

https://doi.org/10.26637/MJM0803/0089

*r*_o-operator in topological spaces

N. Anuradha¹

Abstract

In this paper a new operator called *r_o*-operator in topological spaces is introduced for which regular open set is a fixed point. Properties of the operator is also studied.

Keywords

*r*_o-operator, Closure, Interior.

AMS Subject Classification

54C10.

¹Department of Mathematics, Government Brennen College, Dharmadam, Thalassery-670106, Kerala, India. Article History: Received 12 April 2020; Accepted 16 July 2020

©2020 MJM.

Contents

1	Introduction
2	Preliminaries
2.1	Definition[4] 1237
2.2	Properties of regular open sets[4] 1237
3	<i>r</i> _o -operator
4	Properties of <i>r_o</i> -operator1237
	References1238

1. Introduction

In 1937, M.H.Stone [4] introduced regular open set. R.C.Jain [1] in 1980, worked on role of regularly open sets. In this paper an attempt is done to find an operator for which regular open set is a fixed point. In section 2, preliminary ideas are given. In section 3, r_o -operator is defined. Section 4 discusses about properties of r_o -operator and its fixed points.

2. Preliminaries

Non empty set X with topology τ is denoted as (X, τ) . (X, τ) is abbreviated as X. For a set A, its closure is denoted as Cl(A) and interior is denoted as Int(A).

2.1 Definition[4]

A subset A of X is said to be

- (i.) regular open, if A = Int(Cl(A)).
- (ii.) regular closed, if A = Cl(Int(A)).
- (iii.) clopen, if A is both open and closed.

2.2 Properties of regular open sets[4]

- (i.) If a set is clopen, then it is regular open and if a set is regular open then it is open.
- (ii.) Finite union of regular open sets is not always regular open.
- (iii.) Finite intersection of regular open sets is regular open.

3. *r*_o**-operator**

Definition 3.1. Consider the topological space X. The operator $r_o: P(X) \rightarrow P(X)$ defined by $r_o(A) = Int(Cl(A))$ is known as r_o -operator.

Example 3.2. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then $r_o(\{a\}) = \{a\}, r_o(\{b\}) = \{b\}, r_o(\{a, b\}) = X$, $r_o(\{c\}) = \phi$

Example 3.3. Consider (R, τ) , where R is the set of real numbers and τ is

the usual topology. Then,

- 1. $r_o(\{(a,b)\}) = (a,b)$ for any open interval (a,b) in R.
- 2. $r_o(\{[a,b]\}) = (a,b)$ for any closed interval [a,b] in R.
- 3. $r_o(\{[a,b]\}) = (a,b) = r_o(\{(a,b]\})$ for any half open intervals in R

4. Properties of *r*_o-operator

Theorem 4.1. *1. If* $A \subseteq X$ *, then* $Int(A) \subseteq r_o(A)$ *.*

2. If A is an open set, then r_o is an expansive operator. That is $A \subseteq r_o(A)$ for any open set A.

- *3. If* $A \subseteq X$ *, then* $r_o(A) \subseteq Cl(A)$ *.*
- 4. If A is a closed set, then r_o is a shrinking operator. That is $r_o(A) \subseteq A$, for any closed set A.
- 5. If A is a clopen set, then r_o is an invariant operator. That is $r_o(A) = A$ for any clopen set A of X.
- 6. The operator r_o is Idempotent. That is $r_o(r_o A) = r_o(A)$
- $\begin{array}{ll} \textit{Proof.} & 1. \ A \subseteq Cl(A) \\ \implies \textit{Int}(A) \subseteq \textit{Int}(Cl(A)) \\ \implies \textit{Int}(A) \subseteq r_o(A) \end{array}$
 - 2. $Int(A) \subseteq r_o(A)$ (by (1)). A open $\implies Int(A) = A$. Hence, $A \subseteq r_o(A)$.
 - 3. $Int(Cl(A)) \subseteq Cl(A)$, by definition of Interior. $\implies r_o(A) \subseteq Cl(A)$.
 - 4. $r_o(A) \subseteq Cl(A)$ (by (3)). $A \text{ closed} \implies Cl(A) = A$ Hence, $r_o(A) \subset A$.
 - 5. A clopen $\implies Int(Cl(A)) = A$ $\implies r_o(A) = A.$

