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ro-operator in topological spaces
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Abstract
In this paper a new operator called ro-operator in topological spaces is introduced for which regular open set is a
fixed point. Properties of the operator is also studied.
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1. Introduction
In 1937, M.H.Stone [4] introduced regular open set.

R.C.Jain [1] in 1980, worked on role of regularly open sets. In
this paper an attempt is done to find an operator for which
regular open set is a fixed point. In section 2 , preliminary
ideas are given. In section 3, ro-operator is defined. Section 4
discusses about properties of ro-operator and its fixed points.

2. Preliminaries
Non empty set X with topology τ is denoted as (X , τ).

(X , τ) is abbreviated as X . For a set A, its closure is denoted
as Cl(A) and interior is denoted as Int(A).

2.1 Definition[4]
A subset A of X is said to be

(i.) regular open, if A = Int(Cl(A)).

(ii.) regular closed, if A =Cl(Int(A)).

(iii.) clopen, if A is both open and closed.

2.2 Properties of regular open sets[4]
(i.) If a set is clopen, then it is regular open and if a set is

regular open then it is open.

(ii.) Finite union of regular open sets is not always regular
open.

(iii.) Finite intersection of regular open sets is regular open.

3. ro-operator
Definition 3.1. Consider the topological space X. The opera-
tor ro : P(X)→ P(X) defined by ro(A) = Int(Cl(A)) is known
as ro-operator.

Example 3.2. Let X = {a,b,c},τ = {X ,φ ,{a},{b},{a,b}}.
Then ro({a}) = {a},ro({b}) = {b},ro({a,b}) = X,

ro({c}) = φ

Example 3.3. Consider (R,τ), where R is the set of real num-
bers and τ is
the usual topology. Then,

1. ro({(a,b)}) = (a,b) for any open interval (a,b) in R.

2. ro({[a,b]}) = (a,b) for any closed interval [a,b] in R.

3. ro({[a,b)}) = (a,b) = ro({(a,b]}) for any half open
intervals in R

4. Properties of ro-operator

Theorem 4.1. 1. If A⊆ X, then Int(A)⊆ ro(A).

2. If A is an open set, then ro is an expansive operator. That
is A⊆ ro(A) for any open set A.
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3. If A⊆ X, then ro(A)⊆Cl(A).

4. If A is a closed set, then ro is a shrinking operator. That
is ro(A)⊆ A, for any closed set A.

5. If A is a clopen set, then ro is an invariant operator.
That is ro(A) = A for any clopen set A of X.

6. The operator ro is Idempotent. That is ro(roA) = ro(A)

Proof. 1. A⊆Cl(A)

=⇒ Int(A)⊆ Int(Cl(A))

=⇒ Int(A)⊆ ro(A)

2. Int(A)⊆ ro(A) ........ (by (1)).

A open =⇒ Int(A) = A.

Hence, A⊆ ro(A).

3. Int(Cl(A))⊆Cl(A), by definition of Interior.

=⇒ ro(A)⊆Cl(A).

4. ro(A)⊆Cl(A) ......(by (3)).

A closed =⇒ Cl(A) = A

Hence, ro(A)⊂ A.

5. A clopen =⇒ Int(Cl(A)) = A

=⇒ ro(A) = A.

6. ro(ro(A)) = Int(Cl(Int(Cl(A))))

=⇒ ro(ro(A)) = Int(Cl(Cl(A)))

=⇒ ro(ro(A)) = Int(Cl(A))

=⇒ ro(ro(A)) = ro(A)

Theorem 4.2. 1. If A⊆ X, then ro(Cl(A)) = ro(A).

2. If A⊆ B , then ro(A)⊆ ro(B) , where A,B⊂ X.

3. ro(A∩B)⊆ ro(A)∩ ro(B)

4. ro(A∪B)⊇ ro(A)∪ ro(B).

Proof. 1. ro(Cl(A)) = Int(Cl(Cl(A)))

=⇒ ro(Cl(A)) = Int(Cl(A))

=⇒ ro(Cl(A)) = ro(A)

2. A⊆ B =⇒ Cl(A)⊆Cl(B)

=⇒ Int(Cl(A))⊆ Int(Cl(B))

=⇒ ro(A)⊆ ro(B)

3. A∩B⊆ A and A∩B⊆ B.

Then (2) =⇒ ro(A∩B)⊆ ro(A) and ro(A∩B)⊆ ro(B)

=⇒ ro(A∩B)⊆ ro(A)∩ ro(B)

4. A⊆ A∪B and B⊆ A∪B.

Then (2) =⇒ ro(A∪B)⊇ ro(A) and ro(A∪B)⊇ ro(B)

=⇒ ro(A∪B)⊇ ro(A)∪ ro(B)

Theorem 4.3. 1. Regular open sets are fixed points of ro-
operator. That is, ro(A) = A.

2. Clopen sets are fixed points of ro-operator. That is,
ro(A) = A.

3. φ and X are fixed points ro-operator. That is, ro(φ) =
φ ,ro(X) = X.

Proof. 1. If A is a regular open set Int(Cl(A)) = A. =⇒
ro(A) = A.

2. Every clopen set is regular open. Hence ro(A) = A.

3. Trivial.

Theorem 4.4. 1. For two non empty regular open sets A
and B, ro(A∪B) 6= A∪B.

2. For two non empty regular open sets A and B, ro(A∩
B) = A∩B.

Proof. 1. Union of regular open sets is not always regular
open. So ro(A∪B) 6= A∪B.

Example 4.5. Let X = {a,b,c},τ = {X ,φ ,{a},{b},
{a,b}}.
Let A = {a}, B = {b}. Then A and B are regular open
sets. But (A∪B) is not regular open.

ro(A) = {a},ro(B) = {b},ro(A∪B) = X.

That is ro(A∪B) 6= A∪B.

2. In the case of two regular open sets A and B, A∩B is
regular open and hence ro(A∩B) = A∩B.
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