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Abstract. In this paper a mathematical model of SEIR type is formulated. represented by modeling the coronavirus epidemic.
In this present study, we consider a mathematical model that incorporates the whole population and variability in transmission
between reported and unreported populations. The global stability of the disease free equilibrium (DFE) point is established.
The basic reproduction number R0 is calculated. We introduce into our model two controls which are vaccination of
susceptible humans denoted by u and treatment of infected humans designed by v. In addition, this model takes into
consideration the control of contact (γ) between infectious individuals and susceptible persons. A numerical simulation
of the model is made.
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1. Introduction

The pandemic of COVID-19 is an infectious disease caused by the virus Sars-CoV-2 and characterized by severe
acute respiratory syndrome. In late December 2019, the disease COVID-19 was first identified in China precisely
in city of Wuhan ([37]). This virus has caused several deaths in the world and deserves the attention of researchers.
In Burkina Faso, the first case is detected on March 9, 2020 ([28, 35]). Today, there is no effective treatment that
has been accepted. In response to this epidemic, the state has taken a number of measures to reduce the spread of
the virus. The best way to fight COVID-19 is to find ways to limit the spread of the virus in public spaces. The
whole world is now concerned with the transmission of the disease by trying out vaccines, treatments and barrier
measures in order to control the disease. In the literature, several mathematical models have been studied in order
to show the dynamics of the infectious disease (see the references [8, 22, 38, 39]). Wu et al. ([38]) developed
a susceptible exposed infectious recovered model (SEIR) to clarify the transmission dynamics and global spread
of disease. Tang et al. ([32]) proposed a compartmental deterministic model that would combine the clinical
development of the disease, the patient’s state of health and intervention measures. Researchers found that the
amount of control reproduction number may be as high as R0 = 6.47, and that the methods of intervention,
including contact followed by quarantine and isolation would effectively minimize COVID-19 cases ([9, 33]).
Several modeling studies have already been performed for the COVID-19 outbreak (see [20, 27, 31–33]). Recent
mathematical models with optimal control have been developed to study the COVID-19 pandemic. Hongzhi Lin
and Yongping Zhang are studying a COVID-19 model to determine the optimal deployment of cordon sanitaires
in terms of minimum queueing delay time with available health testing resources (see [14] ). Shou Chens and
Chen Xiao are studying a COVID-19 model to determine the associated credit risk contagion among financial
institutions (see [2]). According to the models and the epidemiological characteristics of COVID-19 ([5]), we
propose a SEIR type model to study the dynamics of this current pandemic (see [11, 20, 25, 29]). Our model is
described by differential equations system and gives a comprehensive mechanism for the dynamics of COVID-19
transmission. In this model, we take into consideration the control of contact (γ) between infectious individuals
and susceptible persons. We introduce into our model two controls which are vaccination of susceptible humans
denoted by u and treatment of infected humans designed by v.

The organization of this paper is as follow: In Section 2, we formulate the mathematical model for COVID-
19. In Section 3, we give Mathematical properties of the model (estimation of R0, parameters with biological
interpretation of model, positivity and boundedness of the solution). In Section 4, we establish the global stability
of disease free equilibrium (DFE). In Section 5, we give a numerical simulation in order to illustrate the theoretical
results. In Section 6, we give the optimal control problem and we derive the necessary condition for existence
optimal control and we present the resulting numerical simulation. Finally, in Section 7, we give the conclusion.

2. Mathematical model

In this section, we formulate the mathematical model. Considering the characteristics of the COVID-19
pandemic, we have the following compartments:

• S(t) Susceptible persons at time t.

• E(t) Exposed and infectious persons at time t.

• I(t) Infected and infectious persons at time t.

• Ir(t) Symptomatic infected and infectious persons at time t (the number of persons infected who are
reported and isolated at time t).

• Iu(t) Asymptomatic infected and infectious persons at time t (the number of persons who are infected but
do not have symptoms at time t).
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• Rr(t) Recovery of infected reported persons at time t.

• Ru(t) Recovery of infected unreported persons at time t.

The class of infected individuals I is subdivided into two classes infected reported persons (Ir) and infected
unreported persons (Iu) for the following reasons. Firstly COVID-19 patients do not test for COVID-19 because
the test is expensive in this country. As a result, infected people do not show signs of the disease. These infectious
persons move freely in the susceptible population and continue to infect them. They are the most vulnerable in
the infection of COVID-19 and spread the disease more. Each individual in this class called infected unreported
persons (Iu), heals alone and enters the class Ru. Secondly, those infected with COVID-19 who are tested positive
are detected, isolated then treated. They are less infectious. Each individual of this class infected reported persons
(Ir), heals by treatment and enters in the class Rr.

Therefore, we have the following transfer diagram:

S(t) E(t) I(t)

Ir(t)

Iu(t)

Rr(t)

Ru(t)

γ(t)
S

N
(I + Iu)

αE

β1I

β
2 I

ηIr

θIu

Figure 1: The transfer diagram.

According to the Figure 1 the corona virus mathematical model is



dS

dt
=

−γ(t)S(I + Iu)

N
,

dE

dt
=

γ(t)S(I + Iu)

N
− αE,

dI

dt
= αE − (β1 + β2)I,

dIr
dt

= β1I − ηIr,

dIu
dt

= β2I − θIu,

dRr

dt
= ηIr,

dRu

dt
= θIu.

