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Skew codes over the split quaternions
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Abstract. In this paper, the structures of linear codes over the split quaternions with coefficient from Z3,Hs,3 = Z3+ iZ3+

jZ3 + kZ3 are determined with i2 = −1, j2 = k2 = 1, ij = k = −ji, jk = −i = −kj, ki = j = −ik, ijk = 1. It is
shown that the split quaternions over Z3 decompose into two parts from Z3+iZ3 with idempotent coefficients. The structures
of the skew cydic and skew constacyclic codes over Hs,3 are obtained.
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1. Introduction

W. R. Hamilton invented the quaternions in 1843, [1]. It is generalization of complex numbers. These quaternions
turned out to be the only associative division algebra over R with dimension > 2. Later quaternion algebras over
arbitrary fields were introduced. A quaternion algebra over arbitrary field F means a unital, associative, four
dimensional algebra over F with a basis {1, i, j, k} and a, b ∈ F ∗. The product was given by i2 = a, j2 = b and
ij = −ji = k. Firstly, quaternions over Zp were introduced by Kandasamy, [2]. In [3], the structures of linear
and cyclic codes over H3 were given. It was shown that H3 decomposed into two parts. The cyclic codes over
H3 were investigated.

If a = −1, b = 1, F = Zp, where p is a prime, then it is called the split quaternions over Zp. In [4] S. M.
Kong et al. gave some key differences in the algebras of quaternions and split quaternions over Zp, for some
prime p.

In the light of all this information, in this study, we investigated skew codes obtained from split quaternions.
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https://www.malayajournal.org/index.php/mjm/index ©2025 by the authors.
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2. Preliminaries

Let Hs,3 = {a+ bi+ cj + dk : a, b, c, d ∈ Z3} be a non-commutative ring, where Z3 = {0, 1, 2} be a finite
field, i2 = −1, j2 = k2 = 1 and ij = −ji = k with the sum and left (right) product operations;

+ : Hs,3 ×Hs,3 −→ Hs,3

(a1 + ib1 + jc1 + kd1, a2 + ib2 + jc2 + kd2) 7→ a1 + a2 + i (b1 + b2)+

j (a1 + c2) + k (d1 + d2)

∗L : Hs,3 ×Hs,3 −→ Hs,3

(a1 + ib1 + jc1 + kd1, a2 + ib2 + jc2 + kd2) 7→ (a1a2 − b1b2 + c1c2 + d1d2)+

i (a1b2 + b1a2 + d1c2 + 2c1d2) + j (a1c2 + a2c1 + d1b2 + 2d2b1)+

k (a1d2 + d1a2 + b1c2 + 2c1b2)

∗R : Hs,3 ×Hs,3 −→ Hs,3

(a1 + ib1 + jc1 + kd1, a2 + ib2 + jc2 + kd2) 7→ (a1a2 − b1b2 + c1c2 + d1b2)+

i (a1b2 + b1a2 + 2c2d1 +d2c1) + j (a1c2 + a2c1 + 2b2d1 + b1d2)+

k (a1d2 + d1a2 + 2b1c2 + c1b2)

In this paper, the left product ∗L will be used as an operation for this ring. In Hs,3 with the operations;

• There are 48 units. The number of units λ which satisfy λ2 = 1 is 14. They are 1, 2, j, k, 2j, 2k, i + j +

k, 2i+ 2j + 2k, 2i+ j + k, i+ 2j + 2k, 2i+ 2j + k, i+ j + 2k, 2i+ j + 2k and i+ 2j + k. The number
of units λ = a+ bi+ cj + dk which satisfy λλ′ = 1 is 34 , where λ′ = a′ + b′i+ jc′ + kd′ is a unit.

abcd a′b′c′d′
0012 0021

0011 0022

0100 0200

1100 2100

1101 1202

1110 1220

1120 1210

2200 1200

2202 2101

2210 2120

2220 2110

1011 2011

1012 2012

1021 2021

1022 2022

1201 1102

2201 2102

• There are 14 idempotent elements which are 0, 1, 2+ j, 2+ 2j, 2+ k, 2+ 2k, 2+ i+ j + k, 2+ 2i+2j +

