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Abstract. This letter presents three new minimization problems related to a new notion called the Chinese-T-game in a simple
connected graph. The minimization problems stem from the Chinese-T-walks generated by the Chinese-T-game rules. It is a
letter because some results rely on axiomatic reasoning which the author find sufficient. However, some readers may find the
reasoning not sufficiently rigorous. It is foreseen that the Chinese-T-game will find application in at least, graph data science,
robotics, AI, facial recognition, consumer preference analysis and alike. The ideas presented can easily be generalized to
non-simple connected graphs.
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1. Introduction

Only finite, undirected and connected simple graphs of order n ≥ 2 are considered. The size of a graph G i.e.
the number of edges of G is denoted by ε(G). Useful definitions will be recalled from [1].

If the edge vivj exists in a graph G then moving from vertex vi to vj is called traversing the edge vivj or
it is said, to traverse the edge vivj . Recall that a walk in G is a non-null sequence of neighboring vertices say,
W = v0v1v2 · · · vk which represent the sequential traversing of the edges v0v1, v1v2, v2v3, . . . , vk−1vk. Vertex
v0 is called the origin of W and vertex vk is called the terminus of W . Furthermore, there is no requirement
that the vertices or edges are distinct. Assuming that in walk W = v0v1v2 · · · vk the vertices are distinct then
the value k is called the length of the walk and is denoted by ℓ(W ). In general however, if t is the number of
distinct edges of G which are traversed in a walk W then, ℓ(W ) ≥ t. A section of a walk W = v0v1v2 · · · vk is
a subsequential part of a walk say, vivi+1vi+2 · · · vs. Such section is called a (vi, vs)-section of W . The walk W

can also be written as,

W = (v0, vi)(vi, vs)(vs, vk).
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The sectional notation of a walk can be viewed as, ”section-wise (or sectional) walking the walk”.
Generalization of the aforesaid notation is straightforward.

Chinese Postman Problem: A postman has to deliver letters to a given neighborhood. He needs to walk
through all the streets in the neighborhood and back to the post-office. How can he plan his route so that he
walks the shortest distance? See [3–5] and the references thereto. Note that in graph theoretic terms a simple
connected graph has unweighted edges each of unit length. Hence, the Chinese Postman Problem translates
to finding a minimum closed walk which traverse each edge at least once. It also implies that the common
origin and terminus is predetermined or fixed. This problem attracted wide attention in the fields of mathematical
programming, optimization theory, operations research and other blends of scientific disciplines. From the earlier
work it is worthy to mention [2]. Many of the results from the mentioned disciplines can substitute the approach
used in this letter. However, the graph theoretical approach is considered suitable for the new primary objectives
stated later.

Definition 1.1. A Chinese-T-walk in a graph G is defined to be:
(i) For any vi ∈ V (G) as the origin, select a S1 = (vi, vs)-section such that, ℓ(S1) ≤ deg(vi).
(ii) Repeat step (i) in respect of vertex vs as the next origin to select a section S2 and so-forth.
(iii) The Chinese-T-walk terminates at any finite step provided that each edge of G has been traversed at least
once.
(iv) If the Chinese-T-walk terminates after section Sq the walk is given by W = S1S2S3 · · ·Sq .

Since termination of a Chinese-T-walk is arbitrary after all edges have been traversed at least once it is
axiomatically true that any graph G has infinitely many Chinese-T-walks. Associated with a Chinese-T-walk W

over q sections is the ordered pair called the Theresa pair‡(for brevity, T -pair),

(q, ℓ), ℓ = ℓ(W ) =
q∑

i=1

ℓ(Si).

Clearly, for a graph G we have 1 ≤ q < ∞ and ε(G) ≤ ℓ < ∞. To clarify the bounds let us consider the path
G = P2 on the vertices v1, v2. The Chinese-T-walk W1 = v1v2 has the T -pair (q, ℓ) = (1, 1). On the other hand
the Chinese-T-walk

W2 = (v1, v2)(v2, v1)(v1, v2) · · · (v2, v1)(v1, v2)︸ ︷︷ ︸
(v1v2) repeated t times

with t < ∞

has the T -pair (q, ℓ) = (2t − 1, 2t − 1). Hence, both q, ℓ < ∞. A T -pair is minimal in respect of q or ℓ if and
only if the Chinese-T-walk terminates immediately on the least step-count (section-count) required to traverse
the last untraversed edge of G, once.

The motivation for this study is firstly, that it is a derivative of the Chinese Postman Problem and secondly,
that three types of minimization problems come to the fore. For a graph G:
Type 1: Find a minimum Chinese-T(q∗)-walk W1 such that q∗ = min{q : ∀ minimal (q, ℓ) of G}.
Type 2. Find a minimum Chinese-T(ℓ∗)-walk W2 such that ℓ∗ = min{ℓ : ∀ minimal (q, ℓ) of G}.
Type 3. Find a minimum Chinese-T(r∗)-walk W3 such that r∗ = min{r = q + ℓ : ∀ minimal (q, ℓ) of G}.
Note that Type 2 is equivalent to solving a derivative of the classical Chinese Postman Problem. For some graphs
it is possible to find a minimum Chinese-T-walk which yields the T -pair, (q∗, ℓ∗). Such walk is called an optimal
Chinese-T(r∗)-walk. We can in terms of minimization improve on the bound i.e. 1 ≤ q ≤ ε(G). To illustrate
the distinction between the minimization types, consider the path P3 = v1v2v3. Without loss of generality the
following three minimal Chinese-T-walks can be found.

‡See dedication for an explanation.
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W1 = S1S2 with S1 = v1v2, S2 = v2v3 and (q, ℓ) = (2, 2).
W2 = S1S2S3 with S1 = v2v3, S2 = v3v2, S3 = v2v1 and (q, ℓ) = (3, 3).

