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Abstract. This paper presents uncertainty principles pertaining to generalized wavelet transforms associated with a second-
order differential operator on the half line, extending the concept of the Bessel operator. Specifically, we derive a Heisenberg-
Pauli-Weyl type uncertainty principle, as well as other uncertainty relations involving sets of finite measure
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1. Introduction

Al Subaie and Mourou ([4]) have introduced and studied the following second order differential operator ∆α,n,
on the half line (0,+∞),

∆α,n(u) = u
′′
+

2α+ 1

r
u′ − 4n(α+ n)

r2
u,

where α > − 1
2 and n ∈ N. Its particularity resides in the fact that it generalizes the usual Bessel differential

operator, indeed for n = 0, we recover the Bessel operator ℓα = u
′′
+ 2α+1

r u′.
This paper focuses on exploring uncertainty principles concerning the generalized Fourier transform [4] and

continuous wavelet transforms [3] associated with ∆α,n. Essentially, a function and its Fourier transform cannot
be sharply focused at the same time in harmonic analysis, according to the uncertainty principle. Various
mathematical formulations express this principle, involving measurement of sets or norms. For further
elaboration, interested readers can refer to [17, 24] and [5, 8, 12, 13, 16, 23]. Recently, similar uncertainty
relations have been established for different integral transforms, such as continuous wavelet transforms and
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Uncertainty principles for the continuous wavelet transform associated with a Bessel type operator ∆α,n

Gabor transforms, across various contexts. Relevant literature includes [7, 10, 22, 29, 33, 36] and related
references.

In this context, we establish, among other, a sharp Heisenberg-Pauli-Weyl type uncertainty principle [35] for
the generalized Fourier transform F∆ associated to ∆α,n, which is defined on R+ = [0,+∞) by

F∆(f)(λ) =

∫ +∞

0

f(x)φλ(x)
x2α+1

2α+2nΓ(α+ 2n+ 1)
dx; ∀λ ∈ R+,

where φλ(x) = x2njα+2n(λx) and jα is the modified Bessel function (see [27, 34]).
We present Heisenberg-Pauli-Weyl type inequalities applicable to the generalized continuous wavelet

transform associated with ∆α,n. These inequalities encompass both the time and frequency variables, as well as
their combination. Additionally, we explore other uncertainty relations pertinent to this transform, including
Donoho and Stark type principles. Our investigation delves into the concentration of this transform on
time-frequency sets, revealing that the generalized wavelet transforms of non-zero functions cannot have
arbitrarily large support. Notably, extensive research has been conducted on this generalized Fourier transform,
particularly within the realm of uncertainty principles [1, 2, 14, 15].

Numerous studies, including those on time-frequency representations such as Gabor and wavelet transforms,
have been thoroughly explored in diverse contexts using various methodologies [6, 10, 18, 20, 22]. For further
elucidation, refer to [21].
This document is structured as follows:
The first section revisits some harmonic analysis findings pertinent to the generalized Fourier transform, F∆.
The second section focuses on the study of generalized continuous wavelet transforms associated with ∆α,n. In
the third section, we present results concerning finite sets of measurements, alongside discussions on Donoho-
Stark and Benedicks-type uncertainty principles. Lastly, the fourth section addresses Heisenberg-type uncertainty
principles for the generalized continuous wavelet transform.

2. Preliminaries

Within this section, we revisit essential concepts in harmonic analysis pertaining to the Bessel operator ℓα, as
documented in references [9, 11, 26, 32]. These concepts serve as foundational knowledge for our examination
of the Bessel-type operator ∆α,n (see [4]). For α greater than − 1

2 , the Bessel operator ℓα is defined over the
interval (0,+∞) by

ℓα(u) = u
′′
+

2α+ 1

r
u′.

Next, considering all values of λ in the complex number set, the following system

ℓα(u) = −λ2u, u(0) = 1, u′(0) = 0,

admits a unique solution given by the modified Bessel function x 7→ jα(λx), where

jα(x) =
2αΓ(α+ 1)

xα
Jα(x) = Γ(α+ 1)

+∞∑
n=0

(−1)n

n!Γ(α+ n+ 1)
(
x

2
)2n, x ∈ R;

and Jα is the Bessel function of the first kind and index α (see [27, 34]).
The Mehler integral representation of the modified Bessel function jα is expressed as follows:

∀x ∈ R; jα(x) =


2Γ(α+ 1)

√
πΓ(α+ 1

2 )

∫ 1

0

(1− t2)α−
1
2 cos(xt)dt, if α > −1/2;

cos(x), if α = −1/2.
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Specifically, for each natural number n and real number x,

|j(n)α (x)| ≤ 1. (2.1)

On the positive real numbers R+, define the measure µα as follows:

dµα(x) =
x2α+1

cα
dx; where cα = 2αΓ(α+ 1), (2.2)

and represent the Lebesgue space on R+ with a focus on the measure µα by Lpµα
(R+), p ∈ [1,+∞], and the

Lp−norm by ∥.∥p,µα
.

The Bessel translation operators ταx , where x ⩾ 0, operate on L1
µα

(R+), with their definition as follows:

ταx (f)(y) =


Γ(α+ 1)

Γ(α+ 1
2 )Γ(

1
2 )

∫ π

0

f(
√
x2 + y2 + 2xycosθ)(sinθ)2αdθ, if α > −1/2;

f(x+ y) + f(|x− y|)
2

, if α = −1/2.

(2.3)

Here, for every x ∈ R+, we have∫ +∞

0

ταx (f)(y)dµα(y) =

∫ +∞

0

f(y)dµα(y).