2k, 2 + i+ 2j + 2k, 2 + 2i+ j + k, 2 + 2i+ j + 2k, 2 + i+ 2j + k, 2 + 2i+ 2j + k, 2 + i+ j + 2k,

• There are 33 zero divisor. They were given in [4].
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• There are 6 idempotent pairs which are {2 + j, 2 + 2j}, {2 + k, 2 + 2k}, {2 + i + j + k, 2 + 2i + 2j +

2k}, {2+ i+2j+2k, 2+2i+ j+k}, {2+2i+ j+2k, 2+ i+2j+k}, {2+2i+2j+k, 2+ i+ j+2k}.
All pairs are orthogonal and their sum is equal to 1.

Remark 2.1. Without loss of generality, we choose the pair {2 + j, 2 + 2j}. For any of the idempotent pair,
similar things is made.

Proposition 2.2. Every element h ∈ Hs,3 is uniquely written as

h = h1 ∗L z1 + h2 ∗L z2
where z1, z2 ∈ Z3 + iZ3

∼= Z3[x]
〈
x2 + 1

〉 ∼= F9, according to spesific central orthogonal idempotent pair
{h1 = 2 + j, h2 = 2 + 2j}.

Proof. Let h = a1 + b1i + c1j + d1k ∈ Hs,3 be an arbitrary element. Assume that h = h1 ∗L z1 + h2 ∗L z2,
where z1 = s1 + t1i, z2 = s2 + t2i ∈ Z3 + iZ3. We know that h1 ∗L h1 = h1 and h1 ∗L h2 = 0. So we have

h1 ∗L h = h1 ∗L z1
(2 + j) ∗L (a1 + b1i+ c1j + d1k) = (2 + j) ∗L (s1 + t1i) .

Therefore s1 = a1 + 2c1, t1 = b1 + d1. We know that h2 ∗L h2 = h2 and h2 ∗L h1 = 0. So we get

h2 ∗L h = h2 ∗L z2
(2 + 2j) ∗L (a1 + b1i+ c1j + d1h) = (2 + 2j) ∗L (s2 + t2i)

Therefore s2 = a1 + c1, t2 = b1 + 2d1. Hence.

h = h1 ∗L ((a1 + 2c1) + i (b1 + d1)) + h2 ∗L ((a1 + c1) + i (b1 + 2d1)) ∈ Hs,3

where a1, b1, c1, d1 ∈ Z3. It is easily seen that the uniqueness. ■

Example 2.3. 1 + i+ j + k ∈ Hs,3 is uniquely written as

1 + i+ j + k = (2 + j) ∗L (2i) + (2 + 2j) ∗L (2)

for the idempotent pair {h1 = 2 + j, h2 = 2 + 2j}. For the other idempotent pair
{h1 = 2 + i+ 2j + 2k, h2 = 2 + 2i+ j + k} , 1 + i+ j + k ∈ Hs,3 is uniquely written as;

1 + i+ j + k = (2 + i+ 2j + 2k) ∗L (2 + 2i) + (2 + 2i+ j + k) ∗L (2i).

Proposition 2.4. Hs,3 is a Z3 + iZ3-module and Hs,3 = (Z3 + iZ3) ⊕ (Z3 + iZ3) by using these central
orthogonal idempotents.

Remark 2.5. Since Z3[x]/
〈
x2 + 1

〉 ∼= F9, the split quaternions Hs,3 just only can be decomposed into
(Z3 + iZ3)⊕ (Z3 + iZ3).

Definition 2.6. A linear code C of length n over Hs,3 is a left (right) Hs,3-submodule of (Hs,3)
n.