(2.1)
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The initial conditions are:

S(0) = S0 > 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, Ir(0) = Ir0 ≥ 0, Iu(0) = Iu0 ≥ 0,

Ru(0) = Ru0 ≥ 0, Rr(0) = Rr0 ≥ 0.

The total population at time t is given by:

N(t) = S(t) + E(t) + I(t) +Rr(t) + Ir(t) + Iu(t) +Ru(t).

and the total population N0 = S0 + E0 + I0 + Ir0 + Iu0 +Rr0 +Ru0 at the initial time t0 = 0 is constant.
Parameters with biological interpretation of model (2.1)

• γ(t) : the contact rate of a person in state S at time t.

• α : the transition rate of a person in state E.

• β1 : the transition rate between E and Ir.

• β2 : the transition rate between E and Iu.

• θ : the transition rate of a person in state Iu to the state Ru.

• η : the transition rate of a person in state Ir to the state Rr.

3. Mathematical properties of the model

3.1. Estimation of R0

The disease free equilibrium (DFE) of the model (2.1) is
X0 = (S0, E0, I0, I0u, I

0
r , R

0
r , R

0
u) = (N0, 0, 0, 0, 0, 0, 0). We determine the basic reproduction number R0 by

applying Van Den Driesche and Watmougth method ([36]).

Proposition 3.1. The basic reproduction number of model (2.1) is defined by

R0 =
γ0(θ + β2)

θ(β1 + β2)
. (3.1)

Proof.

F =


γS(I + Iu)

N
0

0

0

 and V =


−αE

αE − βI

β1I − ηIR
β2I − θIu

 where β = β1 + β2. (3.2)

F is the new infection or contact function and V is the transition function.

F =

(
∂Fj

∂xi

)
with 1 ≤ i, j ≤ 4 and similarly V =

(
∂Vj

∂xi

)
with 1 ≤ i, j ≤ 4 and

X =


E

I

Ir
Iu

 .
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which gives

V =



−α 0 0 0

α −β 0 0

0 −β1 −η 0

0 β2 0 −θ


⇔ V −1 =



−1

α
0 0 0

−1

β

−1

β
0 0

−β1

βη

−β1

βη

−1

η
0

−β2

βθ

−β2

βθ
0

−1

θ


and

F =



0
γ0S

0

N0
0
γ0S

0

N0

0 0 0 0

0 0 0 0

0 0 0 0


V −1 is determined by V X = Y , then we express the coordinates of vector X as a function of Y .

−FV −1 =



γ0θS
0 + β2γ0S

0

θN0(β1 + β2)

γ0θS
0 + β2γ0S

0

θN0(β1 + β2)
0
γ0S

0

N0θ

0 0 0 0

0 0 0 0

0 0 0 0


this gives

ρ(−FV −1) =
γ0θS

0 + β2γ0S
0

θN0(β1 + β2)
= R0.

The basic reproduction number with γ0 constant is:

R0 =
γ0 (θ + β2)

θ(β1 + β2)
(3.3)

Therefore

Re(t) =
γ(t)S(t) (θ + β2)

Nθ(β1 + β2)

Re(t) is called the effective reproduction number at time t, it is defined as the number of cases that one infected
person generates during his infectious period at time t in the presence of barrier measures controlled by γ(t).
After taking the measures, the number of contacts decreases and γ(t) decreases as a function of time t. The
disease slows when Re(t) < 1. The basic reproduction number R0 is defined as the number of cases that one
infected person generates on average during his infectious period, in an uninfected population and without any
special control measures. This number does not change during the spread of the disease. Furthermore, γ(0) = γ0
and Re(0) = R0.
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3.2. Positivity and boundedness of the solution for the Model

In this subsection, we show the positivity of the solution of model (2.1), let pose

Ω =


(S(t), E(t), I(t), Ir(t), Iu(t), Rr(t), Ru(t)) ∈ R7

+;



S(0)

E(0)

I(0)

Ir(0)

Iu(0)

Rr(0)

Ru(0)


≥



0

0

0

0

0

0

0




In general, the following lemma is used to show the positivity of the solutions of time-delay system where τ

is the time-delay. In our model, the time-delay τ = 0, therefore if the initial conditions are positive the lemma
can be used. In the literature, the following lemma is used by T. Sarda et al. ([30]) and O. Harouna et al. (see
[23]) to show the positivity of the solutions of ordinary differential equations.

Lemma 3.2. ([12]) Let Ω ⊂ R × Cn an open and fi ∈ C(Ω,R), i = 1, ..., n, if fi|xi=0 ≥ 0 for (x1, ..., xn) =

Xt ∈ Cn
+0 then Cn

+0 =
{
ϕ = (ϕ1, ..., ϕn) : ϕ ∈ C([−τ ; 0],Rn

+)
}

is the invarious domain of the following equations:

dxi(t)

dt
= fi(t,Xt), t ≥ τ, i = 1, ..., n. (3.4)

Where Rn
+ = {(X1, ..., Xn) ∈ Rn : Xi ≥ 0; i = 1, ..., n}.