For every f ∈ Lpµα
(R+), p ∈ [1,+∞] and for every x ∈ R+, the function ταx (f) belongs to the space Lpµα

(R+)

and
∥ ταx (f) ∥p,µα

≤∥ f ∥p,µα
. (2.4)

In L1
µα

(R+), the convolution operation between two functions f and g is defined by

f ∗α g(x) =
∫ +∞

0

f(y)ταx (g)(y)dµα(y), ∀x ∈ R+.

In L1
µα

(R+), the convolution product ”∗α” is both commutative and associative.
For the convolution product ” ∗α ”, the Young’s inequality states that if p, q, and r ∈ [1,+∞] are such that

1
p +

1
q = 1 + 1

r , then for all f in Lpµα
(R+) and g in Lqµα

(R+), the function f ∗α g belongs to Lrµα
(R+) and

∥f ∗α g∥r,µα ≤∥ f ∥p,µα∥ g ∥q,µα . (2.5)

Furthermore, for any function f and g in L2
µα

(R+) and we have for each x ∈ R+,

ταx (f ∗α g) = ταx (f) ∗α g = f ∗α ταx (g).

On L1
µα

(R+), the Hankel transform Hα is defined, via

Hα(f)(λ) =

∫ +∞

0

f(r)jα(rλ)dµα(r), ∀ λ ∈ R+. (2.6)

The following properties hold
• (Inversion formula for Hα) In L1

µα
(R+), for any function f , we have for almost all x ∈ R+

f(x) =

∫ +∞

0

Hα(f)(λ)jα(xλ)dµα(λ).
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• (Plancherel’s theorem for Hα) An isometric isomorphism from L2
µα

(R+) onto itself may be obtained by
extending the Hankel transform Hα. Specifically, the Parseval’s formula for each f and g in L2

µα
(R+) is as

follows. ∫ +∞

0

f(x)g(x)dµα(x) =

∫ +∞

0

Hα(f)(λ)Hα(g)(λ)dµα(λ).

• For every f ∈ Lpµα
(R+), p = 1 or 2, and x ∈ R+, we have

Hα(τ
α
x (f))(λ) = jα(xλ)Hα(f)(λ), ∀λ ∈ R+. (2.7)

• For every f ∈ L1
µα

(R+) and g ∈ Lpµα
(R+), p = 1, 2 we have

Hα(f ∗α g) = Hα(f)Hα(g).

•Suppose f, g ∈ L2
µα

(R+). In L2
µα

(R+), the function f ∗α g is included if and only if, Hα(f)Hα(g) belongs to
L2
µα

(R+) and in this case, we have
Hα(f ∗α g) = Hα(f)Hα(g).

Let us consider the second-order singular differential operator on the half line (see [4])

∆α,n(u) = u
′′
+

2α+ 1

r
u′ − 4n(α+ n)

r2
u

where n ∈ N. We obtain the Bessel operator ℓα for n = 0.
For all λ ∈ C, the function

φλ(x) = x2njα+2n(λx). (2.8)

is solution of ∆α,n(u) = −λ2u.
The following characteristics apply to the function φλ

• For all λ, x ∈ R,

φλ(x) =
x2n2Γ(α+ 2n+ 1)
√
πΓ(α+ 2n+ 1

2 )

∫ 1

0

(1− t2)α+2n− 1
2 cos(λxt)dt.

In particular,
|φλ(x)| ⩽ x2n. (2.9)

• For a measurable function on R, we define the map M by Mf(x) = x2nf(x). Then, for x, y ∈ R and
λ ∈ R, the function φλ satisfy the following product formula

φλ(x)φλ(y) =
(xy)2nΓ(α+ 2n+ 1)

Γ(α+ 2n+ 1
2 )Γ(

1
2 )

∫ π

0

(M−1φλ)(
√
λ2x2 + λ2y2 + 2λ2xycos(θ))sin(θ)α+2ndθ.

In the sequel, we need the following notations.

• Lp(µ)(R+), p ∈ [1,+∞], is the space of measurable functions f on R+ such that ∥M−1f∥p,µα+2n < ∞.
The space Lp(µ)(R+) is equipped with the norm ∥.∥p,(µ) given by

∥f∥p,(µ) = ∥M−1f∥p,µα+2n
.
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From the last product formula, we define the generalized translation operator, τ∆x , x ∈ R+ by

τ∆x (f)(y) =
(xy)2nΓ(α+ 2n+ 1)

Γ(α+ 2n+ 1
2 )Γ(

1
2 )

∫ π

0

(M−1f)(
√
x2 + y2 + 2xycos(θ))sin(θ)α+2ndθ, (2.10)

Whenever the integral of the right-hand side is well defined.

• We have the following relation between the generalized and Hankel translation operators

τ∆x (f)(y) = (xy)2nτα+2n
x (M−1f)(y),

where τα+2n
x is given by the relation (2.3).

• For every f ∈ Lp(µ)(R+), p ∈ [1,+∞] and for every x ∈ R+, the function τ∆x (f) belongs to the space
Lp(µ)(R+) and

∥τ∆x (f)∥p,(µ) ⩽ x2n∥f∥p,(µ). (2.11)

Given two functions f, g ∈ L1
(µ)(R+), the generalized convolution product, ”#”, is defined as

f#g(x) =

∫ +∞

0

f(y)τ∆x (g)(y)
y2α+1

cα+2n
dy, x ⩾ 0, (2.12)

where the constant cα+2n is given by the relation (2.2).
We have the following connection between ”#” and ” ∗α+2n ”,

f#g(x) =M
(
M−1(f) ∗α+2nM

−1(g)
)
(x). (2.13)

In L1
(µ)(R+), the convolution product ”#” is both commutative and associative.