Define a Gray map as follows;

Ω : Hs,3 −→ (Z3 + iZ3)⊕ (Z3 + iZ3)

s = h1 ∗L z1 + h2 ∗L z2 7−→ (z1, z2)

We can extended the map from (Hs,3)
n to (Z3 + iZ3)

n ⊕ ((Z3 + iZ3)
n.

The Gray weight of an element s ∈ Hs,3 is defined as

wG(s) = wH(Ω(s))

where wH denotes the Hamming weight. The Gray distance of c = (c0, . . . , cn−1) ∈ (Hs,3)
n is defined by

3
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Example 2.7. Since
wG(1 + i+ j + k, 2i) = wH(Ω(1 + i+ j + k, 2i)),

we have wG(1 + i+ j + k, 2i) = 4, by using Ω(1 + i+ j + k) = (2i, 2) and Ω(2i) = (2i, 2i).

Proposition 2.8. The Gray map is a linear map and isometry from ((Hs,3)
n, Gray distance) to ((Z3 + iZ3)

2n,
Hamming distance).

3. Skew cyclic codes over Hs,3

By defining an automorphism θ over Hs,3 as follows, we can define the left (right) skew cyclic codes over Hs,3,

θ : Hs,3 −→ Hs,3

a+ bi+ cj + dk 7−→ a+ 2bi+ cj + 2dk

The order of θ is 2.

Definition 3.1. A subset C of (Hs,3)
n is said to be left (right) skew cyclic code of length n if two conditions are

satisfied;
(i) C is a left (right) Hs,3-submodule of (Hs,3)

n

(ii) If c = (c1, . . . , cn−1) ∈ C, then ρ(c) = (θ (cn−1) , θ(c), . . . , θ (cn−2)) ∈ C.

The ring Hs,3[x, θ] =
{
s0 + s1x+ · · ·+ sn−1x

n−1 : st ∈ Hs,3, n ∈ N,t = 0, 1, . . . n− 1
}

are called skew
polynomial ring with the usual polynomial addition and the multiplication as follows;

(axm) ∗L (bxs) = a ∗L θm(b)xm+s

The ring is a non-commutative ring. In the polynomial representation a skew cyclic code of length n over
Hs,3 is defined as left ideal of quotient ring ℜ = Hs,3[x, θ]/ ⟨xn − 1⟩, if the order of θ divides n, that is n is
even. If the order of θ does not divide n, a left (right) skew cyclic code of length n over Hs,3 is defined as a left
(right)-Hs,3[x, θ]-submodule of ℜ.

By defining an automorphism ψ over Z3 + iZ3, we can also define the skew cyclic codes over Z3 + iZ3.

Ψ : Z3 + iZ3 −→ Z3 + iZ3

a+ ib 7−→ a+ 2bi

Theorem 3.2. Let C = h1 ∗L C1 ⊕ h2 ∗L C2 be a linear code of length n over Hs,3, where Ct (t = 1, 2) are
codes over Z3 + iZ3. Then C is a skew cyclic code with respect to the automorphism θ if and only if Ct are skew
cyclic codes over Z3 + iZ3 with respect to the automorphism ψ, where t = 1, 2.

Proof. For any r = (r0, . . . , rn−1) ∈ C, let ry = h1 ∗L ay ⊕ h2 ∗L by ∈ Hs,3, for y = 0, 1, . . . , n −
1, where a = (a1, . . . , an−1) ∈ C1,b = (b0, . . . , bn−1) ∈ C2. If Ct(t = 1, 2) are skew cyclic codes over
Z3 + iZ3, then

ρ(r) = ρ(h1 ∗L a⊕ h2 ∗L b) = h1 ∗L ρ(a)⊕ h2 ∗L ρ(b) ∈ C.

Since ρ(a) = (ψ (an−1) , ψ (a0) , . . . , ψ (an−2)) ∈ C1, for (a0, . . . , an−2) ∈ C1 and
ρ(b) = (ψ (bn−1) , ψ (b0) , . . . , ψ (bn−2)) ∈ C2 for (b0, . . . , bn−2) ∈ C2. This shows that C is a skew cyclic
code over Hs,3.