Proof. We consider the following equation

dxi(t)

dt
= fi(t,X(t)) +

1

m
, t ≥ τ, i = 1, ..., n, n,m ∈ N∗. (3.5)

Let xi(t) be the solution of (3.5) and xi(t) ≥ 0, t ∈ [l − t, l], with xi(l) > 0, i = 1, ..., n. If there is a τ > l,

Xτ /∈ Cn
+0, then there must be i and t0 such that xi(t0) = 0, Xit0 ≥ 0, t ∈ [l, t0]. This implies

dxi(t0)

dt
≤ 0. It

contradicts because
dxi(t0)

dt
= fi(t0, Xt0) +

1

m
> 0. So we can say that Cn

+0 is the invarious domain of (3.5).

Letting m −→ +∞ we get that Cn
+0 is the invarious domain of (3.4)

Proposition 3.3. The set Ω is positively invariant, moreover the system (2.1) has a unique solution in Ω.

Proof. We use the same technique as Harouna et al. ([23]) and Sardar et al. ([30]) to show the positivity of
the solutions of system (2.1). The system (2.1) can be rewrited as follow

dXi(t)

dt
= fi(t,X(t)), X(0) = X0 ≥ 0, i = 1, ..., 7,

where X(t) = (S,E, I, Ir, Iu, Rr, Ru).

We can note that
dS

dt

∣∣
(S=0) = 0 ≥ 0 ,

dE

dt
|(E=0) =

γ(t)S(I + Iu)

N
≥ 0,

dI

dt
|(I=0) = αE ≥ 0,

dIu
dt

|(Iu=0) = β2I ≥ 0,

dIr
dt

|(Ir=0) = β1I ≥ 0,
dRr

dt
|(Rr=0) = ηIr ≥ 0,
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dRu

dt
|(Ru=0) = θIu ≥ 0.

Then it follows from the Lemma 3.2 that Ω is an invariant set for the system (2.1).
For the second part of the proof, we use the same techniques as [34] to show the uniqueness of the system
solutions (2.1). Let’s now consider the following function

Ẏ (t) = g(t, Y (t)), where Y ∈ Ω (3.6)

and

g : R+ × R7 −→ R7, (3.7)

such as

g(t, Y (t)) =



−γ(t)S(t)(I(t) + Iu(t))

N

γ(t)S(t)(I(t) + Iu(t))

N
− αE(t)

αE(t)− (β1 + β2)I(t)

β1I(t)− ηIr(t)

β2I(t)− θIr(t)

ηIr(t)

θIu(t)



.

The function g(., .) is continuous and t 7→ g(t, .) is lipschitzian. By application of theorem.2.2.1 and
theorem.2.2.3 of Hale and Verduyn Lunel ([7]), the system (2.1) has a unique solution in Ω.

Proposition 3.4. The solution of system (2.1) is bounded in
Ω1 = {(S,E, I, Ir, Iu, Rr, Ru) ∈ Ω : S + E + I + Ir + Iu +Rr +Ru ≤ N0} .

Proof. N(t) = S(t) + E(t) + I(t) + Iu(t) + Ir(t) +Rr(t) +Ru(t), by using the system (2.1) we get

dN

dt
= 0⇐⇒ N is constant i.e ∀t ≥ 0, N(t) = N(0) = N0. Therefore, for any t ≥ 0 we obtain

0 ≤ S(t) ≤ N0; 0 ≤ E(t) ≤ N0; 0 ≤ I(t) ≤ N0; 0 ≤ Ir(t) ≤ N0;

0 ≤ Ru(t) ≤ N0; 0 ≤ Rr(t) ≤ N0.

Hence the system (2.1) is bounded in Ω1.

4. Global stability of disease-free equilibrium (DFE)

In this section, we prove the global stability of the disease free equilibrium (DFE) point.

Theorem 4.1. The DFE of the model (2.1) is globally asymptotically stable in Ω whenever R0 ≤ 1.

Proof. We use the Lyapunov function technique. Let consider the follow candidate Lyapunov function:

V = θ(E + I) + γ0Iu.
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By definition, V is positive because the parameters of model (2.1) are positive. V is zero at DFE (X0). We take
the function V derivated with respect to t.

V̇ = θ(Ė + İ) + γ0İu

= θ

[
γ(t)S

N
(I + Iu)− αE + αE − βI

]
+ γ0(β2I − θIu)

= θ
γ(t)S

N
(I + Iu)− θβI + γ0β2I − γ0θIu

= θ
γ(t)S

N
(I + Iu)− θβI + γ0β2I − θγ0Iu + β2γ(t)Iu − β2γ(t)Iu

= θ
γ(t)S

N
(I + Iu) + γ0β2(I + Iu)− βθI − θγ0Iu − γ0β2Iu

≤ (θγ0 + β2γ0)(I + Iu)− βθ(I + Iu) + [βθ − θγ0 − β2γ0]Iu

≤ [θγ0 + β2γ0](I + Iu)− βθ(I + Iu) + βθ

(
1− θγ0 + β2γ0

βθ

)
Iu

≤ (θγ0 + β2γ0 − βθ) (I + Iu) + βθ

(
1− θγ0 + β2γ0

βθ

)
Iu

≤ βθ

(
θγ0 + β2γ0

βθ
− 1

)
(I + Iu) + βθ (1−R0) Iu

≤ βθ (R0 − 1) (I + Iu) + βθ [1−R0] Iu

≤ βθ [(R0 − 1)I + (R0 − 1)Iu − (R0 − 1)Iu]

≤ βθ(R0 − 1)I.

