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1. Introduction and Background

Fractional differential equations have been widely applied in many fields of science and engineering, such as
physics ([1]-[3]), chemical ([4]-[6]), etc. For example the nonlinear oscillation of earthquake can be modeled
with fractional derivatives [7] and the fluid dynamic traffic model with fractional derivatives ([8]) can eliminate
the deficiency arising from the assumption of continuum traffic flow. Actually, the concepts of fractional
derivatives are not only generalization of the ordinary derivatives, but also it has been found that they can
efficiently and properly describe the behavior of many real-life phenomena more accurately than integer order
derivatives.

Stochastic differential equations (SDEs) are playing an increasingly important role in applications to finance,
physics, and biology. A stochastic differential equation (SDE) is a differential equation in which one or more of
the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs are used to
model various phenomena such as unstable stock prices or physical systems subject to thermal fluctuations.
Typically, SDEs contain a variable which represents random white noise calculated as the derivative of
Brownian motion or the Wiener process. Stochastic differential equations are considered by many authors (see
for example, ([9])) where the stochastic disturbances are described by stochastic integrals with respect to
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semimartingale (Brownian motion processes). However, the Brownian motion process is not suitable to
represent a noise process if long-range dependence is modeled. It is then desirable to replace the Brownian
motion process by fractional Brownian motion (fBM).

Fractional Brownian motion appears naturally in the modeling of many situations, for example , when
describing the level of water in a river as a function of time, Financial turbulence. The existence of the fBM
follows from the general existence theorem of centered Gaussian processes with given covariance functions
([10]). The fBM is divided into three very different families corresponding to 0 < H < 1/2, H = 1/2 and
1/2 < H < 1, respectively. The fBM (BH ) is not a semimartingale, as a result , the usual Itô calculus is not
available for use. When H > 1/2, it happens that the regularity of the sample paths of BH is enough and allows
for using Young integral. In the case that H < 1/2 a powerful approach (Rough path theory) may be used.

In Ferrante and Rovira ([11]), the existence and uniqueness of solutions and the smoothness of the density
for delayed SDEs driven by fBM is proved when H > 1/2, but under strong hypotheses, using only techniques
of the classical stochastic calculus, and preventing, for instance, the presence of a hereditary drift in the
equations. Neuenkirch et al. ([12]), using rough path theory, the authors prove existence and uniqueness of
solutions to fractional equations with delays when H > 1/3. Recently, T. Caraballo et al. ([13]) prove the
existence of solutions to stochastic delay evolution equations with a fBM.

Inspired by the above discussions, in this paper we study the following fractional stochastic differential
equations (FSDEs) described in the form:

CDα
t u(t) = [Au(t) + f(t, u(τ(t)))] + σ(t)

dBHQ
dt

, 0 ≤ t ≤ T

u(t) = φ(t), −r ≤ t ≤ 0 (1.1)

where A is the infinitesimal generator of an analytic semigroup, {S(t)}t≥0, of bounded linear operators in a
separable Hilbert space X; BHQ is a fBM on a Hilbert space Y , f and σ are given functions, τ : [0,∞)→ [0,∞)

is a suitable delay function and φ : [−r, 0]× Ω→ X is the initial value.
The outline of this paper is structured as follows: section 2 contains some notations and preliminary facts. In

section 3, the existence and uniqueness of solutions for equation (1.1) are established. The last section contains
an example to illustrate our main results.

In the next part we give a brief review and preliminaries needed to establish our results.

Definition 1.1. The Reimann-Liouville fractional derivative of f is defined as

RDα
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

f(s)

(t− s)α+1−n ds

where t > 0, n − 1 < α < n, Γ(·) stands for the gamma function and n = [α] + 1 with [α] denotes the integer
part of α (see e.g., [14]).

The Reimann-Liouville derivative has certain disadvantages when trying to model real-world phenomena
with fractional differential equations. Therefore, we shall introduce a modified fractional differential operator
Dα
∗ proposed by M. Caputo in his work on the theory of viscoelasticity.

