then γr(Kn1,n2) = 2.

Lemma 2.10. Let G = Km,n = (M,N) be a complete bipartite
graph. Then G does not admit IRDS.

Proof. Suppose there exists a minimum IRDS of G, say D.
Let x be an isolated vertex in < D >. With out loss of gen-
erality, assume that x ∈ M. Since x ∈ D is isolated in < D >,
D must not have any vertex of N. Thus to dominate all the
vertices of M, D must include all the vertices of M. Thus
M = D. In this case, any vertex of N will not have a neighbor
in V −D, a contradiction.

Lemma 2.11. Let k ≥ 3 be an integer and G = Km1,m2,...,mk =
(M1,M2, . . . ,Mk) be a complete k−partite graph. Then G
admits an IRDS with IRDN m = min{mi}.

Proof. With out loss of generality, let m1 = min{mi}. Since
k ≥ 3, M1 is a IRDS of G and so γr,0(G)≤ m1.
Let D be a minimum IRDS of G and x be an isolated vertex
in < D >. Then x ∈ Mi for some i with 1 ≤ i ≤ k. Since
x ∈ D is isolated in < D >, D must not have any vertex of
M j( j ̸= i). Thus to dominate all the vertices of Mi, D must
include all the vertices of Mi. Thus m1 ≤ |Mi| ≤ |D| and so
m1 ≤ γr,0(G).

Theorem 2.12. Let n ≥ 2 be an integer and let G be a
disconnected graph with n components G1,G2, . . . ,Gn such
that the first r components G1,G2, . . . ,Gr admit IRDS. Then

γr,0(G) = min
1≤i≤r

{ti}, where ti = γr,0(Gi) +
n
∑

j=1, j ̸=i
γr(G j) for

1 ≤ i ≤ r.

Proof. With out loss of generality, let t1 = min
1≤i≤r

{ti}.

Let S be a γr,0- set of G1 and Di be a γr- set of Gi for each i with

2 ≤ i ≤ n. Then S∪ (
n⋃

i=2
Di) is an IRDS of G with cardinality

γr,0(G1)+
n
∑

i=2
γr(Gi) and so γr,0(G)≤ γr,0(G1)+

n
∑

i=2
γr(Gi) =

t1.
Let S be a minimal IRDS of G. Then S must intersect V (Gi)
for each 1 ≤ i ≤ n. Further, there exists an integer j such that
S∩V (G j) is a minimum IRDS of G j and 1 ≤ j ≤ r. Also for
each 1 ≤ i ≤ n, i ̸= j, the set S∩V (Gi) is a minimal restrained
dominating set of Gi.

Therefore |S| ≥ γr,0(G j) +
n
∑

i=1,i̸= j
γr(Gi) ≥ t1 and

hence γr,0(G) = min
1≤i≤r

{ti}.

Proposition 2.13. [4] If G is a graph; then γr(G) = 1 if
and only if G ≡ K1 +H where H is a graph with no isolated
vertices.

Lemma 2.14. If G is a graph of order greater than 2; then
γr,0(G) = 1 if and only if G has a full vertex and delta(G)≥ 2.

Proof. Suppose γr,0(G) = 1. Then there exists a vertex x ∈
V (G) such that D = {x} is a minimum IRDS. Clearly x is
a full vertex. Let v ∈ V (G)−D. Then v is adjacent with x
as well as v is adjacent with another of V (G)−{x}. Thus
deg(v)≥ 2.
Conversely suppose G has a full vertex, say x and δ (G)≥ 2.
In this case, {x} is minimum IRDM(Since δ (G) ≥ 2, every
vertex u ̸= x is adjacent to a vertex in V (G)−{x}).

Theorem 2.15. Let G be a connected graph of order n = 4.
Then γr(G) = 2 if and only if G /∈ {K4,K1,3}.

Theorem 2.16. Let G be a connected graph of order n = 4.
Then γr,0(G) = 2 if and only if G /∈ {K4,K1,3,C4}.