Young’s inequality for the convolution product ”#” states that, for all f in Lp(µ)(R+) and g in Lq(µ)(R+), the
function f#g belongs to Lr(µ)(R+) and for all p, q and r ∈ [1,+∞] such that 1

p +
1
q = 1 + 1

r and

∥f#g∥r,(µ) ≤∥ f ∥p,(µ)∥ g ∥q,(µ) . (2.14)

On L1
(µ)(R+), the generalized Fourier transform F∆ related to ∆α,n is defined by

F∆(f)(λ) =

∫ +∞

0

f(x)φλ(x)
x2α+1

cα+2n
dx; ∀λ ∈ R+, (2.15)

where φλ is given by the relation (2.8).
We have the following properties

• For f ∈ L1
(µ)(R+),

F∆(f)(λ) = Hα+2n(M
−1f)(λ), λ ∈ R+.

• For each f ∈ L1
(µ)(R+), F∆(f) is a function that is a part of C∗,0(R) the space of continuous even

functions f on R such that lim
|x|→∞

|f(x)| = 0 in addition

∥F∆(f)∥∞,µα+2n
⩽ ∥f∥1,(µ)
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• Since F∆(f) ∈ L1
µα+2n

(R+) for every x ∈ R+, let f ∈ L1
(µ)(R+)

f(x) =

∫ +∞

0

F∆(f)(λ)φλ(x)dµα+2n(λ).

Applied to L1
(µ)(R+), this demonstrates that F∆ is injective.

• (Plancherel’s theorem for F∆) An isometric isomorphism from L2
(µ)(R+) onto L2

µα+2n
(R+) may be

obtained by extending the generalized Fourier transform F∆. Moreover, the following Parseval’s formula
holds for every f and g in L2

(µ)(R+).

⟨f |g⟩(µ) = ⟨F∆(f)|F∆(g)⟩µα+2n . (2.16)

where the inner product defined on L2
(µ)(R+) is ⟨ .|. ⟩(µ), via

⟨f |g⟩(µ) = ⟨M−1(f)|M−1(g)⟩µα+2n (2.17)

and the inner product of the Hilbert space L2
µα+2n

(R+) is shown by the notation ⟨ .|. ⟩µα+2n .

• When x ∈ R+, p = 1 or 2, and f ∈ Lp(µ)(R+), we obtain

F∆(τ
∆
x (f))(λ) = φλ(x)F∆(f)(λ), ∀λ ∈ R+.

• For every f ∈ L1
(µ)(R+) and g ∈ Lp(µ)(R+), p = 1, 2 we have

F∆(f#g) = F∆(f)F∆(g).

• Suppose that f, g ∈ L2
(µ)(R+). If and only if F∆(f)F∆(g) belongs to L2

µα+2n
(R+), then the function

f#g belongs to L2
(µ)(R+). In this instance, we have

F∆(f#g) = F∆(f)F∆(g). (2.18)

3. Generalized Continuous Wavelet Transforms Associated to F∆ .

The theory of generalized continuous wavelet transforms, as studied by R.F. Al Subaie and M.A. Mourou [4], is
briefly summarized in this section.

Let a ∈ R∗
+ = (0,+∞). The dilation operator Dα,a of a measurable function ψ, is defined by

Dα,a(ψ)(s) = aα+1ψ(as), ∀s ⩾ 0.

We have,

• For every ψ ∈ L2
(µ)(R+),

∥Dα,a(ψ)∥2,(µ) = ∥ψ∥2,(µ). (3.1)

• We obtain for any ψ and ϕ ∈ L2
(µ)(R+)

⟨Dα,a(ψ)|ϕ⟩(µ) = ⟨ψ|Dα, 1a
(ϕ)⟩(µ),
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• For every ψ ∈ L2
(µ)(R+), we have

F∆(Dα,a(ψ)) = Dα+2n, 1a
F∆(ψ). (3.2)

We indicate by

• ϑα,n the measure defined on R∗
+ × R+, by

dϑα,n(a, x) = dµα+2n(a)dµα+2n(x),

• The Lebesgue space on R∗
+ × R+ with regard to the measure ϑα,n with the Lp−norm represented by

∥ . ∥p,ϑα,n
is Lpϑα,n

(R∗
+ × R+), p ∈ [1,+∞].

• ⟨ .| . ⟩ϑα,n
the inner product of the Hilbert space L2

ϑα,n
(R∗

+ × R+).

• For a measurable function f on R∗
+ × R+, the mapping M2 is defined by

M2(f)(a, x) = x2nf(a, x).

• Lp(ϑ)(R
∗
+ × R+), p ∈ [1,+∞] the space of measurable functions f on R∗

+ × R+ such that
∥M−1

2 (f) ∥p,ϑα,n < +∞. The space Lp(ϑ)(R
∗
+ × R+) is equipped with the norm ∥.∥p,(ϑ) given by

∥f∥p,(ϑ) = ∥M−1
2 (f) ∥p,ϑα,n

.

• ⟨ . | . ⟩(ϑ) the inner product of the Hilbert space L2
(ϑ)(R

∗
+ × R+) defined by

⟨ f | g ⟩(ϑ) = ⟨M−1
2 (f)|M−1

2 (g) ⟩ϑα,n .