Since all the parameters of the model (2.1) are non negative, it follows that V̇ ≤ 0 for R0 ≤ 1. Hence V is
Lyapunov function on Ω. Therefore, by using the Lasalle invariance principle ([12]), we have :
(E(t), I(t), Iu(t)) −→ (0, 0, 0) as t −→ +∞.
Since lim

t→+∞
supE(t) = 0, lim

t→+∞
supI(t) = 0, lim

t−→+∞
supIu(t) = 0. It follows that for sufficiently small

ϵ ≥ 0, there exist constant t1 ≥ 0, t2 ≥ 0 and t3 ≥ 0 such that
lim

t→+∞
supE(t) ≤ ϵ, for all t ≥ t1

lim
t→+∞

supI(t) ≤ ϵ, for all t ≥ t2 and lim
t→+∞

supIu(t) ≤ ϵ, for all t ≥ t3

Hence, it follows from the fifth equations of the model (2.1)
dIr
dt

≤ βϵ− ηIr. Therefore using comparison theorem

I∞r = lim
t→+∞

supIr(t) ≤
βϵ

η
−→ 0 as ϵ −→ 0. (4.1)

Similarity (by using lim
t→+∞

infIr(t) = 0)

Ir∞ = lim
t→+∞

infIr(t) = 0. (4.2)

It follows from the two relations (4.1) and (4.2) above
lim

t→+∞
Ir(t) = 0.

It can also be shown that
lim

t→+∞
Ru(t) = 0, lim

t→+∞
Rr(t) = 0, lim

t→+∞
S(t) = N0.

Therefore by combining all equations above, it follows that each solution of the model equation (2.1), with initial
conditions in Ω, approaches X0 as t → +∞ for R0 ≤ 1.
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5. Numerical simulation

In this section, we propose the numerical simulation of mathematical model (2.1). The following curves are
obtained by using scilab. Estimated values of the model (2.1) parameters and unknown initial conditions
(S0, E0, I0, Ir0, Iu0, Rr0, Ru0) = (8000, 198, 2, 2, 0, 0, 0) are provided by [5]. The parameters values are given
by the table 1.

Symbol Values of model (2.1) Source Values of model (6.1) source
α 0.1818 [5] 0.1818 [5]
γ0 0.19 [5] 0.19 [5]
θ 0.0714 fixed 1/14 [5]
η 0.823 [5] 1/14 [5]
β1 0.418 [5] 0.28 fixed
β2 0.415 [5] 0.31 fixed
µ 0.127 [5] 0.42 fixed
A1 8 fixed
A2 10 [1]

Table 1: The values of the parameters for the simulation of model (2.1) and (6.1)

After 14 days, strong government measures in the country, such as isolation, quarantine, and the wearing of
face mask, allowed the reduction of the transmission of new cases. For that we use an exponential decrease for
the transmission rate γ(t) given by ([5, 19])

γ(t) =


γ0, 0 < t < 14,

γ0 exp(−µ(t− 14)), t ≥ 14.

For the simulation of model (2.1), we use the ode method in scilab given by following algorithm. The
system (2.1) can be rewrited ẋ = f(t, x) where f(t, x) = fi(t, x), i=1,...,7 and x = (S,E, I, Ir, Iu, Rr, Ru).

Algorithm
function Xdot=f(t,X)
X1dot=f1(t,X)

X2dot=f2(t,X)

...
X7dot=f7(t,X)

endfunction
X=ode(X0, t0, f )
X0 is the initial conditions at t0 = 0, t = 0 : 0.1 : 900
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Figure 2: The variation of contact γ(t) and population dynamic

The γ(t) curve in the Figure 2 represents the variation of the contact : from 0 to 14 days, the infected remained
in constant contact with the susceptible individuals. After the 14 days, the measures taken by the government
permitted to reduce the contact between the infected and susceptible persons . In this case the contact function
decreases and is canceled after 65 days when all measures taken by the government are respected.

The curves describing the dynamics of the susceptible (S) and the exposed (E) in Figure 2 decrease and
stabilizes after 50 days. This decrease is due to the respect of the barrier measures taken by the government.

The curves describing the dynamics of infected individuals in Figure 2 show two phases. The increase of the
curves in the first phase is due to the fact that there were no measures before the 14 days. After the 14 days, the
measures that are taken allowed the reduction of the infected. If all the measures are respected then the disease
disappears after 40 days.

6. The optimal control problem

The best way to control the COVID-19 epidemic is to respect the barrier measures which are represented here
by γ(t). The implementation of these measures is very complicated in practice because there are unreported
infectious diseases. For this we need another alternative to control the disease. Furthermore, we first prove the
existence of the two optimal controls u∗, v∗ and we give their characterization.

6.1. Presentation of the problem

In this section we use the optimal control theory to analyze the behavior of the model (6.1). Our goal is
to maximize the number of persons who have survived the disease (recovered) and to minimize the infected
individuals during the course of an epidemic and the cost of this strategy. In the model (2.1), we introduce two
controls u; v which are defined as follow.
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• The function u(t) ∈ [0, 1] is the control corresponding to the vaccination ([26]). The rate at which
individuals gain immunity through vaccination is denoted by u(t) ∈ [0, 1] with t ∈ [0, tf ]. Because
asymptomatic infected may not be aware of their infection, we assume that susceptible and asymptomatic
infected are indistinguishable with respect to vaccination. Vaccinating asymptomatic infected individuals
has no effect, but still implies a cost. The ideal is to vaccinate the entire population in this case u = 1. In
reality this is not possible, so we try to vaccinate as many people. To find the maximum number of people
we take u = umax. umax represents the proportion of susceptible persons receiving serum of vaccine.

