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Abstract. This study introduce Aboodh Adomian polynomial Method (AAPM) to solve nonlinear third order KdV
problems providing it approximate and exact solution. To get the approximate analytical answers to the issues, the Aboodh
transform approach was used. Given that the Aboodh transform cannot handle the nonlinear elements in the equation, the
Adomian polynomial was thought to be a crucial tool for linearizing the associated nonlinearities. All of the issues examined
demonstrated the strength and effectiveness of the Adomian polynomial and Aboodh transform in solving various nonlinear
equations when compared to other well-known methods. To show how this strategy may be applied and is beneficial, three
cases were examined.
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1. Introduction

In engineering, physics, and other fields of study, nonlinear models play a crucial role in explaining new
phenomena. However, in certain situations, it could be difficult to provide an exact analytical solution for
nonlinear problems [3]. To address nonlinear issues, a variety of numerical techniques were employed, and as
these techniques improved, so did the analytical techniques. Particular focus has recently been paid to the
merging of numerical and analytical methodologies. A technique for solving nonlinear differential equations in
series is the homotopy approach, which was developed by He [9, 10]. Easy and straightforward execution are
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the technique’s advantages. In engineering, physics, and other disciplines, nonlinear models play a crucial role
in explaining new phenomena. However, it might occasionally be challenging to provide a precise analytical
solution for nonlinear situations [3]. Numerous numerical techniques were employed to address nonlinear
issues, and advancements in these techniques led to advancements in analytical techniques. Combining
analytical and numerical approaches has drawn a lot of interest lately. Among these techniques is the homtopy
approach, which He developed in order to solve nonlinear differential equations in series [9, 10]. The method’s
ease of use and effortlessness are advantages.

In the field of nonlinear physics, the KdV problem is a crucial PDE that appears while studying solitons and
waves. The KdV equation, which bears the names of the Dutch scientists D.J. Korteweg and G. de Vries who
first proposed it in 1895, provides a mathematical explanation for a variety of scientific phenomena, including
shallow water waves and electrical pulses in nerve fibers. [6]. The term ”soliton,” referring to a solution of a
non-linear PDE, was initially utilized by Zabusky and Kruskal [13].

A KdV problem in third order is expressed as [4]:

ϕτ + aϕϕz + bϕϕzzz = 0 (1.1)

with
ϕ (z, 0) = ϕ(z, τ) (1.2)

a and b are arbitrary constants
ϕz Partial derivatives w.r.t z

ϕτ Partial derivatives w.r.t. τ

Various methods, including the combination of LTHPM [8], have been employed to obtain approximate
analytical solutions and numerical results for KdV equations and other nonlinear PDE. Achieving exact
solutions involved utilizing graphical representation for the KdV equation [4], as well as employing the
homotopy perturbation method with Elzaki transform [5, 8] combined with Aboodh transform for approximate
solutions of certain third-order KDV equations with initial conditions. Additionally, numerical techniques for
partial differential equations [1], methods like the Adomian Polynomial and Elzaki Transform [11], NTHPM
[2], and HPM using Mahgoub Transform [6] have been investigated as computational approaches for KdV
problem on an unrestricted domain. The combination of Elzaki Transformation with Adomian Polynomial is
also considered [11].

In this study, we want to improve the efficiency of the Aboodh transform method by its integration with the
Adomian polynomial approach. The combined approach known as ”Aboodh Transform and Adomian
Polynomial (AAPM) for Solving Third Order Korteweg-De Vries (KDV) Equation” is used in this situation.
Usually, this approach takes several stages to get an accurate result, presenting the outcome as an approximation
analytic solution in a series structure.

2. Main Results

2.1. Aboodh Transform Method (ATM)

Differential equations are solved with the application of the Aboodh transform and some of its basic
characteristics. For exponentially ordered functions, the Aboodh Transform is defined.
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Definition 2.1. The Aboodh transform, defined on set A of functions, is the new term for the integral transform.

A = {ϕ(τ)| ∃ M,k1, k2 > 0, |ϕ(τ)| < Me−vτ} (2.1)

where k1, k2 ⊂ M . The symbol for the Aboodh transform is A[ϕ(τ)]. The integral equation of the form is
represented by .