Definition 1.2. The Caputo-type derivative of order α for a function f can be written as

CDα
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n ds

where t > 0, n− 1 < α < n. (see e.g., [14]).
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Remark 1.1. 1. The relationship between the Riemann-Liouville derivative and the Caputo-type derivative
can be written as

CDα
t f(t) = RDα

t f(t)−
n−1∑
k=0

tk

k!
f (k)(0)

2. The Caputo-type derivative of a constant is equal to zero.

Iαg(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t > 0. (1.2)

Let (Ω,=,P) be a complete probability space and let {βH(t), t ∈ [0, T ]} the one-dimensional fractional
Brownian motion with Hurst index H ∈ (1/2, 1). This means by definition that βH is a centered Gaussian
process with covariance function:

RH(t, s) =
1

2
(t2H + s2H− | t− s |2H)

It is known that βH has the following Wiener integral representation (see, for example, [10]):

βH(t) =

∫ t

0

KH(t, s)dB(s)

where B = {B(t) : t ∈ [0, T ]} is a standard Brownian motion process and KH(t, s) is an explicit square
integrable kernel given by

KH(t, s) = CHs
1
2−H

∫ t

s

(u− s)H− 3
2uH−

1
2 du, t > s

where

CH =

√
H(2H − 1)∫ t

0
(1− x)1−2HxH−

3
2 dx

=

√
H(2H − 1)

β(2− 2H,H − 1
2 )

and β(·, ·) denotes the Beta function. Let H be the closure of the set of indicator functions {I[0,t], t ∈ [0, T ]}
with respect to the scalar product

〈I[0,t], I[0,s]〉H = RH(t, s)

We recall that for ϕ,ψ ∈ H their scalar product inH is given by ([15]):

〈ϕ,ψ〉H = H(2H − 1)

∫ T

0

∫ T

0

ϕ(s)ψ(t) | t− s |2H−2 dsdt

Let the operator K∗H : H → L2([0, T ]) defined by ([15]):

(K∗Hϕ)(s) =

∫ T

s

ϕ(τ)
∂KH
∂τ

(τ, s)dτ

and for any ϕ ∈ H, we have

βH(ϕ) =

∫ T

0

K∗H(ϕ)(t)dB(t)

It is known that the elements of H may be not functions but distributions of negative order. In order to obtain
a space of functions contained in H, we consider the linear space H∗ generated by the measurable functions ψ
such that

‖ ψ ‖2H∗ := H(2H − 1)

∫ T

0

∫ T

0

| ψ(τ) || ψ(s) || τ − s |2H−2 dτds
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It is clear that, the space (H∗; ‖ ψ ‖2H∗) is a Banach space and we have, ([10]):

L2([0, T ]) ⊆ L 1
H ([0, T ]) ⊆ H∗ ⊆ H

and for any ϕ ∈ L2([0, T ]), we have

‖ψ‖2H∗ ≤ 2HT 2H−1
∫ T

0

| ψ(s) |2 ds

Let L(Y,X) be the space of bounded linear operator from Y to X and let Q ∈ L(Y,Y) be an operator defined
by Qen = λnen with finite trace TrQ =

∑∞
n=1 λn < ∞, λn ≥ 0 are nonnegative real numbers and en is a

complete orthonormal basis in Y . Let BHQ = {BHQ (t)} be Y-valued fBM on (Ω,=,P) with covariance Q defined
as:

BHQ (t) =

∞∑
n=1

βHn (t)en
√
λn

It is clear that the process BHQ is Gaussian, it starts from zero, has zero mean and covariance

E[〈BHQ (t), x〉〈BHQ (s), y〉] = R(t, s)〈Q(x), y〉, x, y ∈ Y, t, s ∈ [0, T ]

In order to define Wiener integrals with respect to the Q-fBM, we introduce the space L2(Y,X) of all Q-Hilbert-
Schmidt operators Ψ : Y → X. We recall that Ψ ∈ L2(Y,X) is called a a Q-Hilbert-Schmidt operator if

‖ Ψ ‖2L2 :=

∞∑
n=1

∥∥∥Ψen
√
λn

∥∥∥2 <∞
We note that the space L2 equipped with the inner product

〈ϕ,ψ〉L2 =

∞∑
n=1

〈ϕen, ψen〉

is a separable Hilbert space ([13]). Now, the Wiener integral of ϕ ∈ L2(Y,X) with respect to BHQ is defined by:∫ t

0

ϕ(s)dBHQ (s) :=

∞∑
n=1

∫ t

0

ϕ(s)
√
λnendβ

H
n (s) =

∞∑
n=1

∫ t

0

K∗H(ϕen)(s)
√
λndBn(s)

Lemma 1.1. If Φ : [0, T ] → L2(Y,X) satisfies
∫ T
0
‖ Φ(s) ‖2L2 ds < ∞. Then the above sum in the previous

equation is well-defined as a X-valued random variable and we have:

E
∥∥∥∥∫ t

0

Φ(s)dBHQ
∥∥∥∥2 ≤ 2HT 2H−1

∫ t

0

‖Φ(s)‖2L2 ds.

We recall that for any strongly continuous semigroup {S(t); t ≥ 0} on X, we define the generator

Au = lim
t→0+

S(t)u− u
t

.