• The second control v(t) ∈ [0, 1] represents the treatment of patients over the interval [0; tf ]. The control
v that we consider here can therefore represent the treatment of symptomatic or the isolation of patients in
hospitals to avoid possible new contamination.

By inserting the controls u and v in the model (2.1), we obtain the following controlled equations:

dS

dt
=

−(1− u)γ(t)S(I + Iu)

N
,

dE

dt
=

(1− u)γ(t)S(I + Iu)

N
− αE,

dI

dt
= αE − (β1 + β2)I,

dIr
dt

= β1I − (η + v)Ir,

dIu
dt

= β2I − θIu,

dRr

dt
= (η + v)Ir,

dRu

dt
= θIu.

(6.1)

S(t0) = S0 > 0, E(t0) = E0 > 0, I(t0) = I0 > 0, Ir(t0) = Ir0 > 0, Iu(t0) = Iu0 > 0,

Ru(t0) = Ru0 > 0, R(t0) = Rr0 > 0.

Mathematically, for a fixed terminal time tf , we minimize the functional objective J on [0, tf ] .

J(u, v) =

∫ tf

0

(
Ir(t)−Rr(t) +

A1

2
u2(t) +

A2

2
v2(t)

)
dt. (6.2)

A1 > 0 is the weight which allows to regulate the control u and A2 > 0 the weight which allows to regulate the
control v.

6.2. Study of optimal control problem

In this section, we define the Hamiltonian associated with the control problem. Then, we characterize the
solutions of control problem (6.1) after proving their existence. Our work is to determine the optimal controls
(u∗, v∗) such as

J(u∗, v∗) = min {J(u, v) : (u, v) ∈ U × V } (6.3)
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U and V are the set of admissible controls defined by:

U =
{
u(t) ∈ R/ 0 ≤ u(t) ≤ umax < 1, t ∈ [0, tf ], u ∈ L2([0; tf ],R)

}
and

V =
{
v(t) ∈ R/ 0 ≤ v(t) ≤ 1; v ∈ L2([0; tf ],R)

}
.

Definition 6.1. (Hamiltonian of the minimization problem)
The Pontryagin’s maximum principle [21] converted (6.1) , (6.2) and (6.3) into problem of minimizing an
Hamiltonian, H , defined by:

H = Ir −Rr +
A1

2
u2(t) +

A2

2
v2(t) +

7∑
i=1

λifi.

Where fi are the right side of the differential equations state variable and λi, i = 1, ..., 7 are the adjoints
variables associated with their respective states.

Theorem 6.2. Consider the optimal control problem (6.1) subject to (6.2). Then there exists an optimal pair
of controls (u∗, v∗) and a corresponding optimal states (S∗, E∗, I∗, I∗u, I

∗
r , R

∗
rR

∗
u) that minimizes the objective

function J(u, v) over set of admissible controls U × V .

Proof. The existence of optimal control can be proved by using the results from ([13] see Theorem 2.1) and
Fleming’s results (Theorem III.4.1, [4]), we must verify the following conditions:

• the set of admissible controls is nonempty,

• the admissible sets U , V are convex and closed,

• the vector field of the state system is bounded by a linear function of control,

• the objective function is convex,

• there exists constants c1, c2 > 0 such as the integrand of the objective function be bounded by c1(|u|2 +
|v|2)

p
2 − c2.

(1) We verify these conditions, thanks to a result of Lukes et al. [24] which assures the existence of solutions
for the state system (6.1).

(2) The set U and V are convex and bounded by definition.

(3) The right-hand side of the state system (6.1) is bounded by a linear function in the state and control
variables.

(4) The integrand of the objective functional is

f0(x, u, v) = Ir −Rr +
A1

2
u2(t) +

A2

2
v2(t).

The hessian matrix of f0(X,u, v) is given by :

Mf0 =

(
A1 0

0 A2

)
,

spec(Mf0) = {A1, A2} ⊂ R∗
+.

So f0 is strictly convex over U × V .
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(5) We have,

f0(x, u, v) = Ir −Rr +
A1

2
u2(t) +

A2

2
v2(t)

≥ A1

2
u2(t) +

A2

2
v2(t)−Rr

≥ 1

2
min {A1, A2}

(
|u|2(t) + |v|2(t)

)k −Rr

≥ c1
(
|u|2(t) + |v|2(t)

)k − c2

where c1 =
1

2
min {A1, A2} > 0, c1 ≤ Rr ≤ c2 and k ≥ 1. Therefore the last assertion is verified.

6.3. Characterization of optimal control

In this section, we characterize the solutions of system (6.1).