Proof. Suppose that γr,0(G) = 2. Suppose γr(G) = 1, then G
has a full vertex and so γr,0(G) = 1, a contradiction. Thus
γr(G) = 2 and hence by Theorem 2.15, G ̸= K4 and G ̸= K1,3.
Note that the graph C4 does not admit IRDS.(For, let D be
a minimum IRDS of C4. Since γr,0(C4) = 2, D must be a
set of two adjacent vertices or two non adjacent vertices. If
D contain two adjacent vertices, the < D > has no isolated
vertex, a contradiction. If D contain two non adjacent vertices,
then no vertex which lies out of D has a neighbor in D, a
contradiction.) Thus G ̸=C4.
Conversely, suppose G /∈ {K4,K1,3,C4}.
If G is a path on four vertices, then the set of two pendent
vertices is a minimum IRDS of G.
If G ∼= K4 − e, where e is any edge of K4, then the set of two
vertices with degree 2 is a minimum IRDS of G.
Otherwise, G is isomorphic to a graph such that the cycle
C3(V (C3) = {v1,v2,v3}) is attached with one pendent v4 with
one vertex, say v1. In this case, the vertex v4 together with a
vertex of degree two forms a minimum IRDS of G.
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Theorem 2.17. [4] Let G be a connected graph of order n.
Then γr(G) = n if and only if G is a star.

Theorem 2.18. Let G be a connected graph of order n. Then
γr,0(G) = n if and only if G ∼= K1.

Proof. Let G be a connected graph of order n and suppose
γr,0(G) = n.
On the contrary assume that n ≥ 2. Let D be a γr,0-set of G.
Then < D > must contain an isolated vertex, say x. Since G
is connected, |N(x)| ≥ 1 and N(x)∩D = φ . Thus |D| ≤ n−1,
a contradiction. Thus n = 1 and so G ∼= K1.
Conversely, suppose G ≡ K1. Then γr,0(G) = 1.

Theorem 2.19. [4] Let G be a connected graph of order n
containing a cycle. Then γr(G) = n−2 if and only if G is C4
or C5 or G can be obtained from C3 by attaching zero or more
leaves to at most two of the vertices of the cycle.

Theorem 2.20. Let G be a graph such that G can be ob-
tained from Cn(V (Cn) = {u1,u2, . . .un}) by attaching zero or
more leaves to some or all the vertices of the cycle Cn. Then
γr,0(G) = n− 2 if and only if G can be obtained from C3 by
attaching zero or more leaves to at most two vertices of C3.

Proof. Suppose γr,0(G) = n−2. Let D be a IRDS of G such
that |D|= n−2 and x is isolated in < D >.
Case 1: Suppose n ≥ 5.
Sub case 1.1: Suppose x = ui for some i with 1 ≤ i ≤ n.
With out loss of generality, let us assume x = u1. Then
N(u1) = {u2,un} and u2,un /∈ D. In this case the set V (G)−
{u2,u3,un} is an IRDS with less than n−2 elements, a con-
tradiction.
Sub case 1.2: Suppose x is adjacent to ui for some i with
1 ≤ i ≤ n.
With out loss of generality, let us assume x is adjacent to u1.
In this case, u1 /∈ D and so all the pendent vertices adjacent to
u1 are in D. Since D is restrained, u1 must be adjacent with
some other vertex which is not in D and it must be either u2
or un and without loss of generality, let it be u2. In this case
the set V (G)−{u1,u2,un} is an IRDS with less than n− 2
elements, a contradiction.
Case 2: Suppose n = 4.
Sub case 2.1: Suppose x = ui for some i with 1 ≤ i ≤ 4.
With out loss of generality, let us assume x = u1. Then
N(u1) = {u2,u4} and u2,u4 /∈ D. Thus D =V (G)−{u2,u4}.
In this case both the vertices u2 and u4 do not have neighbors
in V −D, a contradiction to the definition of restrained domi-
nating set.
Sub case 2.2: Suppose x is adjacent to ui for some i with
1 ≤ i ≤ n.
With out loss of generality, let us assume x is adjacent to u1.
In this case, u1 /∈ D and so all the pendent vertices adjacent to
u1 are in D. Since D is restrained, u1 must be adjacent with
some other vertex which is not in D and it must be either u2
or u4 and without loss of generality, let it be u2.