A generalized admissible wavelet is defined as ψ ∈ L2
(µ)(R+)\{0} if

0 < C∆
ψ =

1

cα+2n

∫ ∞

0

|F∆(ψ)(a)|2
da

a
<∞. (3.3)

The generalized continuous wavelet transform W∆
ψ , for such ψ, is defined on L2

(µ)(R+) by

W∆
ψ (f)(a, x) =

∫ ∞

0

f(s)ψ∆
a,x(s)

s2α+1

cα+2n
ds, (a, x) ∈ R∗

+ × R+ (3.4)

where

ψ∆
a,x(s) = τ∆x Dα,a(ψ)(s). (3.5)

Another way to express the transform W∆
ψ is

W∆
ψ (f)(a, x) = f#Dα,a(ψ)(x) (3.6)

= ⟨ f |ψ∆
a,x ⟩(µ).

Then, in virtue of relations (3.6), (2.14) and (3.1), we deduce that the function W∆
ψ (f) belongs to the space

L∞
(ϑ)(R

∗
+ × R+) and ∥∥W∆

ψ (f)
∥∥
∞,(ϑ)

⩽ ∥f∥2,(µ)∥ψ∥2,(µ). (3.7)
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Theorem 3.1. Let ψ ∈ L2
(µ)(R+) be a generalized admissible wavelet.

(i) (Plancherel’s formula for W∆
ψ ) For every function f ∈ L2

(µ)(R+), the function W∆
ψ (f) belongs to the

space L2
(ϑ)(R

∗
+ × R+) and we have

∥W∆
ψ (f)∥2,(ϑ) =

√
C∆
ψ ∥f∥2,(µ). (3.8)

(ii) (Parseval’s formula for W∆
ψ ) For all functions f, g ∈ L2

(µ)(R+) we have

⟨ f | g ⟩(µ) =
1

C∆
ψ

⟨ W∆
ψ (f) | W∆

ψ (g) ⟩(ϑ), (3.9)

Proof. (i) Let f ∈ L2
(µ)(R+), we have from relations (2.16), (2.18) and (3.6),

∥W∆
ψ (f)∥22,(ϑ) =

∫ ∞

0

∫ ∞

0

|M−1
2 (W∆

ψ (f))(a, x)|2dϑα,n(a, x)

=

∫ ∞

0

[ ∫ ∞

0

|f#Dα,a(ψ)(x)|2x−4ndµα+2n(x)

]
dµα+2n(a)

=

∫ ∞

0

[ ∫ ∞

0

|F∆(f#Dα,a(ψ))(λ)|2dµα+2n(λ)

]
dµα+2n(a)

=

∫ ∞

0

[ ∫ ∞

0

|F∆(f)(λ)|2|F∆(Dα,a(ψ))(λ)|2dµα+2n(λ)

]
dµα+2n(a).

Now using relations (3.2) and (3.3) we get

∥W∆
ψ (f)∥22,(ν) =

∫ ∞

0

|F∆(f)(λ)|2
[ ∫ ∞

0

|Dα+2n, 1a
F∆(ψ)(λ)|2dµα+2n(a)

]
dµα+2n(λ)

=

∫ ∞

0

|F∆(f)(λ)|2
[

1

cα+2n

∫ ∞

0

|F∆(ψ)(a)|2
da

a

]
dµα+2n(λ)

= C∆
ψ

∫ ∞

0

|F∆(f)(λ)|2dµα+2n(λ) = C∆
ψ ∥f∥22,(µ).

(ii) The outcome is derived from the polarization identity and (i).
■

Theorem 3.2. Let ψ be a generalized admissible wavelet. For every f ∈ L2
(µ)(R+), the function W∆

ψ (f) ∈
Lp(ϑ)(R

∗
+ × R+), p ∈ [2,∞] and we have

∥W∆
ψ (f)∥p,(ϑ) ⩽ (C∆

ψ )
1
p ∥ψ∥1−

2
p

2,(µ)∥f∥2,(µ). (3.10)

Proof. According to the relation (3.8), the Plancherel’s theorem for the generalized continuous wavelet transform
for p = 2 produces

∥W∆
ψ (f)∥2,(ϑ) =

√
C∆
ψ ∥f∥2,(µ).

For p = ∞, we have by the relation (3.7)∥∥W∆
ψ (f)

∥∥
∞,(ϑ)

⩽ ∥f∥2,(µ)∥ψ∥2,(µ).

The outcome of the Riez-Thorin Theorem is obtained. ■
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Proposition 3.3. For ψ ∈ L2
(µ)(R+) be a generalized admissible wavelet. Then, W∆

ψ (L2
(µ)(R+)) is a

reproducing kernel Hilbert space in L2
(ϑ)(R

∗
+ × R+), with kernel

K ∆
ψ ((a, x), (a′, x′)) =

1

C∆
ψ

⟨ ψ∆
a,x | ψ∆

a′,x′ ⟩(µ). (3.11)

The kernel K ∆
ψ satisfies the following

∀(a, x), (a′, x′) ∈ R∗
+ × R+,

∣∣K ∆
ψ ((a, x), (a′, x′))

∣∣ ⩽ (xx′)2n

C∆
ψ

∥ψ∥22,(µ).

Proof. From the relation (3.6), we have for all (a, x), (a′, x′) ∈ R∗
+ × R+,

K ∆
ψ ((a, x), (a′, x′)) =

1

C∆
ψ

W∆
ψ (ψ∆

a,x)(a
′, x′).

Thus, from Theorem 3.1, we deduce that for all (a, x) ∈ R∗
+ × R+ the function K ∆

ψ ((a, x), (., .)) belongs to
L2
(ϑ)(R

∗
+ × R+).