Theorem 6.3. Given an optimal w∗ = (u∗, v∗) ∈ U × V and corresponding states
X∗ = (S∗, E∗, I∗, I∗u, I∗r , R∗

r R∗
u) of system (6.1), there exist adjoint functions satisfying the following system.

dλ1(t)

dt
=

(λ1(t)− λ2(t))γ(t)

N
(1− u(t))(I + Iu),

dλ2(t)

dt
= (λ2 − λ3)α,

dλ3(t)

dt
=

(λ1(t)− λ2(t))γ(t)S(t)

N
(1− u(t))(λ3 − λ4)β4 + (λ3 − λ5)β2,

dλ4(t)

dt
= −1 + λ4(β1 + β2)− λ6(η + v),

dλ5(t)

dt
=

(λ1(t)− λ2(t))γ(t)S(t)

N
(1− u(t)) + θ(λ5 − λ7),

dλ6(t)

dt
= 1,

dλ7(t)

dt
= 0

(6.4)

with the transversality conditions
λ1(t) = 0, λ2(t) = 0, λ3(t) = 0, λ4(t) = 0, λ5(t) = 0, λ6(t) = 0, λ7(t) = 0.
Let’s up N∗ = S∗ + E∗ + I∗ + I∗u + I∗r +R∗

u +R∗
r .

Furthermore, the optimal controls are characterized by:

u∗ = max

{
0,min

{
umax,

(
λ2(t)− λ1(t)

A1

)
γ(t)

S∗

N∗ (I
∗ + I∗u)

}}
,

v∗ = max

{
0,min

{
1,

(λ4(t)− λ6(t))

A2
I∗r

}}
.

(6.5)

Proof. The differential equations for the adjoints are standard results from Pontryagin’s Maximum Principle.
Let w∗ = (u∗, v∗) corresponding solution X∗ = (S∗, E∗, I∗, I∗R, I∗u, R∗

r R
∗
u) that minimizes J(u, v) over U×V .

By applying the Pontryagin’s maximum principle (see [21]) there exists adjoint functions,
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p(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t), λ7(t)) (t ∈ [0, tf ]) verifying the following conditions:

dp(t)

dt
= −∂H

∂X
(6.6)

dX(t)

dt
=

∂H

∂p
(6.7)

∂H

∂u
= 0,

∂H

∂v
= 0. (6.8)

dp(t)

dt
= −∂H

∂X
⇐⇒



dλ1

dt
= −∂H

∂S
dλ2

dt
= −∂H

∂E
dλ3

dt
= −∂H

∂I
dλ4

dt
= −∂H

∂Ir
dλ5

dt
= −∂H

∂Iu
dλ6

dt
= − ∂H

∂Rr
dλ7

dt
= − ∂H

∂Ru
,

(6.9)

λi(tf ) = 0 (i = 1, ..., 7).

Therefore, the system (6.9) yields (6.4).
By applying the optimality conditions to the (6.8), we obtain:

∂H

∂u
|u∗ = 0, (6.10)

∂H

∂v
|v∗ = 0. (6.11)

⇒ On the set {0 ≤ u∗(t) ≤ umax} ,{0 ≤ v∗(t) ≤ 1}, we have:

the conditions (6.10) and (6.11) give:
λ1(t)γ(t)

S∗

N
(I∗ + I∗u)− λ2γ(t)

S∗

N
(I∗ + I∗u) +A1u

∗ = 0

−λ4I
∗
r + λ6I

∗
r +A2v

∗ = 0.

(6.12)

As −A1 < 0 and −A2 < 0, so (6.12) becomes:
0 ≥ (−λ2(t) + λ1(t)) γ(t)S

∗(I∗ + I∗u)

−N∗A1
,

0 ≥ −λ4I
∗
r + λ6I

∗
r

−A2
.

(6.13)

We obtain

u∗ = max

{
0,

(
λ2(t)− λ1(t)

A1

)
γ(t)

S∗

N∗ (I
∗ + I∗u)

}
,

v∗ = max

{
0,

(λ4(t)− λ6(t))

A2
I∗r

}
.

(6.14)
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⇒ {u∗(t) = umax} and {v∗(t) = 1}.
The equation (6.12) gives


−NA1umax ≥ (−λ2(t) + λ1(t)) γ(t)S

∗(I∗ + I∗u)

−A2 ≥ −λ4I
∗
r + λ6I

∗
r .

This gives,


umax ≤ (−λ2(t) + λ1(t)) γ(t)S

∗(I∗ + I∗u)

−N∗A1

1 ≤ −λ4I
∗
r + λ6I

∗
r

−A2

and thus

u∗ = min

{
umax,

(
λ2(t)− λ1(t)

A1

)
γ(t)

S∗

N∗ (I
∗ + I∗u)

}

v∗ = min

{
1,

(λ4(t)− λ6(t))

A2
I∗r

}
.

(6.15)

The systems (6.15) and (6.14) give the result :

u∗ = max

{
0,min

{
umax,

(
λ2(t)− λ1(t)

A1

)
γ(t)

S∗

N∗ (I
∗ + I∗u)

}}

u∗ = max

{
0,min

{
1,

(λ4(t)− λ6(t))

A2
I∗r

}}
.

