

https://doi.org/10.26637/MJM0901/0211

Isolate restrained domination in graphs

S. Palaniammal¹ and B. Kalins^{2*}

Abstract

A dominating set *D* of a graph *G* is said to be a restrained dominating set(RDS) of *G* if every vertex of V - D has a neighbor in V - D. A RDS is said to be an isolate restrained dominating set(IRDS) if < D > has at least one isolated vertex.

The minimum cardinality of a minimal IRDS of *G* is called the isolate restrained domination number(IRDN), denoted by $\gamma_{r,0}(G)$. This paper contains basic properties of IRDS and gives the IRDN for the families of graphs such as paths, cycles, complete *k*-partite graphs and some other graphs.

Keywords

Restrained domination, isolate domination, isolate domination number.

AMS Subject Classification 05C69.

¹ Department of Mathematics, Sri Krishna Adithya College of Arts and Science, Coimbatore-641042, Tamil Nadu, India.

² Department of Science and Humanities, Sri Krishna College of Engineering and Technology, Coimbatore- 641008, Tamil Nadu, India *Corresponding author: ² kalinsbaskaran1985@gmail.com

Article History: Received 13 January 2021; Accepted 22 March 2021

Contents

1	Introduction
2	Basics of isolate restrained domination1221
	References 1224

1. Introduction

The concept of isolate domination in graphs has been introduced by Hameed and Balamurugan [7]. A dominating set *D* of a graph *G* is said to be an isolate dominating set(IDS) if < D > has at least one isolated vertex [7]. The minimum cardinality of a minimal isolate dominating set of *G* is called the isolate domination number $\gamma_0(G)$. An isolate dominating set of cardinality $\gamma_0(G)$ is called a γ_0 -set.

A dominating set *D* of a graph *G* is said to be RDS if every vertex of V - D has a neighbor in V - D. By using the concepts of isolate domination and restrained domination, we introduce a new domination parameter, namely "Isolate Restrained Domination(IRD)". A RDS is said to be an isolate restrained dominating set(IRDS) if < D > has at least one isolated vertex.

The minimum cardinality of a IRDS of G is called the IRDN, denoted by $\gamma_{r,0}(G)$.

2. Basics of isolate restrained domination

In this section, the IRD number of paths, cycles and com-

plete k-partite graphs have been obtained. Also some properties of IRDS are given.

©2021 MJM

Remark 2.1. If a graph G of order greater than 2 such that $\delta(G) \ge 2$ and has a full vertex, say x. Then $\{x\}$ is an IRD set and $\gamma_{r,0}(G) = 1$. Thus the complete graphs(with order not equal to 2) and wheels admit IRDS with IRDN 1.

Theorem 2.2. For any graph *G*, we have $\gamma_r(G) \leq \gamma_{r,0}(G)$ and $\gamma_0(G) \leq \gamma_{r,0}(G)$.

Proof. Since every IRDS of *G* is also an RDS of *G*, we have $\gamma_r(G) \leq \gamma_{r,0}(G)$.

Since every IRDS of *G* is also an IDS of *G*, we have $\gamma_0(G) \leq \gamma_{r,0}(G)$.

The following results are proved in [4].

Proposition 2.3. [4] If $n \neq 2$ is a positive integer, then $\gamma_r(K_n) = 1$.

Proposition 2.4. [4] If n > 2 is an integer, then $\gamma_r(K_{1,n-1}) = n$.

Proposition 2.5. [4] There exists a graph G for which $\gamma_r(G) - \gamma(G)$ can be made arbitrarily large.

The following results are follows from the definition of IRD.

Proposition 2.6. *If* $n \neq 2$ *is a positive integer, then* $\gamma_{r,0}(K_n) = 1$.

Proposition 2.7. *If* n > 2 *is an integer, then* $K_{1,n-1}$ *does not admit IRDS.*

Proposition 2.8. There exists a graph G for which $\gamma_{r,0}(G) - \gamma(G)$ can be made arbitrarily large.

Proof. Let *G* be a graph such that the cycle $C_3(V(C_3) = \{v_1, v_2, v_3\}$ such that many pendents are joined with one vertex(say v_1)).

Note that $\{v_1\}$ is a dominating set and so $\gamma(G) = 1$.

Let *D* be a minimum IRDS and *x* be isolated in < D >.