A[ϕ(τ)] = q(v) =
1

v

∫ ∞

0

ϕ(τ)e−vτdτ, τ ≥ 0, k1 ≤ v ≤ k2 (2.2)

Definition 2.2. Aboodh Transform for function ϕ(τ) of exponential order over the set of function is defined as

A
{
f : |ϕ(τ) < Mekj |τ |, if τ ∈ (−1)j × [0,∞], j = 1, 2, ...(M,k1, k2 > 0)

}
(2.3)

where ϕ(τ) is denoted by
A[ϕ(τ)] = H(v)

and defined as

A[ϕ(τ)] =
1

v

∫ ∞

0

ϕ(τ)e−vτdτ = H(v), t < 0, k1 ≤ v ≤ k2

2.2. Aboodh of basic functions

Using definition 2.2, one can show as follows.

1. Let ϕ(z, τ) = eaz+bτ , then its Aboodh transform w.r.t τ is given by

A{eaz+bτ} =
1

v

∫ ∞

0

eaz+bτe−vτdτ

=
eaz

v

∫ ∞

0

ebτ−vτdτ

=
eaz

v
.
−1

b− v
=

eaz

v(v − b)
, v > b

2. Let ϕ(z, τ) = zmτn, then its Aboodh transform w.r.t τ is given by

A{zmτn} =

∫ ∞

0

zmτne−vτdτ

=
zm

v

∫ ∞

0

τne−vτdτ =
zm

v

∫ ∞

0

τne−vτdτ

=
zm

v
.
Γ(n+ 1)

v(n+ 1)

=
n!zm

vn+2
, v > 0

3. Let ϕ(z, τ) = sin(az + bτ), then its Aboodh transform w.r.t τ is given by

A{sin(az + bτ) =
1

v

∫ ∞

0

sin(az + bτ)e−vτ}

Applying repeated integration by parts leads to

= A{sin(az + bτ)} =
1

v

(
−e−vτ (v sin(bτ + az) + b cos(bτ + az))

v2 + b2

) ∣∣∣∣∞
t=0

=
v sin(az) + b cos(az)

v(v2 + b2)
, v > 0
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4. Let ϕ(z, τ) = sinh(az + bτ) then its Aboodh transform w.r.t τ is given by

A{sinh(az + bτ)} =
1

v
sinh(az + bτ)e−vτdτ.

By using properties of hyperbolic functions and integration by parts, we have

A{sinh(az + bτ)} =
1

v

∫ ∞

0

[cosh(az) sinh(bτ) + sinh(az) cosh(bτ)]e−vτdτ

=
1

v

(
− ((v + b)e2(bτ+az) − v + b)e(v+b)τ−az

2(v − b)(v + b)

) ∣∣∣∣∞
t=0

=
v sinh(az) + b cos(az)

v(v2 − b2)
, |v| > |b|

If A[ϕ(τ)] = q(v) = 1
v

∫∞
0

ϕ(τ)e−vτdτ, τ ≥ 0, k1 ≤ v ≤ k2. Then, the Aboodh and Inverse Aboodh
Transform of some Elementary functions are given below.

S/N A−1{k(v)} = ϕ(τ) Aϕ(τ) = k(v)

1. 1 1
v2

2. τn n!
vn+2

3. eaτ 1
v2+a2

4. sin(aτ) a
v(v2+a2)

5. cos(aτ) 1
(v2+a2)

6. sinh(aτ) a
v(v2−a2)

7. cosh(aτ) 1
v2−a2

Table 1: Aboodh {A} and inverse Aboodh Transform {A−1} of some functions

also the Aboodh and Inverse Aboodh Transform of some derivatives is given below

S/N A{u(z, τ)} = k(v) A−1
[
∂nu(z,τ)

∂τn

]
1. A[u(z, τ)] K(z, v)

2 A
[
∂u(z,τ)

∂t

]
vK(z, v)− u(z,0)

v

3. A
[
∂2u(z,τ)

dτ

]
v2
[
K(z, v)− u(z, 0)− 1

vut(z, 0)
]

4. A
[
∂nu(z,τ)

∂τn

]
vnK(z, v)−

∑n−1
k=0

f(k)(z,0)

v2−n+k

2.3. Properties of Aboodh Transform

The following properties of Aboodh transform are derived from the definition and which will be applied in the
following chapter to solve the Schrödinger equation, both linear and nonlinear.