Let F ∈ W∆
ψ (L2

(µ)(R+)); F = W∆
ψ (f), f ∈ L2

(µ)(R+), by relations (3.6) and (3.9), we have
for all (a, x) ∈ R∗

+ × R+

F (a, x) = W∆
ψ (f)(a, x) = ⟨ f | ψ∆

a,x ⟩(µ)

=
1

C∆
ψ

⟨ W∆
ψ (f) | W∆

ψ (ψ∆
a,x) ⟩(ϑ)

= ⟨ W∆
ψ (f) | K ∆

ψ ((a, x), (., .)) ⟩(ϑ)
This demonstrates that given the Hilbert space W∆

ψ (L2
(µ)(R+)), K ∆

ψ is a reproducing Kernel.
Then, we obtain from relations (3.5), (2.11), and (3.1),∣∣K ∆

ψ ((a, x), (a′, x′))
∣∣ = 1

C∆
ψ

|⟨ ψ∆
a,x | ψ∆

a′,x′ ⟩(µ)|

⩽
1

C∆
ψ

∥ψ∆
a,x∥2,(µ)∥ψ∆

a′,x′∥2,(µ)

⩽
(xx′)2n

C∆
ψ

∥ψ∥22,(µ).

This achieves the proof. ■

4. Approximate Concentration

In this part, we introduce a weak uncertainty principle [16], which is adapted for the generalized continuous
wavelet transforms. It is a Donoho and Stark type uncertainty principle. Such results were first reported by
Gröchenig in [22], first for the Gabor transform. We also examine how concentrated these generalized continuous
wavelet transformations are on subsets of R∗

+ × R+ with finite measures. Finally, we present a Benedicks-type
uncertainty principle, subject to some assumptions on the wavelet function. Comparable outcomes are reported
in [7, 36].

Proposition 4.1. Consider a generalized wavelet ψ with the property that ∥ψ∥2,(µ) = 1. For any function f
belonging to the space L2

(µ)(R+) satisfying the condition ∥f∥2,(µ) = 1, and for any subset Ω of R∗
+ × R+ and

ξ ≥ 0 , the following holds:

1− ξ ≤
x

Ω

|M−1
2 W∆

ψ (f)(a, x)|2dϑα,n(a, x),
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we obtain,

1− ξ ≤ ϑα,n(Ω).

Proof. Based on equation (3.7), we obtain the following relation:

1− ξ ≤
x

Ω

|M−1
2 W∆

ψ (f)(a, x)|2dϑα,n(a, x) ≤ ∥W∆
ψ (f)∥∞,(ϑ)ϑα,n(Ω) ≤ ϑα,n(Ω).

■

Theorem 4.2. Suppose ψ represents a generalized wavelet such that its norm, denoted by ∥ψ∥2,(µ) = 1, and let
Ω be a subset of R∗

+ × R+ satisfying

C∆
ψ > ϑα,n(Ω),

Therefore, given a function f in L2
(µ)(R+), we get

∥χΩcW∆
ψ (f)∥2,(ϑ) ≥

√
1− ϑα,n(Ω)

C∆
ψ

√
C∆
ψ ∥f∥2,(µ).

Proof. According to equation (3.7), it follows that for any function f belonging to the space L2
(µ)(R+)

∥W∆
ψ (f)∥22,(ϑ) = ∥χΩW∆

ψ (f)∥22,(ϑ) + ∥χΩcW∆
ψ (f)∥22,(ϑ)

≤ ϑα,n(Ω)∥W∆
ψ (f)∥2∞,(ϑ) + ∥χΩcW∆

ψ (f)∥22,(ϑ)
≤ ϑα,n(Ω)∥f∥22,(µ)∥ψ∥

2
2,(µ) + ∥χΩcW∆

ψ (f)∥22,(ϑ).

We obtain the necessary result by using Plancherel’s formula to W∆
ψ as stated in relation (3.8) and the inequality

ϑα,n(Ω) < C∆
ψ . ■

Remark 4.3. It implies that the generalized wavelet transform W∆
ψ (f) cannot be substantially focused on a set

whose volume is smaller than the minimum C∆
ψ for any non-zero function f. In particular, we have

ϑα,n(suppW∆
ψ (f)) < C∆

ψ ⇒ f = 0.

We take into account the following orthogonal projections:

1. Pψ: This projection operates from L2
(ϑ)(R

∗
+ × R+) to W∆

ψ (L2
(µ)(R+)). Its range is denoted by ImPψ .

2. PΩ: Defined as the orthogonal projection onto L2
(ϑ)(R

∗+× R+), given by

PΩF = χΩF, F ∈ L2
(ϑ)(R

∗
+ × R+),

where F ∈ L2
(ϑ)(R

∗
+ × R+), and Ω is a subset of R∗

+ × R+. The range of PΩ is denoted by ImPΩ.

We define
∥PΩPψ∥ = sup {∥PΩPψ(F )∥2,(ϑ), F ∈ L2

(ϑ)(R
∗
+ × R+); ∥F∥2,(ϑ) = 1}.

Proposition 4.4. Consider ψ be a generalized wavelet with a unit norm. A Hilbert Schmidt operator PΩPψ is
defined for each subset Ω ⊂ R∗

+ × R+ of a finite measure ϑα,n(Ω) and we have

∥PΩPψ∥2 ≤ ϑα,n(Ω)

C∆
ψ

. (4.1)
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Proof. For each function F ∈ L2
(ϑ)(R

∗
+ × R+), we obtain since Pψ is a projection onto a reproducing kernel

Hilbert space

Pψ(F )(a, x) = ⟨ F | K ∆
ψ ((a, x), (., .)) ⟩(ϑ)

as defined by (3.11) for K ∆
ψ . Thus,

PΩPψ(F )(a, x) = ⟨ F | χΩ(a, x)K
∆
ψ ((a, x), (., .)) ⟩(ϑ)