Suppose $x = v_1$ then no other vertex will be in *D*, *D* will not be retrained(since the pendent vertices have no adjacent vertex outside *D*).

Suppose $x = v_2$, then $v_3, v_1 \notin D$ and

so $D = \{v_2\} \cup \{all \text{ pendent vertices}\}$. Thus $\gamma_{r,0}(G) = |V(G)| - 2$.

Suppose $x = v_3$, then $v_2, v_1 \notin D$ and

so $D = \{v_3\} \cup \{all \text{ pendent vertices}\}$. Thus $\gamma_{r,0}(G) = |V(G)| - 2$.

Suppose *x* is a pendent vertex adjacent to v_1 . In this case, $v_1 \notin D$ and so all the pendent vertices will be in *D*. Since v_1 is adjacent to at least one vertex outside of *D*, either v_2 or v_3 will not be in *D*, without loss of generality, assume that $v_2 \notin D$. In this case, $V(G) - \{v_1, v_2\}$ is a minimum isolate restrained dominating set with |V(G)| - 2 elements.

Proposition 2.9. [4] If n_1 and n_2 are integers such that $min\{n_1, n_2\} \ge 2$, then $\gamma_r(K_{n_1, n_2}) = 2$.

Lemma 2.10. Let $G = K_{m,n} = (M,N)$ be a complete bipartite graph. Then G does not admit IRDS.

Proof. Suppose there exists a minimum IRDS of *G*, say *D*. Let *x* be an isolated vertex in $\langle D \rangle$. With out loss of generality, assume that $x \in M$. Since $x \in D$ is isolated in $\langle D \rangle$, *D* must not have any vertex of *N*. Thus to dominate all the vertices of *M*, *D* must include all the vertices of *M*. Thus M = D. In this case, any vertex of *N* will not have a neighbor in V - D, a contradiction.

Lemma 2.11. Let $k \ge 3$ be an integer and $G = K_{m_1,m_2,...,m_k} = (M_1, M_2, ..., M_k)$ be a complete k-partite graph. Then G admits an IRDS with IRDN $m = \min\{mi\}$.

Proof. With out loss of generality, let $m_1 = min\{mi\}$. Since $k \ge 3$, M_1 is a IRDS of *G* and so $\gamma_{r,0}(G) \le m_1$.

Let *D* be a minimum IRDS of *G* and *x* be an isolated vertex in < D >. Then $x \in M_i$ for some *i* with $1 \le i \le k$. Since $x \in D$ is isolated in < D >, *D* must not have any vertex of $M_j (j \ne i)$. Thus to dominate all the vertices of M_i , *D* must include all the vertices of M_i . Thus $m_1 \le |M_i| \le |D|$ and so $m_1 \le \gamma_{i,0}(G)$.

Theorem 2.12. Let $n \ge 2$ be an integer and let G be a disconnected graph with n components G_1, G_2, \ldots, G_n such that the first r components G_1, G_2, \ldots, G_r admit IRDS. Then $\gamma_{r,0}(G) = \min_{1 \le i \le r} \{t_i\}$, where $t_i = \gamma_{r,0}(G_i) + \sum_{j=1, j \ne i}^n \gamma_r(G_j)$ for $1 \le i \le r$.

Proof. With out loss of generality, let $t_1 = \min_{1 \le i \le r} \{t_i\}$. Let *S* be a $\gamma_{r,0}$ - set of G_1 and D_i be a γ_r - set of G_i for each *i* with $2 \le i \le n$. Then $S \cup (\bigcup_{i=2}^n D_i)$ is an IRDS of *G* with cardinality $\gamma_{r,0}(G_1) + \sum_{i=2}^n \gamma_r(G_i)$ and so $\gamma_{r,0}(G) \le \gamma_{r,0}(G_1) + \sum_{i=2}^n \gamma_r(G_i) = t_1$.

Let *S* be a minimal IRDS of *G*. Then *S* must intersect $V(G_i)$ for each $1 \le i \le n$. Further, there exists an integer *j* such that $S \cap V(G_j)$ is a minimum IRDS of G_j and $1 \le j \le r$. Also for each $1 \le i \le n, i \ne j$, the set $S \cap V(G_i)$ is a minimal restrained dominating set of G_i .