Lemma 2.3 (Linearity Property of Aboodh). Let ϕ(z, τ) and φ(z, τ) be any two functions whose Aboodh
transform w.r.t exist. Then for arbitrary constants a and b, we have

A{aϕ(z, τ) + bφ(z, τ)} = aA{ϕ(z, τ)}+ bA{φ(z, τ)} (2.4)
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Proof. By definition of Aboodh transform w.r.t τ , we obtain

A{aϕ(z, τ) + bφ(z, τ)} =
1

v

∫ ∞

0

(aϕ(z, τ) + bφ(z, τ))e−vτdτ

= a

(
1

v

∫ ∞

0

(ϕ(z, τ))e−vτdτ

)
+ b

(
1

v

∫ ∞

0

φ(z, τ)e−vτdτ

)
= aA{ϕ(z, τ)}+ bA{φ(z, τ)}

■

2.4. Aboodh Adomian Polynomial Method (AAPM)

This study’s main idea is to demonstrate the Adomian polynomial method with the Aboodh Transform by
applying it to a broad category of nonlinear partial differential equations.

∂qϕ (z, τ)

∂τ q
+ Rϕ (z, τ) + Nϕ (z, τ) = f (z, τ) (2.5)

where q = 1, 2, 3, · · ·
with

∂q−1ϕ (z, τ)

∂τ q−1
(z, 0) = gq−1(x) (2.6)

Taking Aboodh transform of (2.5)

∂qϕ(z,τ)
∂τq

∣∣∣
τ=0

qth order partial derivative of ϕ(z, τ)

R linear term
N nonlinear terms
ϕ(z, τ) represents the source term.

A
[
∂qϕ (z, τ)

∂τ q
+Rϕ (z, τ) +Nϕ (z, τ) = f (z, τ)

]
(2.7)

Applying Aboodh linearity property to (2.7)

A
[
∂qϕ (z, τ)

∂τ q

]
+A [Rϕ (z, τ)] +A [Nϕ (z, τ)] = A [f (z, τ)] (2.8)

A
[
∂qϕ (z, τ)

∂τ q

]
=

A [ϕ (z, τ)]

vq
−

q−1∑
k=0

v2−w+k ∂
kϕ (z, 0)

∂τk
(2.9)

Substituting equation (2.9) into (2.8)

A [ϕ (z, τ)]

vq
−

q−1∑
k=0

v2−w+k ∂
kϕ (z, 0)

∂τk
+A [Rϕ (z, τ)] +A [Nϕ (z, τ)] = A [f (z, τ)] (2.10)

(2.11)

This result into

A [ϕ (z, τ)]

vq
= A [f (z, τ)] +

q−1∑
k=0

v2−w+k ∂
kϕ (z, 0)

∂τk
− {A [Rϕ (z, τ)] +A [Nϕ (z, τ)]} (2.12)
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By simplification, equation (2.12) becomes

A [ϕ (z, τ)] = vq [A [f (z, τ)]] +

q−1∑
k=0

v2+k ∂
kϕ (z, 0)

∂τk
− vq {A [Rϕ (z, τ)] +A [Nϕ (z, τ)]} (2.13)

Taking Aboodh inverse transform of(2.13), gives

A−1 [ϕ (z, τ)] = A−1

[
vqA [f (z, τ)] +

q−1∑
k=0

v2+k ∂
kϕ (z, 0)

∂τk

]
−A−1 [vq {A [Rϕ (z, τ)] +A [Nϕ (z, τ)]}]

(2.14)

ϕ (z, τ) = A−1

[
vqA [f (z, τ)] +

q−1∑
k=0

v2+k ∂
kϕ (z, 0)

∂τk

]
−A−1 [vq {A [Rϕ (z, τ)] +A [Nϕ (z, τ)]}] (2.15)