6.4. Numerical simulation of the controlled model

Several modeling studies have already been performed for the simulation of optimal contol model like Liu et al.
([16–18]). Here, we present the numerical results of the system (6.1) by using python and the same method of
[1]. The boundary conditions of optimality system at times t0 = 0 and tf are separated. We put N0 = 200000

representing the number of the total population of a city in our country. We use the Euler method of step h=0.1
to solve the optimality system (6.1). We discretize the model in interval [t0, tf ] at time ti = t0 + ih (i= 0,1,...,n
), where h = 0.1 is the time step such that tn = tf = 90 days, t0 = 0. The value n=900 is the number of points
of the discretization. Our algorithm is inspired by [1, 3, 6, 10, 15] to approximate the solutions. A combination
of forward and backward difference, we obtain the following approximation:
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Si+1 − Si

h
= −(1− ui)γi

Si+1

N0
(Ii + Iiu)

Ei+1 − Ei

h
= (1− ui)γi

Si+1

N0
(Ii + Iiu)− αEi+1

Ii+1 − Ii
h

= αEi+1 − (β1 + β2)Ii+1

Ii+1
r − Iir

h
= β1Ii+1 − (η + vi)I

i+1
r

Ii+1
u − Iiu

h
= β2Ii+1 − θIi+1

u

Ri+1
r −Ri

r

h
= (η + vi)I

i+1
r .

Ri+1
u −Ri

u

h
= θIi+1

u .

By using a similar technique in [1], we approximate the time derivative of the adjoint variables by their first order
backward difference and we use the appropriate scheme as follows:

λn−i
1 − λn−i−1

1

h
=

(λn−i−1
1 − λn−i

2 )γi
N0

(1− ui)(Ii+1 + Ii+1
u )

λn−i−1
2 − λn−i

2

h
= α(λn−i−1

2 − λn−i
3 )

λn−i
3 − λn−i−1

3

h
=

(λn−i−1
1 − λn−i−1

2 )γi
N0

(1− ui)Si+1 + β1(λ
n−i−1
3 − λn−i

4 )

+ β2(λ
n−i−1
3 − λn−i

3 )− β1λ
n−i
4

λn−i
4 − λn−i−1

4

h
= λn−i−1

4 (η + vi)− λn−i
6 (η + vi)− 1

λn−i
5 − λn−i−1

5

h
=

(λn−i−1
1 − λn−i−1

2 )γiSi+1

N0
(1− ui) + θ(λn−i−1

5 − λn−i
7 )

λn−i
6 − λn−i−1

6

h
= 1

λn−i
7 − λn−i−1

7

h
= 0.

.

The algorithm describing the approximation method to give the optimal control is the following.
Algorithm2.
Step1.

S(0) = S0, E(0) = E0, I(0) = I0, Ir(0) = Ir0, Iu(0) = Iu0,

Ru(0) = Ru0, Rr(0) = Rr0, λi(tf ) = 0, (i = 1, ..., 7), u(0) = v(0) = 0.

Step2.
For i = 1, ..., n+ 1 do,

Si+1 =
N0Si

N0 + γih(1− ui)(Ii + Iiu)
, Ei+1 =

N0Ei + h(1− ui)γiSi+1(Ii + Iiu)

N0(1 + hα)

Ii+1 =
Ii + hαEi+1

1 + hβ1 + hβ2
, Ii+1

r =
Iir + hβ1Ii+1

1 + h(η + vi)
,
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Ii+1
u =

Iiu + β2hIi+1

1 + hθ
, Ri+1

r = Ri
r + h(η + vi)I

i+1
r .

λn−i−1
1 =

λn−i
1 N0 + hλn−i

2 (1− ui)(Ii+1 + Ii+1
u )

N0 + h(1− ui)(Ii+1 + Ii+1
u )γi

λn−i−1
2 =

λn−i
1 + hαλn−i

3

1 + hα

λn−i−1
3 =

λn−i
3 + h(λn−i−1

2 − λn−i−1
1 )γi(1− ui)Si+1 +N0hβ2λ

n−i
5 +N0hβ1λ

n−i
4

N0(1 + hβ1 + hβ2)

λn−i−1
4 =

λn−i
4 + h(η + vi)λ

n−i
6 + h

1 + hβ1 + hvi

λn−i−1
5 =

N0λ
n−i
5 + h(λn−i

2 − λn−i−1
1 )γi(1− ui)Si+1 + hN0θλ

n−i
7

N0 +N0hθ

λn−i−1
6 = h+ λn−i

6

λn−i−1
7 = λn−i

7

Mi+1 =

(
(λn−i−1

1 − λn−i−1
2 )

A1

)
γi
S∗
i+1

N0
(I∗i+1 + I∗(i+1)

u )

Zi+1 =
λn−i−1
4 − λn−i−1

6

A2
I∗(i+1)
r

ui+1 = max (0,min (umax,Mi+1))

vi+1 = max (0,min (1, Zi+1)) .

Step3.
For i =0,...,n, do
S∗(ti) = Si, E∗(ti) = Ei, I

∗(ti) = Ii, I∗r (ti) = Iir, I∗u(ti) = Iiu, R∗
r(ti) = Ri

r,
u∗(ti) = ui, v∗(ti) = vi. The curves in this simulation are obtained by python. Certain values of the simulation
are taken in [1, 5] and (S0, E0, I0, Ir0, Iu0, Rr0, Ru0) = (N0, 198, 2, 2, 0, 0, 0).