Sub case 2.2.1: Suppose the vertex u3 is adjacent with some
pendent vertices, then V (G)−{u1,u2,u4} is an IRDS with
less than n−2 elements, a contradiction.
Sub case 2.2.2: Suppose the vertex u4 is adjacent with some
pendent vertices, then V (G)−{u1,u2,u3} is an IRDS with
less than n−2 elements, a contradiction.
Sub case 2.2.3: Suppose both the vertices u3 and u4 are not ad-
jacent pendent vertices, then V (G)−{u1,u2,u4} is an IRDS
with less than n−2 elements, a contradiction.
Case 3: Suppose n= 3 and suppose all the three vertices u1,u2
and u3 are adjacent to some pendant vertices.
Sub case 3.1: Suppose x = ui for some i with 1 ≤ i ≤ 3.
With out loss of generality, let us assume x = u1. In this case,
any pendent vertex which is adjacent to u1(= x) will not have
a neighbor outside D, a contradiction.
Sub case 3.2: Suppose x is adjacent to ui for some i with
1 ≤ i ≤ 3.
In this case, all the pendent vertices forms a IRDS with less
than n−2 elements, a contradiction.
From the above cases, it is concluded that G can be obtained
from C3 by attaching zero or more leaves to at most two ver-
tices of C3.
Conversely, suppose G can be obtained from C3 by attaching
zero or more leaves to at most two vertices of C3.
Assume that u1 is the vertex such that u1 is not adjacent with
pendent vertex. Let N be the set all pendent vertices which
are adjacent to u2 and u3. In this case, the set N ∪{u1} is an
IRDS of G with n−2 elements. Thus γr,0(G)≤ n−2. From
Theorem 2.19 and Theorem 2.2, we have n− 2 = γr(G) ≤
γr,0(G) = n−2.

Lemma 2.21. [4] If n ≥ 1 is an integer, then γr(Pn) = n−
2⌊ n−1

3 ⌋.

Lemma 2.22. [4] If n ≥ 3, then γr(Cn) = n−2⌊ n
3⌋.

Here, we obtained the IRDN of paths and cycles.

Lemma 2.23. Let Pn be a path of n vertices for n ≥ 3 and
k ≥ 1 be an integer. Then γr,0(Pn) = k+1 if n = 3k+1,
γr,0(Pn) = k+2 if n = 3k+2,
γr,0(Pn) = k+2 if n = 3k.

Proof. (a). Let V (Pn) = {v1,v2, . . . ,vn}.
Case 1: Suppose n= 3k+1. Note that D= {v3i+1 : 0≤ i≤ k}
is a minimum IRDS with k + 1 elements. Thus γr,0(Pn) ≤
k+1.
Let D be any minimum IRDS of Pn. Then D must be a domi-
nating set. Note that every vertex of D can dominate a maxi-
mum of 3 vertices. Thus to dominate 3k vertices, D must have
k vertices. Hence, to dominate the remaining one vertex of
Pn, D must have one more vertex and so |D| ≥ k+ 1. Thus
γr,0(Pn)≥ k+1.
Case 2: Suppose n = 3k+2. Note that D = {v3i+1 : 0 ≤ i ≤
k}∪{v3k+2} is a minimum IRDS with k+2 elements. Thus
γr,0(Pn)≤ k+2.
Let D be any minimum IRDS of Pn.
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Sub case 2.1: Suppose v1,v2 ∈ D, then to dominate the re-
maining n− 3 = 3(k− 1)+ 2 vertices namely, v4,v5, . . . ,vn,
D must include another k vertices. Thus |D| ≥ k+2.
Sub case 2.2: Suppose v2 ∈ D and v1 /∈ D, then there does
not exist neighbor for v1 in V −D and so D is not a restrained
dominating set, a contradiction.
Sub case 2.3: Suppose v1 ∈ D and v2 /∈ D. Then there exists
a neighbor for v2 in V −D and it must be v3. Thus v3 /∈ D
and so v4 ∈ D. Suppose v5 ∈ D, then as in the proof of Sub
case1, we can prove that |D| ≥ k+2. If v5 /∈ D, then v6 should
not be in D and so v7 ∈ D. Proceeding like this, we have
v1,v4,v7, . . . ,v3k+1 are in D. In this case, the vertex v3k+2
does not have a private neighbor in V −D and so v3k+2 ∈ D.
Thus |D| ≥ k+2 and so γr,0(Pn)≥ k+2.
Case 3: Suppose n = 3k. Note that D = {v3i+1 : 0 ≤ i ≤
k−1}∪{v3k−1,v3k} is a minimum IRDS with k+2 elements.
Thus γr,0(Pn)≤ k+2.
Let D be any minimum IRDS of Pn.
Sub case 3.1: Suppose v1,v2 ∈ D, then as in the proof of Sub
case 3 of Case 2, we can prove that v2,v5,v8, . . . ,v3k+2. In
this case v3k does not have a private neighbor in V −D and so
v3k ∈ D. Thus |D| ≥ 1+ k+1 = k+2.
Sub case 3.2: Suppose v2 ∈ D and v1 /∈ D, then there does
not exist neighbor for v1 in V −D and so D is not a restrained
dominating set, a contradiction.
Sub case 3.3: Suppose v1 ∈ D and v2 /∈ D. As in the proof of
Sub case 3 of Case 2, we can prove that, v1,v4,v7, . . . ,v3k−2
are in D. In this case, both the vertices v3k−1 and v3k must be in
D(otherwise the vertex not belongs to D does not have a neigh-
bor in V −D). Thus |D| ≥ k+2 and so γr,0(Pn)≥ k+2.