Equation (2.15) is expressed below as

ϕ (z, τ) = F (z, τ)−A−1 [vq {A [Rϕ (z, τ)] +A [Nϕ (z, τ)]}] (2.16)

F (z, τ) is obtained from the initial conditions given. The result obtained in (2.16) is

ϕ (z, τ) =

∞∑
r=0

ϕr(z, τ) (2.17)

The non-linearity in the equation can be simplified using Adomian polynomial as

Nϕ (z, τ) =

∞∑
r=0

Ar (2.18)

Where Ar represents the Adomian polynomials. It is obtained using the expression in (2.19)

Ar =
1

r!

dr

dλr
f

[ ∞∑
i=0

λiϕi

]
λ=0

r = 0, 1, · · · (2.19)

Substituting equation (2.18) and (2.19) into (2.17) leads to

∞∑
r=0

ϕr (z, τ) = F (z, τ)−A−1

[
vq

{
A

[
R

∞∑
r=0

ϕ (z, τ)

]
+A [Nϕ (z, τ)] +A

[ ∞∑
r=0

Ar

]}]
(2.20)

From equation ϕ0 (z, τ) = F (z, τ). Thus, the recursive expression is hereby obtained as

ϕr+1 = −A−1

[
vq

{
A

[
R

∞∑
r=0

ϕ (z, τ)

]
+A [Nϕ (z, τ)] +A

[ ∞∑
r=0

Ar

]}]
, r ≥ 0, (2.21)

With truncated series, one can approximate the analytical answer ϕ(z, τ).

ϕ (z, τ) = lim
r→∞

N∑
r=0

ϕr (z, τ) (2.22)
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3. Application

In this section, we wll work through the examples that follow to demonstrate the Adomian polynomial method to
illustrate how well the third-order nonlinear KDV problems may be solved by using the Aboodh Adomian
Polynomial Method..

Example 3.1. Examine the nonlinear KDV problem [6]

.
ϕτ − 6ϕϕz + ϕzzz (z, τ) = 0, (3.1)

with
ϕ (z, 0) = 6x (3.2)

Applying Aboodh to both sides of the equation (3.1)

A [ϕτ ] = −A[ϕzzz (z, τ)− 6ϕϕz] (3.3)

Making use of the Aboodh differential properties, equation (3.3) becomes

vA [ϕ(z, τ)]− 1

v
ϕ(z, 0) = −A[ϕzzz (z, τ)− 6ϕϕz] (3.4)

Applying the initial condition Equation (3.2) on Equation (3.4), we obtain

A [ϕ(z, τ)] =
6z

v2
−
[
1

v
A[ϕzzz − 6ϕϕz]

]
(3.5)

Equation (3.5), when transformed using the inverse Aboodh Transform, yields

ϕ(z, τ) = 6z −A−1

[
1

v
A[ϕzzz − 6ϕϕz]

]
(3.6)

ϕ0 = 6x (3.7)

The following is the recursive relation:

ϕr+1(z, τ) = A−1

[
1

v
A[6Ar − ϕrzzz]

]
(3.8)

Where Ar is the Adomian polynomial.
Let the representation of the nonlinear term be:

Ar =
1

r!

dr

dλr
f

[ ∞∑
i=0

λiϕi

]
λ=0

(3.9)

By using equation (3.9), we obtain

A0 = ϕ0[ϕ0z]

A1 = ϕ1 [ϕ0z] + ϕ0ϕ1z

A2 = ϕ2 [ϕ0z] + ϕ1 [ϕ1z] + ϕ0 [ϕ2z]
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From Equation (3.8)
When r = 0, ϕ1 = A−1

[
1
vA[6A0 − ϕ0zzz]

]
ϕ1 = A−1

[
1

v
A[6ϕ0ϕ0z − ϕ0zzz]

]
ϕ1 = 216zτ

When r = 1, ϕ2 = A−1
[
1
vA[6A1 − ϕ1zzz

]
ϕ2 = A−1

[
1

v
A [6ϕ1ϕ0z + 6w0ϕ1z − ϕ1zzz]

]
ϕ2 =

1552

2
zτ2

ϕ2 = 7776zτ2

r = 2, ϕ3 = A−1

[
1

v
A [6A2 − ϕ2zzz]