The curves of infected reported persons in the Figure 3 are obtained by simulating the symptomatic infectious
population. If left unchecked, the disease infection stabilizes within 120 days. But after application of control
u (vaccination) and taking the control of the barrier measures γ(t), the reported infected immediately decrease
and stabilize in I0. This is explained by the treatment of patients who are immediately isolated. The curves
describing the dynamics of recovered persons in Figure 3 show the evolution of individuals cured of the disease
by applying the reported individuals (Ir) the treatment (control v). The curves of unreported infectious persons
in the Figure 3 show the evolution of individuals unreported by applying in the susceptible individuals (S) the
vaccination (control u). After vaccination of susceptible, there is no effect of contact with unreported infected.

The curves of susceptible persons in the Figure 3 represent the dynamics of the susceptible population (S) for
different aspects of control. After operation of the measures, the vaccination u and treatment v, the populations
susceptible stabilizes.

The curves of exposed persons in the Figure 3 represent the dynamic of exposed population (E) for different
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Figure 3: Population dynamic with and without control

aspects of control. The orange curve is the evolution of exposed population in application of u (vaccination) and
v (treatment) controls. The blue curve is uncontrolled (u = 0 and v = 0).

The curves of unreported infectious persons in the Figure 3 represent the dynamics of the unreported infected
and infectious population for different aspects of control u (vaccination) and v (treatment). The blue curve
represents the evolution of the infected unreported population (Iu) with u and v control (u ̸= 0 and v ̸= 0). The
orange curve represents the evolution of infected people who have not been brought back without control (u = 0

and v = 0).
The curves of recovered persons in the Figure 3 represent the dynamics of the reported cured (Rr) population

for different aspects of controls. The blue curve is the evolution of cured reported in application of controls
(u ̸= 0 and v ̸= 0). The orange curve is without control (u = 0 and v = 0).

The curves of unreported persons in the Figure 3 represent the dynamics of the unreported cured (Ru)
population for different aspects of control u (vaccination) and v (treatment).

7. Conclusion

We have developed a model of the COVID-19 epidemic in China (see [20, 27, 31–33]). In this present study,
we consider a mathematical model of COVID-19 transmission that incorporates the exposed populations. In our
model, we also consider transmission variability between symptomatic and asymptomatic population with former
being a fast spreader of the disease. The basic reproduction number is calculated by applying the Van den Driesch
method [36]. We also construct the Lyapunov function to show the global stability of disease free equilibrium.
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Next, we consider model (2.1) with the controls u (vaccination) and v (treatment of infected). In this model, the
existence and uniqueness of the solution associated to the optimal controls are proven. The Hamiltonian function
is constructed converting (6.1) into problem of minimizing an Hamiltonian. The γ(t) function makes it possible
to control the contact between infected individuals and those susceptible at time t. It takes into account all the
measures taken by the government of a country. Finally a numerical simulation allows us to interpret the results
on the curves. The study shows that the most infectious individuals are the unreported infected.
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[29] T. SARDAR, I. GHOSH, X. RODÓ, AND J. CHATTOPADHYAY, A realistic two-strain model for mers-cov infection
uncovers the high risk for epidemic propagation. PLoS Neglected Tropical Diseases, 14(2):e0008065, 2020.

[30] T. SARDAR, S. NADIM, AND J. CHATTOPADHYAY, Assessment of 21 days lockdown effect in some states and
overall india: A predictive mathematical study on covid-19 outbreak. 04 2020.

[31] M. SHEN, Z. PENG, Y. XIAO, AND L. ZHANG, Modeling the epidemic trend of the 2019 novel coronavirus
outbreak in china. The Innovation, 1(3):100048, 2020.

[32] B. TANG, N. L. BRAGAZZI, Q. LI, S. TANG, Y. XIAO, AND J. WU, An updated estimation of the risk of
transmission of the novel coronavirus (2019-ncov). Infectious Disease Modelling, 5:248–255, 2020.

386



Analysis and optimal control for SEIR mathematical modeling of COVID-19

[33] B. TANG, X. WANG, Q. LI, N. L. BRAGAZZI, S. TANG, Y. XIAO, J. WU, Estimation of the transmission risk of
the 2019-ncov and its implication for public health interventions. Journal of Clinical Medicine, 9(2):462,
2020.

[34] B. TRAORE, B. SANGARE, AND S. TRAORE, A mathematical model of malaria transmission in a periodic
environment. Journal of Biological Dynamics, 2018.

[35] W. VAN DAMME, Evolution of the covid-19 pandemic over six weeks in four french-speaking countries in
west africa. Journal of Global Health, 2021.

[36] P. VAN DEN DRIESSCHE AND J. WATMOUGH, Reproduction numbers and sub-threshold endemic equilibria for
compartmental models of disease transmission. Mathematical Biosciences, 180(1-2):29–48, 2002.

[37] C. WANG, P. W. HORBY, F. G. HAYDEN, AND G. F. GAO, A novel coronavirus outbreak of global health
concern. The Lancet, 395(10223):470–473, 2020.

[38] J. T. WU, K. LEUNG, AND G. M. LEUNG, Nowcasting and forecasting the potential domestic and
international spread of the 2019-ncov outbreak originating in wuhan, china: a modelling study. The Lancet,
395(10225):689–697, 2020.

[39] Y. YODA, D. OUEDRAOGO, H. OUEDRAOGO, A. GUIRO, Optimal control of seihr mathematical model
of covid-19. Electronic Journal of Mathematical Analysis and Applications, 11(1):134–161, 2023.

This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

387