On the other hand, if C is a skew cyclic code over Hs,3, we have ρ(r) = (θ (rn−2) , θ (r0) , . . . , θ (rn−2)) =

h1 ∗L ρ(a)⊕ h2 ∗L ρ(b) ∈ C which implies ρ(a) ∈ C1, ρ(b) ∈ C2. Hence Ct (t = 1, 2) are skew cyclic codes
over Z3 + iZ3. ■

By taking θ′(a + bi + cj + dk) = a + 2bi + 2cj + dk and by choosing central orthogonal idempotent pair
h′1 = 2 + k, h′2 = 2 + 2k, then we have;
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Theorem 3.3. Let D = h′1∗LD1 ⊕ h′2 ∗L D2 be a linear code of length n over Hs,3, where Dt (t = 1, 2) are
codes over Z3 + iZ3. Then D is a skew cyclic code with respect to the automorphism θ′ if and only if Dt are
skew cyclic codes over Z3 + iZ3 with respect to the automorphism ψ, where t = 1, 2.

Proof. It is made as in the proof of the Theorem 10. ■

4. Skew θ-λ-constacyclic codes over Hs,3

Definition 4.1. A subset C of (Hs,3)
n is said to be left (right) skew θ-λ-constacyclic code of length n if two

conditions are satisfied;
(i) C is a left (right) Hs,3-submodule of (Hs,3)

n

(ii) If c = (c0, . . . , cn−1) ∈ C, then σλ(c) = (λ ∗L θ (cn−1) , θ(c0), . . . , θ (cn−2)) ∈ C, where θ ∈ Aut(Hs,3)

and λ is a unit in Hs,3.

In this section, we will take θ as in the section 3 and {h1 = 2 + j, h2 = 2 + 2j}.
Let λ = λ1+λ2i+λ3j+λ4k ∈ Hs,3 such that where λ1, λ2, λ3, λ4 ∈ Z3. From the proposition 2, we know

that
λ = h1 ∗L (λ1 + 2λ3 + i (λ2 + λ4)) + h2 ∗L (λ1 + λ3 + i (λ2 + 2λ4)) (∗)

From table 1, it is easily seen that if an element λ = h1 ∗L u1 + h2 ∗L u2 is a unit in Hs,3, then us are units
in Z3 + iZ3, where s = 1, 2.

Proposition 4.2. An element λ = h1 ∗L u1 + h2 ∗L u2 = λ1 + λ2i+ λ3j + λ4k ∈ Hs,3 is fixed by θ if and only
if us are fixed by ψ for s = 1, 2 and us’s are as in (∗).

Proof. Suppose that λ is fixed by θ. Then

λ1 + λ2i+ λ3j + λ4k = θ (λ1 + λ2i+ λ3j + λ4k)

= λ1 + 2λ2i+ λ3j + 2λ4k

= ψ (λ1) + 2ψ (λ2) i+ ψ (λ3) j + 2ψ (λ4) k

So ψ (λt) = λt, t = 1, 3 and ψ (λr) = 2λr, r = 2, 4.
Thus

ψ (λ1 + 2λ3 + i (λ2 + λ3)) = ψ (λ1) + 2ψ (λ3) + ψ(i) [ψ (λ2) + ψ (λ3)]

= λ1 + 2λ3 + 2i (2λ2 + 2λ4)

= λ1 + 2λ3 + 2i (λ2 + λ4)

Similarly, it can be shown that ψ (u2) = u2.
Conversely, suppose us’s are fixed by ψ, where s = 1, 2. Thus ψ (us) = us, where s = 1, 2. From

λ = h1 ∗L u1 + h2 ∗L u2

we have

θ(λ) = θ (h1 ∗L u1 + h2 ∗L u2) = h1 ∗L ψ (u1) + h2 ∗L ψ (u2)