]
ϕ3 = A−1

[
1

v
A[6ϕ2ϕ0z + 6w1ϕ1z + 6ϕ0ϕ2z − ϕ2zzz]

]
ϕ3 = 419904zτ3

The approximate series solution is:

ϕ (z, τ) = ϕ0 + ϕ1 + ϕ2 + ϕ3 + · · ·
ϕ (z, τ) = 6z + 216zτ + 7776zτ2 + 419904zτ3 + · · ·

ϕ (z, τ) = 6z(1 + 36τ + (36τ)
2
+ (36τ)

3
+ · · · ) (3.10)

Equation (3.10) may be expressed in closed form using Taylor’s series.:

ϕ (z, τ) =
6z

1− 36τ
, |36τ | < 1 (3.11)

The solution obtained in equation (3.10) is in good agreement with the result obtained by Mahgoub Transform
method [6].

Example 3.2. Examine the nonlinear KDV problem [2]

ϕτ + ϕϕz + ϕzzz (z, τ) = 0 (3.12)

With
ϕ (z, 0) = 1− z (3.13)

Applying Aboodh to both sides of the equation (3.12).

A [ϕτ ] = −A[ϕzzz (z, τ) + ϕϕz] (3.14)

Making use of the Aboodh differential properties, equation (3.14) becomes

vA [ϕ(z, τ)]− 1

v
ϕ(z, 0) = −A[ϕzzz (z, τ) + ϕϕz] (3.15)
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Applying the initial condition equation (3.13) on equation (3.15) we obtain,

A [ϕ(z, τ)] =
z − 1

v2
−
[
1

v
A[ϕzzz (z, τ) + ϕϕz]

]
(3.16)

Now, we use the Aboodh inverse Transform of (3.16).Thus,

ϕ(z, τ) = (z − 1)−A−1

[
1

v
A[ϕzzz (z, τ) + ϕϕz]

]
(3.17)

ϕ0 = 1− z (3.18)

The recursive expression is can now be written as

ϕr+1 = −A−1

[
1

v
A[ϕrzzz (z, τ) +Ar]

]
(3.19)

where the Adomian polynomial denoted by Ar is used to decompose the nonlinear terms.

Ar =
1

r!

dr

dλr
f

[ ∞∑
i=0

λiϕi

]
λ=0

(3.20)

The nonlinear term is represented by

f (u) = ϕϕz (3.21)

By using equation (3.20) , we obtain

A0 = ϕ0[ϕ0z]

A1 = ϕ1 [ϕ0z] + ϕ0ϕ1z

A2 = ϕ2 [ϕ0z] + ϕ1 [ϕ1z] + ϕ0 [ϕ2z]

From equation (3.19)
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When r = 0, we obtain

ϕ1 = −A−1

[
1

v
A[ϕ0zzz (z, τ) +A0]

]
ϕ1 = −A−1

[
1

v
A[0 + (1− z) (−1)]

]
ϕ1 = (1− z) τ

r = 1, w2 = −A−1

[
1

v
A[ϕ0zzz (z, τ) +A1]

]
ϕ2 = −A−1

[
1

v
A[ϕ1zzz (z, τ) + ϕ1ϕ0z + ϕ0ϕ1z]

]
ϕ2 = −A−1

[
1

v
A[0 + (1− z) τ(−1) + (1− z)(−τ)]

]
ϕ2 = (1− z)τ2

r = 2, w3 = −A−1

[
1

v
A[ϕ2zzz (z, τ) +A2]

]
w3 = −A−1

[
1

v
A[ϕ2zzz (z, τ) + ϕ0ϕ2z + ϕ1ϕ1z + ϕ2ϕ0z]

]
w3 = −A−1

[
1

v
A[0 + (1− z)

(
−τ2

)
+ (1− z)

(
τ2
)
+ (1− z)

(
τ2
)
(−1)]

]
ϕ3 = (1− z)τ3

ϕ (z, τ) = ϕ0 + ϕ1 + ϕ2 + ϕ3 + · · ·

ϕ (z, τ) = (1− z) + (1− z) τ + (1− z) τ2 + (1− z) τ3 + · · · (3.22)

ϕ (z, τ) = (1− z) + (1 + τ + τ2 + τ3 + · · · ) (3.23)

Applying Taylor’s series, equation (3.23) is expressed in exact form as:

ϕ (z, τ) =
1− z

1− τ
, |τ | < 1 (3.24)

The solution obtained in equation (3.24) is the same as with the result obtained by Natural Transform and
Homotopy Methods [2].