Throughout this paper, let A is the infinitesimal generator of a strongly continuous semigroup {S(t); t ≥ 0} of
operators on a Hilbert space X. Clearly,

M = sup
t∈[0,T ]

‖ S(t) ‖<∞.

We suppose that ‖ S(t) ‖≤ C1
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Lemma 1.2. ([16],[18]) Let ξ : R+ → R+ be a continuous and non-decreasing function and let also g, h and λ
be non-negative functions on R+ such that:

g(t) ≤ h(t) +

∫ t

0

λ(s)ξ(g(s))ds, t ≥ 0

, then

g(t) ≤ ρ−1
{
ρ(h∗(t)) +

∫ t

0

λ(s)ds

}
,

where ρ(x) =
∫ t
t0

dx
ξ(x) is well-defined for t0 > 0 and h∗(t) = sups≤t h(s). In particular, we have the Gronwall-

Bellman Lemma: If

g(t) ≤ h(t) +

∫ t

0

λ(s)g(s)ds, t ≥ 0

, then
g(t) ≤ h∗(t)e

∫ t
0
λ(s)ds.

Definition 1.3. A X-valued process {u(t), t ∈ [−r, T ]} is called a mild solution of equation (1.1) if:

1. u(t) ∈ C([−r, T ],L2(Ω,X)),

2. u(t) = φ(t), −r ≤ t ≤ 0,

3. For any t ∈ [0, T ], we have

u(t) = J(t)φ(0) +

∫ t

0

J∗(t− s)f(s, u(τ(s)))ds+

∫ t

0

J∗(t− s)σ(s)dBHQ (s), a.s.

where

J(t) =

∫ ∞
0

Mα(θ)S(tαθ)dθ,

J∗(t) = α

∫ ∞
0

θtα−1Mα(θ)S(tαθ)dθ

and Mα(θ) ≥ 0 is a probability function on (0,∞), that is

Mα(θ) =
1

α
θ−1−

1
αωα(θ−

1
α ),

ωα(θ) =
1

π

∞∑
n=1

(−1)n−1θ−nα−1
Γ(nα+ 1)

n!
sinnπα.

and
∫∞
0
Mα(θ)dθ = 1

Lemma 1.3. ([19]) The operators J and J∗ have the following properties:

1. For any fixed t ≥ 0, J(t) and J∗(t) are linear and bounded, i.e., for any x ∈ X

‖ J(t)x ‖≤ C2 ‖ x ‖, ‖ J∗(t)x ‖≤ C2T
α

Γ(α+ 1)
‖ x ‖

2. {J(t), t ≥ 0} and {J∗(t), t ≥ 0} are strongly continuous.

3. For every t > 0, J(t) and J∗(t) are compact operators if S(t) is compact.
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2. Main Results

To prove the existence and the uniqueness of mild solutions of equation (1.1), the following weaker conditions
(instead of the Lipschitz and linear growth conditions, see, e.g., ([16],[17])) are listed:

(H1) f : [0, T ] × X → X and σ : [0, T ] → L2(Y,X) are satisfying the following conditions: there exists a
function ζ : [0,∞)× [0,∞)→ [0,∞) such that:

1. For all t, ζ(t, ·) is continuous non-decreasing , concave, and for each fixed x ∈ R+,
∫ T
0
ζ(s, x)ds <

∞.

2. For any t ∈ [0, T ] and x ∈ X

‖f(t, x)‖2 ≤ ζ(t, ‖ x ‖2),

∫ T

0

‖f(t, x)‖2L2 <∞.

3. For any constant q > 0, x0 ≥ 0, the integral equation

x(t) = x0 + q

∫ t

0

ζ(s, x(s))ds

has a global solution on [0, T ].

(H2) There exists a function η : [0,∞)× [0,∞)→ [0,∞) such that:

1. For all t, η(t, ·) is continuous non-decreasing , concave, with η(t, 0) = 0, and for each fixed x ∈ R+,∫ T
0
η(s, x)ds <∞.

2. For any t ∈ [0, T ] and x, y ∈ X

‖f(t, x)− f(t, y)‖2 ≤ η(t, ‖x− y‖2).

3. For any constant C3 > 0, if a non-negative function h(t), t ∈ [0, T ] satisfies h(0) = 0 and

h(t) ≤ C3

∫ t

0

η(s, h(s))ds

, then h(t) = 0,∀t ∈ [0, T ].