Now, using the definition of the kernel provided by the relation (3.11), Fubini’s theorem, relations (3.5),
Plancherel’s formula for the generalized wavelet transform (3.8), (2.11), and (3.1), we obtain

∥PΩPψ∥2HS =

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

(xx′)−4n|χΩ(a, x)|2|K ∆
ψ ((a, x), (a′, x′))|2dϑα,n(a′, x′)|dϑα,n(a, x)

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

x−4nχΩ(a, x)|
1

C∆
ψ

M−1
2 W∆

ψ (ψa,x)(a
′, x′)|2dϑα,n(a′, x′)dϑα,n(a, x)

=
1

C∆
ψ

∫ ∫
Ω

x−4n 1

C∆
ψ

∥W∆
ψ (ψa,x)∥22,(ϑ)dϑα,n(a, x)

=
1

C∆
ψ

∫ ∫
Ω

x−4n∥ψa,x∥22,(µ)dϑα,n(a, x) =
1

C∆
ψ

∫ ∫
Ω

x−4n∥τ∆x Dα,a(ψ)∥22,(µ)dϑα,n(a, x)

≤
∥ψ∥22,(µ)
C∆
ψ

ϑα,n(Ω) =
ϑα,n(Ω)

C∆
ψ

.

The integral operator PΩPψ has a Hilbert Schmidt kernel as a result. The fact that ∥PΩPψ∥ ≤ ∥PΩPψ∥HS
implies the outcome. ■

According to Havin and Jöricke [25, 1.A, p.88], we have the following

Proposition 4.5. Let Ω be a subset of R∗
+ × R+ and let ψ be a generalized wavelet. The following is our

equivalency

1. In L2
(µ)(R+), there is a constant c= c(Ω, ψ) > 0 such that for any function f√

C∆
ψ ∥f∥2,(µ) ≤ c∥χΩcW∆

ψ (f)∥2,(ϑ). (4.2)

2. ∥PΩPψ∥ < 1.

Remark 4.6. 1. If the relation (4.2) is met, then (PΩ, Pψ) is considered a strong a-pair.

2. If ∥PΩPψ∥ < 1, then √
C∆
ψ ∥f∥2,(µ) ≤

1√
1− ∥PΩPψ∥2

∥χΩcW∆
ψ (f)∥2,(ϑ). (4.3)

3. Relative to (4.1) and (4.3), Theorem 4.2 can be obtained.

Theorem 4.7. (Benedicks-type uncertainty principle for W∆
ψ ) For each generalized wavelet ψ, allow

µα+2n({F∆(ψ) ̸= 0}) < ∞. Let
∫∞
0
χΩ(a, x)dµα+2n(x) < ∞ be any subset Ω of R∗

+ × R+ such that for
virtually every a > 0, we have

W∆
ψ (L2

(µ)(R+)) ∩ ImPΩ = {0}. (4.4)
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Proof. If F is a non-trivial function in W∆
ψ (L2

(µ)(R+)) ∩ ImPΩ, then F = Wψ(f) and SuppF ⊂ Ω exist for
some function f in L2

(µ)(R+). Suppose a > 0. Then,
∫∞
0
χΩ(a, x)dµα+2n(x) <∞. Examine the function

Fa(x) = W∆
ψ (f)(a, x), x ≥ 0.

After that,

suppFa ⊂ {x ≥ 0; (a, x) ∈ Ω},

additionally

µα+2n(suppFa) <∞.

Currently, we have by utilizing the relation (2.18),

F∆(Fa)(λ) = F∆(f)(λ)F∆(D
α
aψ)(λ), a.e.

Consequently

{F∆(Fa) ̸= 0} ⊂ {F∆(ψ) ̸= 0} .

Furthermore, we derive the following from the hypothesis: µα+2n({F∆(Fa) ̸= 0}) < ∞. By applying the
Fourier-Bessel transform Benedicks-type theorem [19], we may infer that, for any a > 0, F(a,. ) = 0, implying
that F=0. ■

The outcome that follows is a direct result of [[24], 2. A) p. 90].

Proposition 4.8. If ψ is a generalized wavelet with µα+2n({F∆(ψ) ̸= 0}) <∞, and Ω is a subset of R∗
+ ×R+

with ϑα,n(Ω) <∞, then c(Ω, ψ) > 0, such that the inequality (4.2) holds.

Here, we rephrase the proof given in [5].

Proof. Because PΩ, Pψ are projections, the equation ∥PΩPψ(F )∥2,(ϑ) = ∥F∥2,(ϑ), implies PΩ(F)= Pψ(F) =F.
Now, the fact that

ϑα,n(Ω) =

∫ ∞

0

∫ ∞

0

χΩ(a, x)dϑα,n(a, x) <∞,

implies that for almost every a > 0, ∫ ∞

0

χΩ(a, x)dµα(a, x) <∞.

Then, from relation (4.4), we get F = 0 and therefore, for F ̸= 0 we have ∥PΩPψ(F )∥2,(ϑ) < ∥F∥2,(ϑ). Using
the fact that PΩPψ is a Hilbert-Schmidt operator, we deduce that its largest eigenvalue λ satisfies |λ| < 1 and
∥PΩPψ∥ = |λ| < 1.

The result follows from Proposition 4.5. ■

5. Heisenberg-Pauli-Weyl Type Inequalities for W∆
ψ .

The primary findings of this study, the Heisenberg-Pauli-Weyl type inequality for F∆ and the generalised
wavelet transform W∆

ψ , are presented in this section. We consult Rassias [30] for his study on the classical
Fourier transform. Rösler and Voit demonstrated the Heisenberg-Pauli-Weyl uncertainty principle for the Hankel
transform in [31]. It asserts that for any function f ∈ L2

µα
(R+),

∥rf∥2,µα
∥λHα(f)∥2,µα

⩾ (α+ 1)∥f∥22,µα
,

301



C. Baccar and A. Kabache

with equality for any d ∈ C and b > 0, if and only if f(r) = de−br
2/2.