Lemma 2.24. Let k ≥ 1 be an integer and Cn be a cycle(n≥ 3).
Then
γr,0(Cn) = k if n = 3k,
γr,0(Cn) = k+1 if n = 3k+1,
γr,0(Cn) = k+2 if n = 3k+2.

Proof. (a). Let V (Cn) = {v1,v2, . . . ,vn}.
Case 1: Suppose n = 3k. By Lemma 2.22, γr(Cn) = n−
2⌊ n

3⌋ = 3k − 2⌊ 3k
3 ⌋ = 3k − 2k = k. Thus by Theorem 2.2,

k = γr(Cn)≤ γr,0(Cn).
Let D be any minimum IRDS of Cn. Then D must be a
dominating set. Note that every vertex of D can dominate a
maximum of 3 vertices. Thus to dominate 3k vertices, D must
have k vertices and so |D| ≥ k. Thus k ≥ γr,0(Cn).
Case 2: Suppose n = 3k+1. Note that the graph C4 does not
admit IRDS. Assume that k ≥ 2. By Lemma 2.22, γr(Cn) =
n−2⌊ n

3⌋= 3k+1−2⌊ 3k+1
3 ⌋= 3k+1−2k = k+1. Thus by

Theorem 2.2, k+1 = γr(Cn)≤ γr,0(Cn).
Note that D = {v3i+1 : 0 ≤ i ≤ k−1}∪{v3k−1} is a minimum
IRDS with k+1 elements. Thus γr,0(Cn)≤ k+1.
Case 3: Suppose n = 3k+2. Note that the graph C5 does not
admit IRDS. Assume that k ≥ 2. By Lemma 2.22, γr(Cn) =
n−(2⌊ n−1

3 ⌋)= 3k+2−(2⌊ 3k+2−1
3 ⌋)= 3k+2−2(k)= k+2.

Thus by Theorem 2.2, k+2 = γr(Cn)≤ γr,0(Cn).
Note that D = {v3i+1 : 0 ≤ i ≤ k−1}∪{v3k−1,v3k} is a mini-

mum IRDS with k+2 elements. Thus γr,0(Cn)≤ k+2.

Lemma 2.25. For any integer k ≥ 1, there exists a graph G
such that γ(G) = γr,0(G) = γr(G) = k.

Proof. As Proved in Lemma 2.24, γr,0(C3k) = k.
By Lemma 2.22, γr(C3k) = 3k−2⌊ 3k

3 ⌋= 3k−2k = k.
Let V (Cn)= {v1,v2, . . . ,vn}. Then D= {v3i+1 : 0≤ i≤ k−1}
is a minimum dominating set with k elements. Thus γ(C3k) =
k.
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