(H3) τ is a continuous function satisfying the condition:

−r ≤ τ(t) ≤ t, ∀t ≥ 0

(H4) we assume that φ ∈ C([−r, T ],L2(Ω,X))

Lemma 2.1. Let b ∈ L2([0, T ],X), σ̃ ∈ L2([0, T ],L2) and consider the following equation:

CDα
t u(t) = [Au(t) + b(t)] + σ̃(t)

dBHQ
dt

, 0 ≤ t ≤ T

u(t) = φ(t), −r ≤ t ≤ 0 (2.1)

, then equation (2.1) has a unique mild solution on [−r, T ]
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Proof. Let CT := C([−r, T ],L2(Ω,X)) be a Banach space of all continuous functions from [−r, T ] into
L2(Ω,X), endowed with the norm

‖u‖2CT = sup
−r≤t≤T

‖u(t, ω)‖2 , ω ∈ Ω. (2.2)

Let us consider,

GT := {u ∈ CT : u(s) = φ(s), s ∈ [−r, 0]} .

It is clear that, GT is a closed subset of CT provided with the norm (2.2).
Let F be the function defined on GT by:

Fx(t) = φ(t), t ∈ [−r, 0],

Fx(t) = J(t)φ(0) +

∫ t

0

J∗(t− s)b(s)ds+

∫ t

0

J∗(t− s)σ̃(s)dBHQ (s), t ∈ [0, T ]

=

3∑
k=1

Ik.

In the next step, we are going to prove that each function t 7→ Ik, k = 1, 2, 3 is contionuous on [0, T ] in the
L2(Ω,X) sense.

1. The contionuity of I1 followes directly from the continuity of t 7→ J(t)z (see, Lemma (1.3)), and by using
some simple computations we can show the continuity of I2.

2. For the term I3, by using (Lemma 1.1, Lemma 1.3), we have

E
∥∥∥∥∫ t+z

0

J∗(t+ z − s)σ̃(s)dBHQ (s)−
∫ t

0

J∗(t− s)σ̃(s)dBHQ (s)

∥∥∥∥
≤
∥∥∥∥∫ t

0

(J∗(t+ z − s)− J∗(t− s))σ̃(s)dBHQ (s)

∥∥∥∥
+

∥∥∥∥∫ t+z

t

J∗(t+ z − s)σ̃(s)dBHQ (s)

∥∥∥∥
≤ I31(z) + I32(z).

It is clear that, I31, I32 → 0 as z → 0, and then

lim
z→0

E ‖Fx(t+ z)−Fx(t)‖2 = 0.

Hence, we conclude that the function Fx(t) is continuous on [0, T ] in the L2(Ω,X) sense. By using
classical computations we can show that

sup
−r≤t≤T

E ‖Fx(t)‖2 <∞.

Hence, we conclude that F is well defined. It is clear that F is a contraction mapping in GT1
with some

T1 ≤ T and therefore has a unique fixed point, which is a mild solution of equation (2.1) on [0, T1]. This
procedure cen be repeated in order to extend the solution to the entire interval [−r, T ] in finitly many steps.

�
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By using a Picard type iteration with the help of Lemma (2.1), we can construct a successive approximation
sequence as: Let u0 be the solution of equation (2.1) with b ≡ 0 and σ̃ ≡ 0. For n ≥ 0, let un+1 ne the solution
of equation (2.1) with b(t) ≡ f(t, u(τ(t))) and σ̃(t) ≡ σ(t). Therefore,

un+1(t) = φ(t), t ∈ [−r, 0],

un+1(t) = J(t)φ(0) +

∫ t

0

J∗(t− s)f(t, un(τ(t)))ds

+

∫ t

0

J∗(t− s)σ(s)dBHQ (s), t ∈ [0, T ] (2.3)

Lemma 2.2. Let (H1 −H4) hold. The sequence {un, n ≥ 0} is well-defined and there exist positive constants
C4, C5, C6 such that ∀n,m ∈ N and t ∈ [0, T ], we have:

sup
−r≤s≤t

E ‖um+1(s)− un+1(s)‖2 ≤ C4

∫ t

0

η(s, sup
−r≤θ≤s

E ‖um(θ)− un(θ)‖2)ds (2.4)

and

sup
−r≤s≤t

E ‖un+1(s)‖2 ≤ C5 + C6

∫ t

0

ζ(s, sup
−r≤θ≤s

E ‖un(θ)‖2)ds (2.5)

Proof. For inequality (2.4), we have

‖um+1(t)− un+1(t)‖2 =

∥∥∥∥∫ t

0

J∗(t− s)[f(t, um(τ(t)))− f(t, un(τ(t)))]ds

∥∥∥∥2 .
By using condition (H2), we get

sup
−r≤s≤t

E
∥∥∥∥∫ t

0

J∗(t− s)[f(t, um(τ(t)))− f(t, un(τ(t)))]ds

∥∥∥∥2 ≤ C4

∫ t

0

η(s, sup
−r≤θ≤s

E ‖um(θ)− un(θ)‖2)ds.