= h1 ∗L u1 + h2 ∗L u2
Hence α is fixed by θ. ■

Now, we will give the structures of skew θ-λ-constacyclic codes over Hs,3, where a unit λ satisfies λ∗L hs =
hs ∗L λ (s = 1, 2) and {h1 = 2 + j, h2 = 2 + 2j} is a central orthogonal idempotent pair.
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A. DERTLİ and Y. CENGELLENMİS

Theorem 4.3. Let λ = h1 ∗ u1 + h2 ∗ u2 = 2, j or 2j be a uni in Hs,3 and C = h1 ∗L C1 + h2 ∗L C2 be a
linear code of length n over Hs,3 such that ord θ | n, where C1, C2 are cedes over Z3 + iZ3. If C is a skew
θ-λ-constacyclic code of length n over Hs,3, then Cs are ψ-us-constacyclic codes of length n over Z3 + iZ3,
where s = 1, 2.

Proof. Let C = h1 ∗L C1 + h2 ∗L C2 be a linear code over Hs,3. Then for each c = (c0, . . . , cn−1) ∈ C,
where cy = h1 ∗L ay+ h2 ∗L by and ay, by ∈ Z3 + iZ3 for y = 0, 1, . . . , n− 1, we have a = (a0, . . . , an−1) ∈
C1,b = (b0, . . . , bn−1) ∈ C2. Assume that C is a skew θ-λ-constacyclic code of length n over Hs,3. Then
σλ(c) = (λ ∗L θ (cn−1) , θ (c0) , ..., θ (cn−2)) ∈ C for each c = (c0, . . . , cn−1) ∈ C. Then we get

λ ∗L θ (cn−1) =λ ∗L θ (h1 ∗L an−1 + h2 ∗L bn−1)

= λ ∗L [h1 ∗L ψ (an−1) + h2 ∗L ψ (bn−1)]

= λ ∗L h1 ∗L ψ (an−1) + λ ∗L h2 ∗L ψ (bn−1)

= h1 ∗L λ ∗L ψ (an−1) + h2 ∗L λ ∗L ψ (bL)

= h1 ∗L (h1 ∗L u1 + h2 ∗L u2) ∗L ψ (an−1) + h2 ∗L (h1 ∗L u1 + h2 ∗L u2) ∗L ψ (bn−1))

= h1 ∗L u1 ∗L ψ (an−1) + h2 ∗L u2 ∗L ψ (bn−1)

So

σλ(c) = (λ ∗L θ (cn−1) , θ (c0) , . . . , θ (cn−2))

=h1 ∗L (u1 ∗L ψ (an−1) , ψ (a0) , . . . , ψ (an−2)) + h2 ∗L (u2 ∗L ψ (bn−2) , ψ (b0) , . . . , ψ (bn−2)) ∈ C

Hence
σu1

(a) = (u1 ∗L ψ (an−1) , ψ (a0) , . . . , ψ (an−2)) ∈ C1

σu2
(b) = (u2 ∗L ψ (bn−1) , ψ (b0) , . . . , ψ (bn−2)) ∈ C2

Therefore Cs’s are skew ψ-us-constacyclic codes of length n over Z3 + iZ3, where s = 1, 2. ■

Theorem 4.4. For u1,u2, let λ = h1 ∗L u1 + h2 ∗L u2 be a unit in Hs,3. If Cs are skew ψ-us-constacyclic codes
of length n over Z3 + iZ3, where s = 1, 2, then C is a skew θ-λ-constacyclic code over Hs,3 of length n.

Proof. Assume that Cs’s are skew ψ-us-constacyclic codes of length n over Z3 + iZ3, where s = 1, 2. Then for
each a ∈ C1,b ∈ C2, we have σu1

(a) ∈ C1, σu2
(b) ∈ C2. Note that

h1 ∗L σu1
(a) + h2 ∗L σu2

(b) = (λ ∗L θ (cn−1) , θ (c0) , · · · , θ (cn−2)) = σλ(c).

Therefore C is a skew θ–λ-constacyclic code of length n over Hs,3. ■
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