Example 3.3. Examine the nonlinear KDV problem [11]

ϕτ − 6ϕϕz + ϕzzz = 0 (3.25)

With
ϕ (z, 0) =

2

(z − 3)
2 (3.26)

Taking the Aboodh of (3.25)
A [ϕτ ] = A [6ϕϕz − ϕzzz] (3.27)

Using the Aboodh differential properties, we obtain

vA [ϕτ ]−
1

v
ϕ(z, 0) = A [6ϕϕz − ϕzzz] (3.28)
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putting equation (3.25) into equation (3.28), we get

A [ϕ(z, τ)] =
2

v(z − 3)
2 +

[
1

v
A[6ϕϕz−wzzz (z, τ)]

]
(3.29)

Now, we take the Aboodh inverse of (3.29). We have

ϕ (z, τ) =
2

v (z − 3)
2 +A−1

[
1

v
A[6ϕϕz−wzzz (z, τ)]

]
(3.30)

ϕ0 =
2

(z − 3)
2 (3.31)

The recursive relation is given as

ϕr+1 = A−1

[
1

v
A[Ar − ϕrzzz (z, τ)]

]
(3.32)

Where Ar represents the Adomian polynomials. It is obtained using the expression in

Ar =
1

r!

dr

dλr
f

[ ∞∑
i=0

λiϕi

]
λ=0

(3.33)

The nonlinear term is represented by
f (u) = ϕϕz (3.34)

By using Equation, we obtain

A0 = ϕ0ϕ0z

A1 = ϕ1ϕ0z + ϕ0ϕ1z

A2 = ϕ2ϕ0z + ϕ1ϕ1z + ϕ0ϕ2z

From equation (3.33)
When r = 0, we obtain

ϕ1 = A−1

[
1

v
A[A0 − ϕ0zzz (z, τ)]

]
ϕ1 = A−1

[
1

v
A[6w0ϕ0z − ϕ0zzz]

]
ϕ1 = A−1

[
1

v
A[6

(
2

(z − 3)
2

(
−4

(z − 3)

)3
)

+
48

(z − 3)
5 ]

]

ϕ1 = 0

r = 1, w2 = A−1

[
1

v
A[A1 − ϕ1zzz (z, τ)]

]
ϕ2 = −A−1

[
1

v
A[ϕ1ϕ0z + ϕ0ϕ1z − ϕ1zzz]

]
ϕ2 = −A−1

[
1

v
A[0]

]
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ϕ2 = 0

r = 2, w3 = A−1

[
1

v
A[A2 − ϕ2zzz (z, τ)]

]
ϕ3 = −A−1

[
1

v
A[ϕ2ϕ0z + ϕ1ϕ1z + ϕ0ϕ2z − ϕ2zzz]

]
ϕ3 = −A−1

[
1

v
A[0]

]
ϕ3 = 0

The approximate series solution is expressed below as

ϕ (z, τ) = ϕ0 + ϕ1 + ϕ2 + ϕ3 + · · ·

ϕ (z, τ) =
2

(z − 3)
2 + 0 + 0 + 0 + · · ·

The approximate solution ϕ (z, τ) is given by

ϕ (z, τ) =
2

(z − 3)
2 . (3.35)

The solution obtained in equation (3.35) is in good agreement with result obtained by Adomian Polynomial
and Elzaki Transform Method [11]

4. Conclusion

This study presents the solution of third-order nonlinear KdV problem using AAPM. The examples under
consideration demonstrated how successful this technique is at solving third-order KDV equations and how well
it works as a system to produce outcomes that are realistic and closely aligned with precise solutions after a
minimal number of repetitions. The answers found using this approach concur with additional answers found in
the cited literature.
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