and hence the result. For inequality (2.5), we have

‖un+1(t)‖2 =

∥∥∥∥J(t)φ(0) +

∫ t

0

J∗(t− s)[f(t, un(τ(t)))]ds+

∫ t

0

J∗(t− s)σ(s)dBHQ (s)

∥∥∥∥2 .
By using the identity ‖ x+ y ‖2≤ 2 ‖ x ‖2 +2 ‖ y ‖2, Lemma (1.3), conditionH2 and Lemma (1.1), we get

sup
−r≤s≤t

‖un+1(s)‖2 ≤ C5 + C6

∫ t

0

ζ(s, sup
−r≤θ≤s

E ‖un(θ)‖2 .

�

Lemma 2.3. Suppose that (H1−H4) are satisfied, then there exists an x(t) such that

x(t) = x0 + q

∫ t

0

ζ(s, x(s))ds (2.6)

for x0 ≥ 0, q > 0 and the sequence {un, n ≥ 0} satisfies, for all n ∈ N, t ∈ [0, T ]

sup
−r≤s≤t

E ‖un(s)‖2 ≤ x(t). (2.7)

Proof. Let x : [0, T ] → R be a global solution of the integral equation (2.6) with an initial condition x0 =

max(C6, sup−r≤t≤T E ‖ u0(t) ‖2), then by using mathematical induction we can prove that inequality (2.7). �
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Theorem 2.1. Let (H1−H4) be satisfied. Then for all T > 0, the equation (1.1) has a unique mild solution on
[−r, T ].

Proof. Existence: For t ∈ [0, T ], by using Lemma (2.2), Lemma (2.3) and Fatou’s theorem, we get:

lim sup
m,n→∞

{ sup
−r≤s≤t

E ‖um+1(s)− un+1(s)‖2} ≤ C4

∫ t

0

η(s, lim sup
m,n→∞

sup
−r≤θ≤s

E ‖um(θ)− un(θ)‖2)ds.

By using condition (H2), we have

lim
m,n→∞

sup
−r≤s≤T

E ‖um(s)− un(s)‖2) = 0.

Hence, the sequence {un}n≥0 is a cauchy sequence in CT and from the completeness of CT we guarantees the
existence of a process u ∈ CT such that

lim
n→∞

sup
−r≤s≤T

E ‖un(s)− u(s)‖2) = 0,

and if n→∞ in equation (2.3), then we can see that u is a mild solution to equation (1.1) on [−r, T ].
Uniqueness: Let u, v be two mild solutions of equation (1.1), then

sup
−r≤s≤t

E ‖u(s)− v(s)‖2 ≤ C4

∫ t

0

η(s, sup
−r≤θ≤s

E ‖u(θ)− v(θ)‖2)ds

and by using condition (H2), we get sup−r≤s≤t E ‖ u(s)− v(s) ‖2= 0, which implies that u ≡ v. �

3. Applications.

In this section, we give an example to illustrate our main results.

Example 3.1.

CD
1/2
t [u(t, ζ)] =

∂2

∂ζ2
u(t, ζ) +

e−2tu( 1
3 (1 + cos t))

70(1 + u2( 1
3 (1 + cos t))

+ e−π
2t
dBHQ
dt

, t ∈ (0, T ], ζ ∈ [0, π]

u(t, 0) = u(t, π) = 0, t ∈ (0, T ],

u(t, ζ) = φ(t, ζ), −r ≤ t ≤ 0. (3.1)

where A : D(A) ⊂ X → X, which is defined by A$ = $′′ with D(A) = {u ∈ X : u′′ ∈ X, u(0) =

u(π) = 0}, u, u′ are absolutely continuous and then A can be written as Au =
∑∞
n=1 n

2〈u, un〉un where

un(s) =
√

2
π sin(nu) is the orthonormal set of eigenvectors of A. Also A is the the infinitesimal generator of an

analytic semigroup, {S(t)}t≥0 in X and there exists M , such that ‖S(t)‖ ≤ M . From (3.1), we know that the
delay term 1

3 (1 + cos t) and

f(t, u) =
e−2tu

70(1 + u2)
,

σ(t) = e−π
2t

and with the above choices (3.1) can be formulated in the abstract form of (1.1) and it is easy to verify the
conditions of Theorem (2.1) all hold, and then (3.1) must have a mild solution on [0, 1].
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