6.
$$r_o(r_o(A)) = Int(Cl(Int(Cl(A))))$$

 $\implies r_o(r_o(A)) = Int(Cl(Cl(A)))$
 $\implies r_o(r_o(A)) = Int(Cl(A))$
 $\implies r_o(r_o(A)) = r_o(A)$

- **Theorem 4.2.** 1. If $A \subseteq X$, then $r_o(Cl(A)) = r_o(A)$. 2. If $A \subseteq B$, then $r_o(A) \subseteq r_o(B)$, where $A, B \subset X$. 3. $r_o(A \cap B) \subseteq r_o(A) \cap r_o(B)$ 4. $r_o(A \cup B) \supseteq r_o(A) \cup r_o(B)$. Proof. 1. $r_o(Cl(A)) = Int(Cl(Cl(A)))$ $\implies r_o(Cl(A)) = Int(Cl(A))$ $\implies r_o(Cl(A)) = r_o(A)$ 2. $A \subseteq B \implies Cl(A) \subseteq Cl(B)$
 - $\implies Int(Cl(A)) \subseteq Int(Cl(B))$ $\implies r_o(A) \subseteq r_o(B)$
 - 3. $A \cap B \subseteq A$ and $A \cap B \subseteq B$. Then (2) $\implies r_o(A \cap B) \subseteq r_o(A)$ and $r_o(A \cap B) \subseteq r_o(B)$ $\implies r_o(A \cap B) \subseteq r_o(A) \cap r_o(B)$

- 4. $A \subseteq A \cup B$ and $B \subseteq A \cup B$. Then (2) $\implies r_o(A \cup B) \supseteq r_o(A)$ and $r_o(A \cup B) \supseteq r_o(B)$ $\implies r_o(A \cup B) \supseteq r_o(A) \cup r_o(B)$
- **Theorem 4.3.** 1. Regular open sets are fixed points of r_o -operator. That is, $r_o(A) = A$.
 - 2. Clopen sets are fixed points of r_o -operator. That is, $r_o(A) = A$.
 - 3. ϕ and X are fixed points r_o -operator. That is, $r_o(\phi) = \phi$, $r_o(X) = X$.
- *Proof.* 1. If A is a regular open set Int(Cl(A)) = A. \implies $r_o(A) = A$.
 - 2. Every clopen set is regular open. Hence $r_o(A) = A$.
 - 3. Trivial.

- **Theorem 4.4.** 1. For two non empty regular open sets A and B, $r_o(A \cup B) \neq A \cup B$.
 - 2. For two non empty regular open sets A and B, $r_o(A \cap B) = A \cap B$.
- *Proof.* 1. Union of regular open sets is not always regular open. So $r_o(A \cup B) \neq A \cup B$.

Example 4.5. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$.

Let $A = \{a\}$, $B = \{b\}$. Then A and B are regular open sets. But $(A \cup B)$ is not regular open.

 $r_o(A) = \{a\}, r_o(B) = \{b\}, r_o(A \cup B) = X.$ That is $r_o(A \cup B) \neq A \cup B.$

2. In the case of two regular open sets A and $B, A \cap B$ is regular open and hence $r_o(A \cap B) = A \cap B$.

References

- [1] R.C. Jain, *The Role of Regularly Open Sets in General Topology*, Ph. D Thesis, Meerut University, Institute of advanced studies, Meerut-India, 1980.
- [2] James R Munkres, *Topology*, Second Edition, PHI Learning Private Limited, 2012.
- [3] G.F. Simmons, *Introduction to Topology and Modern Analysis*, Tata Mc Graw Hill Education Private Limited, Fifteenth Reprint, 2011.

[4] M.H. Stone, Application of the theory of Boolean Algebras to General Topology, *Trans. Amer. Math. Soc.*, 41(1937), 375–481.

> ******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