Therefore $|S| \ge \gamma_{r,0}(G_j) + \sum_{i=1,i\neq j}^n \gamma_r(G_i) \ge t_1$ and hence $\gamma_{r,0}(G) = \min_{1 \le i \le r} \{t_i\}.$

Proposition 2.13. [4] If G is a graph; then $\gamma_r(G) = 1$ if and only if $G \equiv K_1 + H$ where H is a graph with no isolated vertices.

Lemma 2.14. *If G is a graph of order greater than* 2*; then* $\gamma_{r,0}(G) = 1$ *if and only if G has a full vertex and* $delta(G) \ge 2$ *.*

Proof. Suppose $\gamma_{r,0}(G) = 1$. Then there exists a vertex $x \in V(G)$ such that $D = \{x\}$ is a minimum IRDS. Clearly x is a full vertex. Let $v \in V(G) - D$. Then v is adjacent with x as well as v is adjacent with another of $V(G) - \{x\}$. Thus $deg(v) \ge 2$.

Conversely suppose *G* has a full vertex, say *x* and $\delta(G) \ge 2$. In this case, $\{x\}$ is minimum IRDM(Since $\delta(G) \ge 2$, every vertex $u \ne x$ is adjacent to a vertex in $V(G) - \{x\}$). \Box

Theorem 2.15. Let G be a connected graph of order n = 4. Then $\gamma_r(G) = 2$ if and only if $G \notin \{K_4, K_{1,3}\}$.

Theorem 2.16. Let G be a connected graph of order n = 4. Then $\gamma_{r,0}(G) = 2$ if and only if $G \notin \{K_4, K_{1,3}, C_4\}$.

Proof. Suppose that $\gamma_{r,0}(G) = 2$. Suppose $\gamma_r(G) = 1$, then *G* has a full vertex and so $\gamma_{r,0}(G) = 1$, a contradiction. Thus $\gamma_r(G) = 2$ and hence by Theorem 2.15, $G \neq K_4$ and $G \neq K_{1,3}$. Note that the graph C_4 does not admit IRDS.(For, let *D* be a minimum IRDS of C_4 . Since $\gamma_{r,0}(C_4) = 2$, *D* must be a set of two adjacent vertices or two non adjacent vertices. If *D* contain two adjacent vertices, the $\langle D \rangle$ has no isolated vertex, a contradiction. If *D* contain two non adjacent vertices, then no vertex which lies out of *D* has a neighbor in *D*, a contradiction.) Thus $G \neq C_4$.

Conversely, suppose $G \notin \{K_4, K_{1,3}, C_4\}$.

If *G* is a path on four vertices, then the set of two pendent vertices is a minimum IRDS of *G*.

If $G \cong K_4 - e$, where *e* is any edge of K_4 , then the set of two vertices with degree 2 is a minimum IRDS of *G*.

Otherwise, *G* is isomorphic to a graph such that the cycle $C_3(V(C_3) = \{v_1, v_2, v_3\})$ is attached with one pendent v_4 with one vertex, say v_1 . In this case, the vertex v_4 together with a vertex of degree two forms a minimum IRDS of *G*.

Theorem 2.17. [4] Let G be a connected graph of order n. Then $\gamma_r(G) = n$ if and only if G is a star.

Theorem 2.18. Let G be a connected graph of order n. Then $\gamma_{r,0}(G) = n$ if and only if $G \cong K_1$.

Proof. Let *G* be a connected graph of order *n* and suppose $\gamma_{r,0}(G) = n$.

On the contrary assume that $n \ge 2$. Let *D* be a $\gamma_{r,0}$ -set of *G*. Then $\langle D \rangle$ must contain an isolated vertex, say *x*. Since *G* is connected, $|N(x)| \ge 1$ and $N(x) \cap D = \phi$. Thus $|D| \le n - 1$, a contradiction. Thus n = 1 and so $G \cong K_1$.

Conversely, suppose $G \equiv K_1$. Then $\gamma_{r,0}(G) = 1$.

Theorem 2.19. [4] Let G be a connected graph of order n containing a cycle. Then $\gamma_r(G) = n - 2$ if and only if G is C_4 or C_5 or G can be obtained from C_3 by attaching zero or more leaves to at most two of the vertices of the cycle.

Theorem 2.20. Let G be a graph such that G can be obtained from $C_n(V(C_n) = \{u_1, u_2, ..., u_n\})$ by attaching zero or more leaves to some or all the vertices of the cycle C_n . Then $\gamma_{r,0}(G) = n - 2$ if and only if G can be obtained from C_3 by attaching zero or more leaves to at most two vertices of C_3 .

