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Combined impact of variable internal heat source
and variable viscosity on the onset of convective
motion in a porous layer
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Abstract
The qualitative effect of variable internal heat source and temperature dependence of fluid viscosity on the
onset of convection in a horizontal fluid saturated porous layer is investigated using linear stability analysis.
The temperature-dependence of viscosity is considered to be exponential. A parametric study is performed
out by varying the following parameters: viscosity parameter (B) and internal heat source parameter (Ns). We
addressed four cases of variance in the internal heat source : (i) N(z) = z, (ii) N(z) = z2, (iii) N(z) = z3 and (iv)
N(z) = ez. Results indicate that for both parameters of the factor viscosity and heat source variance are to delay
the beginning of convective moment. It seen that the system is to be more unstable for case (iii), while more
stable for case (iv).
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1. Introduction
The study of buoyancy-driven flows in porous media is

vital, as it has many applications in fields such as insulation of
buildings, oil recovery in the petroleum industry, geothermal
reservoirs, and chemical reactor engineering. In various phys-
ical models for porous structure, several researchers analyzed
the instability including Nield [1–4], Vafi [5], Wang and Tan
[6], Celli et al. [7], Pop and Ingham [8], Gasser and Kazimi
[9], Banu and Rees [10], Mahajan et al. [11].

The temperature dependence of the liquid properties can
change the flow behavior in flows with heat transfer: in par-
ticular its stability characteristics is well established. The
viscosity shows a rather pronounced temperature variation for
most of the practical liquids, since viscosity is more temper-
ature resistant than heat and thermal conductivity. Rossby
[12] measured the thermal conductivity and water viscosity
values between 20 & 250C and found that the kinematic vis-
cosity parameter varies approximately around 10% between
20 to 250C whereas the water thermal conductivity varies just
1.5%. Torrance and Turcotte [13] observed that fluid viscosity
decreases as temperature rises, while gases exhibit a reverse
pattern. Several researchers have been studying the effect of
viscosity varying temperature in Rayleigh – Benard convec-
tion problems in recent years (Booker [14], Solomatov and
Barr [15], Barletta and Nield [16]).
There are several studies that have appeared in the literature on
how the onset of Rayleigh-Bénard convection is influenced by
a periodical boundary temperature. Davis [17] has reviewed
several of the results related to those issues. At the other hand,
limited attention has been paid to the studies relating to the
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influence of thermal modulation on the onset of convection
in a fluid saturated porous medium. Rudraiah and Malashetty
[18] have studied the influence of time dependent wall temper-
ature on the onset of convection in a porous medium. Study of
the effect on convection in a fluid- and fluid-saturated porous
layer of complex body forces in a has been of great interest
[19–22]. The effect of internal heating on convection studied
by Joseph and Shir [23] and Joseph [24] exploited nonlinear
energy methods to find the critical Rayleigh number for an
internal heat source for a fluid saturated porous sheet. The aim
of this research is to study the effect of temperature dependent
viscosity and varying internal heat source on the convective
motion in a porous medium.

2. Conceptual Model
Figure 1 illustrates the physical configuration of the present

study. The physical model under consideration is a horizon-
tal isotropic porous bed bounded between planes at z = 0 &
z = L. Further we assume that the heat source Q depends on
the vertical coordinate z. We assume that the viscosity µ has
a exponential temperature dependence of the form

µ = µ0exp[−A(T −T0)],

for a constant A > 0 and T , µ0 and T0 are temperature and
reference viscosity and values of temperature, respectively.

Figure 1. Physical configuration

3. Mathematical Formulation
The porous layer governing equations are

∇ ·~V = 0 (3.1)

0 =−∇p− µ(T )
K

~V +ρ0[1−β (T −T0)]~g (3.2)

A
∂T
∂ t

+(~V ·∇)T = κ∇
2T +Q(z) (3.3)

In these equations, ~V denotes the velocity vector, p is the
pressure, κ is the thermal diffusivity, A is the ratio of heat
capacities, ρ0 is the reference fluid density and T is the tem-
perature. The basic steady state solution is of the form

(u,v,w, p,T ) = (0,0,0, pb(z),Tb(z))

Then equation (3.3) can be written for basic temperature Tb
as:

d2Tb

dz2 −
1
κ

Q(z) = 0

Integrating the above equation twice, we get

Tb(z) =
−1
κ

∫ z

0

∫
ξ

0
Q(λ )dλdξ

Applying the boundary conditions

Tb = TL at z = 0 & Tb = Tu at z = d,

we obtain

Tb(z) =
−1
κ

∫ z

0

∫
ξ

0
Q(λ )dλdξ −Cz+Tl ,

where the constant C is given by

C =
1
d
(Tl−Tu)−

1
κd

∫ d

0

∫
ξ

0
Q(λ )dλdξ .

Basic state is slightly perturbed using the relation given by

~V =~V ′, p = pb(z)+ p′, T = Tb(z)+θ (3.4)