The previous inequality was extended by Ma in his paper [28] to a more general setting, namely the Chébli-
Triméche hypergroups. Specifically, he established that, for s, t > 0, there exists a constant c = c(α, s, t) > 0

such that, for every function f ∈ L2
µα

(R+), we have

∥rsf∥
t

s+t

2,µα
∥λtHα(f)∥

s
s+t

2,µα
⩾ c∥f∥2,µα

.

Subsequently, Soltani provided the constant c in the cases s ⩾ 1 and t ⩾ 1 explicitly in his article [33], which is
c = (α+1)

st
s+t . If and only if s = t = 1 and f(r) = de−br

2/2 for some d ∈ C and b > 0, then we have equality.
Combining these outcomes, we obtain

Theorem 5.1. Let t, s > 0. For any f ∈ L2
µα

(R+), there is a constant c = c(α, s, t) > 0 such that

∥rsf∥
t

s+t

2,µα
∥λtHα(f)∥

s
s+t

2,µα
⩾ c∥f∥2,µα

, (5.1)

Moreover, for s, t ≥ 1 the constant c = (α + 1)
st

s+t with equality if and only if s = t = 1 and f(r) = de−br
2/2

for some d ∈ C and b > 0.

In the following theorem we give the Heisenberg-Pauli-Weyl type inequality for F∆.

Theorem 5.2. Assume s, t > 0. There is a constant c = c(α, n, s, t) > 0, for any function f ∈ L2
(µ)(R+) such

that

∥rsf∥
t

s+t

2,(µ)∥λ
tF∆(f)∥

s
s+t

2,µα+2n
≥ c∥f∥2,(µ). (5.2)

Moreover, for s, t ≥ 1 the constant c is given by (α + 2n + 1)
st

s+t with equality if and only if s = t = 1 and

f(r) = dr2ne
−br2

2 for some d ∈ C and b > 0.

Proof. Assume f ∈ L2
(µ)(R+). Using the relation (5.1) to apply the Heisenberg-Pauli-Weyl inequality for

Hankel transform with index α+ 2n, we obtain

∥rsf∥
t

s+t

2,(µ)∥λ
tF∆(f)∥

s
s+t

2,µα+2n
= ∥M−1(rsf)∥

t
s+t

2,µα+2n
∥λtHα+2n(M

−1f)∥
s

s+t

2,µα+2n

= ∥rsM−1(f)∥
t

s+t

2,µα+2n
∥λtHα+2n(M

−1f)∥
s

s+t

2,µα+2n

≥ c∥M−1f∥2,µα+2n

≥ c∥f∥2,(µ).

If and only if s = t = 1 and f(r) = dr2ne
−br2

2 , then c = (α+ 2n+ 1)
st

s+t with equality for s, t ≥ 1. ■

In the next theorems, we establish inequalities that we will use to prove Heisenberg-Pauli-Weyl type inequality
for W∆

ψ .

Theorem 5.3. Let ψ be a generalized admissible wavelet in L2
(µ)(R+) and s, t > 0. Then, for any function

f ∈ L2
(µ)(R+), there is a constant c = c(α, n, s, t) > 0, such that

∥xsW∆
ψ (f)∥

t
s+t

2,(ν)∥λ
tF∆(f)∥

s
s+t

2,µα+2n
≥ c(

√
Cψ)

t
s+t ∥f∥2,(µ),

Furthermore, c = (α+ 2n+ 1)
st

s+t if s, t ≥1.
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Proof. Considering that both of the integrals on the left-hand side are finite is a non-trivial situation. The function
x 7→ W∆

ψ (f)(a, x) may be obtained by using the Heisenberg-Pauli-Weyl type inequality for F∆. For every
a ∈ R∗

+,

(∫ ∞

0

x2s|W∆
ψ (f)(a, x)|2x

2α+1

cα+2n
dx

) t
s+t

(∫ ∞

0

λ2t|F∆(W∆
ψ (f)(a, .))(λ)|2dµα+2n(λ)

) s
s+t

≥ c2
∫ ∞

0

|W∆
ψ (f)(a, x)|2x

2α+1

cα+2n
dx.

Therefore, by integrating over dµα+2n(a) and using Plancherel’s theorem and Hölder’s inequality for W∆
ψ , we

obtain

∥xsW∆
ψ (f)∥

2t
s+t

2,(ϑ)

(∫ ∞

0

∫ ∞

0

λ2t|F∆(W∆
ψ (f)(a, .))(λ)|2dµα+2n(a)dµα+2n(λ)

) s
s+t

≥ c2∥W∆
ψ (f)∥2(ϑ) = c2C∆

ψ ∥f∥22,(µ).

But, relations (3.6) and (2.18) yield∫ ∞

0

∫ ∞

0

λ2t|F∆(W∆
ψ (f)(a, .))(λ)|2dµα+2n(a)dµα+2n(λ)

=

∫ ∞

0

∫ ∞

0

λ2t
∣∣F∆

(
f#Dα,a(ψ)

)
(λ)

∣∣2dµα+2n(a)dµα+2n(λ)

=

∫ ∞

0

λ2t|F∆(f)(λ)|2
(∫ ∞

0

|F∆(Dα,a(ψ))|2(λ)dµα+2n(a)

)
dµα+2n(λ).