Proof. Suppose $\gamma_{r,0}(G) = n - 2$. Let *D* be a IRDS of *G* such that |D| = n - 2 and *x* is isolated in $\langle D \rangle$.

Case 1: Suppose $n \ge 5$.

Sub case 1.1: Suppose $x = u_i$ for some *i* with $1 \le i \le n$.

With out loss of generality, let us assume $x = u_1$. Then $N(u_1) = \{u_2, u_n\}$ and $u_2, u_n \notin D$. In this case the set $V(G) - \{u_2, u_3, u_n\}$ is an IRDS with less than n - 2 elements, a contradiction.

Sub case 1.2: Suppose x is adjacent to u_i for some i with $1 \le i \le n$.

With out loss of generality, let us assume *x* is adjacent to u_1 . In this case, $u_1 \notin D$ and so all the pendent vertices adjacent to u_1 are in *D*. Since *D* is restrained, u_1 must be adjacent with some other vertex which is not in *D* and it must be either u_2 or u_n and without loss of generality, let it be u_2 . In this case the set $V(G) - \{u_1, u_2, u_n\}$ is an IRDS with less than n - 2 elements, a contradiction.

Case 2: Suppose n = 4.

Sub case 2.1: Suppose $x = u_i$ for some *i* with $1 \le i \le 4$.

With out loss of generality, let us assume $x = u_1$. Then $N(u_1) = \{u_2, u_4\}$ and $u_2, u_4 \notin D$. Thus $D = V(G) - \{u_2, u_4\}$. In this case both the vertices u_2 and u_4 do not have neighbors in V - D, a contradiction to the definition of restrained dominating set.

Sub case 2.2: Suppose x is adjacent to u_i for some i with $1 \le i \le n$.

With out loss of generality, let us assume x is adjacent to u_1 . In this case, $u_1 \notin D$ and so all the pendent vertices adjacent to u_1 are in D. Since D is restrained, u_1 must be adjacent with some other vertex which is not in D and it must be either u_2 or u_4 and without loss of generality, let it be u_2 . Sub case 2.2.1: Suppose the vertex u_3 is adjacent with some pendent vertices, then $V(G) - \{u_1, u_2, u_4\}$ is an IRDS with less than n - 2 elements, a contradiction.

Sub case 2.2.2: Suppose the vertex u_4 is adjacent with some pendent vertices, then $V(G) - \{u_1, u_2, u_3\}$ is an IRDS with less than n - 2 elements, a contradiction.

Sub case 2.2.3: Suppose both the vertices u_3 and u_4 are not adjacent pendent vertices, then $V(G) - \{u_1, u_2, u_4\}$ is an IRDS with less than n - 2 elements, a contradiction.

Case 3: Suppose n = 3 and suppose all the three vertices u_1, u_2 and u_3 are adjacent to some pendant vertices.

Sub case 3.1: Suppose $x = u_i$ for some *i* with $1 \le i \le 3$.

With out loss of generality, let us assume $x = u_1$. In this case, any pendent vertex which is adjacent to $u_1(=x)$ will not have a neighbor outside D, a contradiction.

Sub case 3.2: Suppose *x* is adjacent to u_i for some *i* with $1 \le i \le 3$.

In this case, all the pendent vertices forms a IRDS with less than n-2 elements, a contradiction.

From the above cases, it is concluded that G can be obtained from C_3 by attaching zero or more leaves to at most two vertices of C_3 .

Conversely, suppose *G* can be obtained from C_3 by attaching zero or more leaves to at most two vertices of C_3 .

Assume that u_1 is the vertex such that u_1 is not adjacent with pendent vertex. Let *N* be the set all pendent vertices which are adjacent to u_2 and u_3 . In this case, the set $N \cup \{u_1\}$ is an IRDS of *G* with n-2 elements. Thus $\gamma_{r,0}(G) \le n-2$. From Theorem 2.19 and Theorem 2.2, we have $n-2 = \gamma_r(G) \le \gamma_{r,0}(G) = n-2$.

Lemma 2.21. [4] If $n \ge 1$ is an integer, then $\gamma_r(P_n) = n - 2\lfloor \frac{n-1}{3} \rfloor$.

Lemma 2.22. [4] If $n \ge 3$, then $\gamma_r(C_n) = n - 2\lfloor \frac{n}{3} \rfloor$.