Substituting equations (3.4) into equations (3.1)-(3.3). lin-
earizing, by eliminating the term ∇p in the momentum equa-
tion and retaining the vertical component, we have:

f (z)∇2w+ f ′(zm)
∂w
∂ z

=R∇
2
hmT (3.5)(

A
∂

∂ t
−∇

2
)

Tm =wN(z), (3.6)

where

f (z) = exp
[

B
(

z− 1
2

)]
, B =

(
vmax

vmin

)
We assume the solution are of the form

(w,T ) = [W (z),�(z)]ei(lx+my). (3.7)

Substituting equation (3.7) into equations (3.5)-(3.6), we ob-
tain the following ordinary differential equations

f (z)(D2−a2)w+ f ′(z)Dw =−Ra2� (3.8)

(D2−a2)�=−WL(z) (3.9)

where � is the amplitude of perturbed temperature, W is the
amplitude of perturbed vertical velocity and R = αg0(Tl −
Tu)d3/vκ is the Rayleigh number and L(z) = 1+NsN(z).
The boundary conditions take the form

W =�= 0 at z = 0,1. (3.10)

4. Technique of Solution

Equations (3.8) and (3.9) along with the boundary con-
ditions given by equation (3.10) constitute an eigen value
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problem with as the eigen value. Accordingly W and � are
written as

W =
n

∑
i=1

AiWi, �=
n

∑
i=1

Bi�i

Wi =�i = sin(iz) (4.1)

where Ai & Bi are constants to be determined. Substituting
equation (4.1) into equations (3.8)-(3.9) and using trial func-
tions, we obtain a system of linear homogeneous algebraic
equations in Ai & Bi. A nontrivial solution to the system re-
quires the characteristic determinant of the coefficient matrix
must vanish and this leads to a relation involving the physical
parameters R, Ns, B and a in the form

f (R,Ns,B,a) = 0.

The critical value of Rc is determined numerically with respect
to a for different values of Pe, B & Ns.

5. Results and Discussion
Using the Galerkin process, the joint effect of variable

viscosity and variable internal heat source with four different
cases of linear & non-linear variation of heat source cases:
(i) N(z) = z, (ii) N(z) = z2, (iii) N(z) = z5 and (iv) N(z) = ez

is investigated. The governing parameters considered in the
present study are: internal heat source parameter Ns and vis-
cosity parameter (B). The stability for the system is obtained
in terms of Rc and corresponding ac for various values of Ns
and B with Pe. To validate the numerical procedure used in
the present study, the Rc and the corresponding ac obtained un-
der the limiting case of B = 0(constant case of viscosity) and
Ns = 0(absence of heat source). That is as Ns = 0 or B = 0,
the result Rc→ 39.479 and ac = 3.14 which is the known ex-
act value Rionero and Straughan [15]. Figures 2–5 illustrate

Figure 2. Showing the variation of Rc with respect to B for
various values of Ns = 0,2,4,6,10,15,20 for case (iii)
N(z) = z5

the variation of the Rc and the ac as a function of B different
values of Ns for different linear and non-linear gravity vari-
ance: cases: (i) N(z)= z, (ii) N(z)= z2, (iii) N(z)= z5 and (iv)

N(z) = ez respectively. From these figures, it is established
that the Rc increases with increasing viscosity parameter B for
all different cases of internal heat variation and Rc decreases
with increasing internal heat source parameter Ns. Therefore,
the stability of the system is maintained by both parameters.
An increase in viscosity parameter B increases the tempera-
ture between channel walls throughout the flow region. Hence
viscosity parameter has stabilizing effect on the system. The
effect of varying heat source is shows to be destabilizing in all
cases. Due to more production of heat and this helps for the
early convection. Furthermore, it is noticed that the system
more unstable for case (iii), while for case (iv) it is found to
be more stable.

6. Conclusions
Numerical analysis of convective instability in a porous

layer with combined effect of variable heat source and temper-
ature dependence of fluid viscosity. The study was conducted
in four different cases of variance heat source: (i) N(z) = z,
(ii) N(z) = z2, (iii) N(z) = z5 and (iv) N(z) = ez. Results
show that the effects of increasing the parameter of the vis-
cosity parameter and the internal heat source delay the start
of convection. It is noted that for case (iv) the system is more
stable, while for case (iii) the system is more unstable, The
above findings indicate that, by selecting acceptable values
for these parameters, the onset of convection can be advanced
or delayed.
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Figure 3. Showing the variation of Rc with respect to B for
various values of Ns for case (i) N(z) = z

Figure 4. Showing the variation of Rc with respect to B for
various values of Ns for case (ii) N(z) = z2

Figure 5. Showing the variation of Rc with respect to B for
various values of Ns for case (iv) N(z) = ez
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