Then, from relations (3.2) and (3.3) it follows∫ ∞

0

∫ ∞

0

λ2t|F∆(W∆
ψ (f)(a, .))(λ)|2dµα+2n(a)dµα+2n(λ) = C∆

ψ ∥λtF∆(f)∥2α,µα+2n
.

Then,

∥xsW∆
ψ (f)∥

t
s+t

2,(ϑ)∥λ
tF∆(f)∥

s
s+t

2,µα+2n
= ∥xsW∆

ψ (f)∥
s

s+t

2,(ϑ)(
√
C∆
ψ )

s
s+t ∥λF∆(f)∥

s
s+t
α,µα+2n

≥ c
√
C∆
ψ ∥f∥2,(µ).

it yields the outcome. ■

Theorem 5.4. Let ψ be a generalized admissible wavelet in L2
(µ)(R+) and s, t > 0. Then, there exists a constant

c = c(α, n, s, t) > 0, such that

∥rsf∥
t

s+t

2,(µ)∥a
tW∆

ψ (f)∥
s

s+t

2,(ϑ) ≥ c

(√
1

cα+2n
M

(
|F∆(ψ)|2

)
(2t)

) s
s+t

∥f∥2,(µ),

for every function f ∈ L2
(µ)(R+), where M : f 7→ M(f)(z) =

∫ ∞

0

f(x)
dx

xz+1
denotes the classical Mellin

transform and cα+2n is the constant given in (2.2).
Moreover, if s, t ⩾ 1 then c = (α + 2n + 1)

st
s+t and we have equality if and only if s = t = 1 and

f(r) = dr2ne−br
2/2, d ∈ C, b > 0.
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Proof. Let us assume the non-trivial case that both integrals on the left-hand side are finite.
Using Fubini’s theorem, Plancherel’s theorem for F∆ given by (2.16) and the relation (2.18), we get

∥atW∆
ψ (f)∥22,(ν) =

∫ ∞

0

a2t
(∫ ∞

0

|W∆
ψ f(a, x)|2

x2α+1

cα+2n

)
dµα+2n(a)

=

∫ ∞

0

a2t
(∫ ∞

0

|F∆(f#Dα,a(ψ))(λ)|2dµα+2n(λ)

)
dµα+2n(a)

=

∫ ∞

0

|F∆(f)(λ)|2
(∫ ∞

0

a2t|F∆(Dα,a(ψ))(λ)|2a2α+4n+1da

)
dµα+2n(λ)

=

∫ ∞

0

|F∆(f)(λ)|2
(∫ ∞

0

a2t|Dα+2n, 1a
F∆(ψ)(λ)|2dµα+2n(a)

)
dµα+2n(λ)

=

∫ ∞

0

|F∆(f)(λ)|2
(

1

cα+2n

∫ ∞

0

a2t|F∆(ψ)(
λ

a
)|2 da

a

)
dµα+2n(λ),

by a change of variables b = λ
a , it follows

∥atW∆
ψ (f)∥22,(ϑ) =

∫ ∞

0

λ2t|F∆(f)(λ)|2
(

1

cα+2n

∫ ∞

0

|F∆(ψ)(b)|2
db

b2t+1

)
dµα+2n(λ)

=
( 1

cα+2n
M(|F∆(ψ)|2)(2t)

)
∥λtF∆(f)∥22,µα+2n

(5.3)

Now, applying Heisenberg-Pauli-Weyl inequality for F∆ given in the relation (5.2), we get

∥rsf∥
t

t+s

2,(µ)∥a
tW∆

ψ (f)∥
s

t+s

2,(ϑ) =

(
1

cα+2n

√
M(|F∆(ψ)|2)(2t)

) s
t+s

∥rsf∥
t

t+s

2,(µ)∥λ
tF∆(f)∥

s
t+s

2,µα+2n

≥ c

(√
1

cα+2n
M(|F∆(ψ)|2)(2t)

) s
t+s

∥f∥2,(µ).

■

The next theorem proves the Heisenberg-Pauli-Weyl uncertainty principle for W∆
ψ which involves the two

variables of the time-frequency plan.

Theorem 5.5. Let s, t > 0 and ψ be a generalized admissible wavelet in L2
(µ)(R+). Then, there exists a constant

c = c(α, n, s, t) > 0, such that

∥xsW∆
ψ (f)∥

t
s+t

2,(ϑ)∥a
tW∆

ψ (f)∥
s

s+t

2,(ϑ) ≥ c

(√
1

cα+2n
M

(
|F∆(ψ)|2

)
(2t)

) s
s+t (√

C∆
ψ

) t
s+t ∥f∥2,(µ),

for every function f ∈ L2
(µ)(R+). Moreover, if s, t ≥ 1 then c = (α+ 2n+ 1)st/(s+t).

Proof. From the equality (5.3),

∥xsW∆
ψ (f)∥

t
s+t

2,(ϑ)∥a
tW∆

ψ (f)∥
s

s+t

2,(ϑ) = ∥xsW∆
ψ (f)∥

t
s+t

2,(ϑ)

(√
1

cα+2n
M(|F∆(ψ)|2)(2t)

) s
s+t

)∥λtF∆(f)∥
s

s+t

2,µα+2n
,

thus, using Theorem 5.3, we get

∥xsW∆
ψ (f)∥

t
s+t

2,(ϑ)∥a
tW∆

ψ (f)∥
s

s+t

2,(ν) ≥ c

(√
1

cα+2n
M

(
|F∆(ψ)|2

)
(2t)

) s
s+t (√

C∆
ψ

) t
s+t ∥f∥2,(µ).

■
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