Here, we obtained the IRDN of paths and cycles.

Lemma 2.23. Let P_n be a path of n vertices for $n \ge 3$ and $k \ge 1$ be an integer. Then $\gamma_{r,0}(P_n) = k + 1$ if n = 3k + 1, $\gamma_{r,0}(P_n) = k + 2$ if n = 3k + 2, $\gamma_{r,0}(P_n) = k + 2$ if n = 3k.

Proof. (a). Let $V(P_n) = \{v_1, v_2, \dots, v_n\}$. **Case 1:** Suppose n = 3k + 1. Note that $D = \{v_{3i+1} : 0 \le i \le k\}$ is a minimum IRDS with k + 1 elements. Thus $\gamma_{r,0}(P_n) \le k + 1$.

Let *D* be any minimum IRDS of P_n . Then *D* must be a dominating set. Note that every vertex of *D* can dominate a maximum of 3 vertices. Thus to dominate 3k vertices, *D* must have *k* vertices. Hence, to dominate the remaining one vertex of P_n , *D* must have one more vertex and so $|D| \ge k + 1$. Thus $\gamma_{r,0}(P_n) \ge k + 1$.

Case 2: Suppose n = 3k + 2. Note that $D = \{v_{3i+1} : 0 \le i \le k\} \cup \{v_{3k+2}\}$ is a minimum IRDS with k + 2 elements. Thus $\gamma_{r,0}(P_n) \le k + 2$.

Let *D* be any minimum IRDS of P_n .

Sub case 2.1: Suppose $v_1, v_2 \in D$, then to dominate the remaining n-3 = 3(k-1)+2 vertices namely, v_4, v_5, \ldots, v_n , D must include another k vertices. Thus $|D| \ge k+2$.

Sub case 2.2: Suppose $v_2 \in D$ and $v_1 \notin D$, then there does not exist neighbor for v_1 in V - D and so D is not a restrained dominating set, a contradiction.

Sub case 2.3: Suppose $v_1 \in D$ and $v_2 \notin D$. Then there exists a neighbor for v_2 in V - D and it must be v_3 . Thus $v_3 \notin D$ and so $v_4 \in D$. Suppose $v_5 \in D$, then as in the proof of Sub case1, we can prove that $|D| \ge k+2$. If $v_5 \notin D$, then v_6 should not be in D and so $v_7 \in D$. Proceeding like this, we have $v_1, v_4, v_7, \ldots, v_{3k+1}$ are in D. In this case, the vertex v_{3k+2} does not have a private neighbor in V - D and so $v_{3k+2} \in D$. Thus $|D| \ge k+2$ and so $\gamma_{r,0}(P_n) \ge k+2$.

Case 3: Suppose n = 3k. Note that $D = \{v_{3i+1} : 0 \le i \le k-1\} \cup \{v_{3k-1}, v_{3k}\}$ is a minimum IRDS with k+2 elements. Thus $\gamma_{r,0}(P_n) \le k+2$.

Let *D* be any minimum IRDS of P_n .

Sub case 3.1: Suppose $v_1, v_2 \in D$, then as in the proof of Sub case 3 of Case 2, we can prove that $v_2, v_5, v_8, \ldots, v_{3k+2}$. In this case v_{3k} does not have a private neighbor in V - D and so $v_{3k} \in D$. Thus $|D| \ge 1 + k + 1 = k + 2$.

Sub case 3.2: Suppose $v_2 \in D$ and $v_1 \notin D$, then there does not exist neighbor for v_1 in V - D and so D is not a restrained dominating set, a contradiction.

Sub case 3.3: Suppose $v_1 \in D$ and $v_2 \notin D$. As in the proof of Sub case 3 of Case 2, we can prove that, $v_1, v_4, v_7, \ldots, v_{3k-2}$ are in *D*. In this case, both the vertices v_{3k-1} and v_{3k} must be in *D*(otherwise the vertex not belongs to *D* does not have a neighbor in V - D). Thus $|D| \ge k + 2$ and so $\gamma_{r,0}(P_n) \ge k + 2$. \Box

Lemma 2.24. Let $k \ge 1$ be an integer and C_n be a cycle($n \ge 3$). *Then*

 $\gamma_{r,0}(C_n) = k \text{ if } n = 3k,$ $\gamma_{r,0}(C_n) = k + 1 \text{ if } n = 3k + 1,$ $\gamma_{r,0}(C_n) = k + 2 \text{ if } n = 3k + 2.$

Proof. (a). Let $V(C_n) = \{v_1, v_2, \dots, v_n\}.$

Case 1: Suppose n = 3k. By Lemma 2.22, $\gamma_r(C_n) = n - 2\lfloor \frac{n}{3} \rfloor = 3k - 2\lfloor \frac{3k}{3} \rfloor = 3k - 2k = k$. Thus by Theorem 2.2, $k = \gamma_r(C_n) \le \gamma_{r,0}(C_n)$.

Let *D* be any minimum IRDS of C_n . Then *D* must be a dominating set. Note that every vertex of *D* can dominate a maximum of 3 vertices. Thus to dominate 3k vertices, *D* must have *k* vertices and so $|D| \ge k$. Thus $k \ge \gamma_{r,0}(C_n)$.

Case 2: Suppose n = 3k + 1. Note that the graph C_4 does not admit IRDS. Assume that $k \ge 2$. By Lemma 2.22, $\gamma_r(C_n) = n - 2\lfloor \frac{n}{3} \rfloor = 3k + 1 - 2\lfloor \frac{3k+1}{3} \rfloor = 3k + 1 - 2k = k + 1$. Thus by Theorem 2.2, $k + 1 = \gamma_r(C_n) \le \gamma_{r,0}(C_n)$.

Note that $D = \{v_{3i+1} : 0 \le i \le k-1\} \cup \{v_{3k-1}\}$ is a minimum IRDS with k+1 elements. Thus $\gamma_{r,0}(C_n) \le k+1$.

Case 3: Suppose n = 3k + 2. Note that the graph C_5 does not admit IRDS. Assume that $k \ge 2$. By Lemma 2.22, $\gamma_r(C_n) = n - (2\lfloor \frac{n-1}{3} \rfloor) = 3k + 2 - (2\lfloor \frac{3k+2-1}{3} \rfloor) = 3k + 2 - 2(k) = k + 2$. Thus by Theorem 2.2, $k + 2 = \gamma_r(C_n) \le \gamma_{r,0}(C_n)$. Note that $D = \{v_{3i+1} : 0 \le i \le k-1\} \cup \{v_{3k-1}, v_{3k}\}$ is a mini-

mum IRDS with
$$k + 2$$
 elements. Thus $\gamma_{r,0}(C_n) \leq k + 2$.

Lemma 2.25. For any integer $k \ge 1$, there exists a graph G such that $\gamma(G) = \gamma_{r,0}(G) = \gamma_r(G) = k$.

Proof. As Proved in Lemma 2.24, $\gamma_{r,0}(C_{3k}) = k$. By Lemma 2.22, $\gamma_r(C_{3k}) = 3k - 2\lfloor \frac{3k}{3} \rfloor = 3k - 2k = k$. Let $V(C_n) = \{v_1, v_2, \dots, v_n\}$. Then $D = \{v_{3i+1} : 0 \le i \le k-1\}$ is a minimum dominating set with k elements. Thus $\gamma(C_{3k}) = k$.

References

- B.H. Arriola, Isolate domination in the join and corona of graphs, *Applied Mathematical Sciences*, 9 (2015), 1543– 1549.
- ^[2] G.Chartrand, Lesniak, *Graphs and Digraphs*, Fourth ed., CRC press, Boca Raton, 2005.
- ^[3] E.J.Cockayne, S.T.Hedetniemi, D.J.Miller, Properties of hereditary hypergraphs and middle graphs, *Canad. Math. Bull.*, **21** (1978) 461–468.
- [4] Gayla S. Domke, Johannes H. Hattingh, Stephen T. Hedetniemi, Renu C. Laskar, Lisa R. Markus, Restrained domination in graphs, *Disc. Math.*, **203** (1999), 61–69.
- [5] T.W.Haynes, S.T. Hedetniemi, P.J.Slater, Fundamental of Domination in Graphs, Marcel Dekker, New York, 1998.
- [6] I.Sahul Hamid, S.Balamurugan, Isolate domination in Unicycle Graphs, *International Journal of Mathematics* and Soft Computing, 3 (2013), 79–83.
- [7] I.Sahul Hamid, S.Balamurugan, Isolate domination in graphs, *Arab. J Math Sci.*, 22 (2016), 232–241.