W3 = S1S2 with S1 = v2v3v2, S2 = v2v1 and (q, ℓ) = (2, 3).

In respect of Type 1 both W1,W3 yield minimum Chinese-T(q∗)-walks. In respect of Type 2 the walk W1 yields
a minimum Chinese-T(ℓ∗)-walk. In respect of Type 3 the walk W1 yields a optimal Chinese-T(r∗)-walk. The
walk W3 remains a minimal Chinese-T-walk in that, following the unfortunate section S1, though maximum
itself, resulted in minimality only. An attempt to find minimization of Type 1, Type 2 or Type 3 respectively,
the associated T -pairs of minimal Chinese-T-walks W1, W2, W3 may be used by writing (q∗, ℓ1) = (≤ q2, ℓ2),
(q1, ℓ

∗) = (q2,≤ ℓ2) and (q∗, ℓ∗) = (≤ q1,≤ ℓ1).

2. Chinese-T-game for certain graphs

Recall from [1] that if in a walk W the edges are distinct (or put differently, an edge is traversed once) then W

is called a trail. If a trail in G traverse all edges of G the trail is called an Euler trail. Furthermore, if an Euler
trail in G is a closed trail it is called an Euler tour of G. A graph which has an Euler tour is said to be Eulerian.
Note that an Eulerian graph inherently has an Euler trail. However, the converse is not necessarily true. It is well
known that a graph G is Eulerian if and only if G has no vertex of odd degree. As a corollary it follows that a
graph G has an Euler trail if and only if G has at most two vertices of odd degree.

Theorem 2.1. A graph G is Eulerian or has an Euler trail if and only if there exists a minimal Chinese-T-walk
W such that a minimal T -pair is of the form (q, ε(G)).

Proof. If a graph G is Eulerian or has an Euler trail W and q is not prescribed then the stepwise traversing
procedure defined in Definition 1.1 if applied to minimal W can only yield a minimal T -pair of the form (q, ε(G)).
Conversely, if a closed Chinese-T-walk W ′ exists with the minimal T -pair (q, ε(G)) then W ′ complies with the
definition of an Eulerian graph else if an open Chinese-T-walk exists with the minimal T -pair (q, ε(G)) then it
complies with the existence of an Euler trail. ■

A direct consequence of Theorem 2.1 is stated as a corollary.

Corollary 2.2. If a graph G does not contain an Euler trail then any minimum Chinese-T-walk W which yields
q∗, ℓ∗ or r∗ has ℓ∗ > ε(G).

Recall that a labeled path Pn, n ≥ 2 on the consecutively labeled vertices say, v1, v2, v3, . . . , vn has the edge
set E(Pn) = {vivi+1 : i = 1, 2, 3, . . . , n− 1}. The cycle Cn, n ≥ 3 is obtained by closing the path Pn with the
edge v1vn. It is obvious that a path Pn has an Euler trail and a cycle Cn has an Euler tour.

Proposition 2.3. (i) For a path Pn, n ≥ 2 the optimal Chinese-T(r∗)-walk yields the T -pair (n2 , n − 1) if n is
even and (n+1

2 , n− 1) if n is odd.
(ii) For a cycle Cn, n ≥ 3 the optimal Chinese-T(r∗)-walk yields the T -pair (n2 , n) if n is even and (n+1

2 , n) if n
is odd.

Proof. Part 1, Pn, n ≥ 2 is even: For P2 the result W = S1 = (v1v2) is obvious . Assume it holds for Pk, k > 2

and even. Let the optimal Chinese-T(r∗)-walk be, W = (v1v2)(v2v3v4)(v4v5v6) · · · (vk−2vk−1vk). Hence, the
T -pair for Pk is (k2 , k − 1). Consider the path Pk+2. Obviously, at least one more section (vkvk+1vk+2) will be
required. Since degPk+2

(vk) = 2 only one addition step is required which is optimal. It follows that the T -pair
for the path Pk+2 is (k2 +1, (k− 1)+2) = (k+2

2 , (k+2)− 1). By induction the results holds for all even n ≥ 2.
Part 1, Pn, n is odd: The proof follows in similar fashion as in Part 1, n is even.
Part 2, Cn, n ≥ 3 and odd or even: The proofs of the two cases follow in similar fashion as in Part 1. ■
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Theorem 2.4. Consider a graph G.
(i) If G is Eulerian then an optimal Chinese-T(r∗)-walk W in G has the T -pair (≤ ε(G)

2 , ε) if ε(G) is even and
(≤ ε(G)+1

2 , ε(G)) if ε(G) is odd.
(ii) If a non-Eulerian graph G has an Euler trail then a minimum Chinese-T(r∗)-walk W in G has the T -pair
(≤ ε(G)

2 , ε(G)) if ε(G) is even and (≤ ε(G)+1
2 , ε(G)) if ε(G) is odd.

Proof. The result follows directly from Proposition 2.3 read together with the fact that all vertices in G has
degG(vi) ≥ 2. The aforesaid read together with Definition 1.1 implies that all sections of a minimum Chinese-T-
walk has ℓ(Sj) ≥ 2. Finally, by definition it is possible to traverse each edge exactly once. ■

Recall that a star graph (star for brevity) S1,n is obtained by attaching n pendent vertices say, v1, v2, v3, . . . , vn
to a common central vertex v0. For our purposes let n ≥ 3.

Proposition 2.5. Consider a star S1,n, n ≥ 3 then:
(i) If n is even, a minimum q∗ = 2 exists with T -pair, (2, 2n− 1).
(ii) If n is even, a minimum ℓ∗ = 2(n− 1) exists with T -pair,
(3, 2(n− 1)).
(iii) If n is odd, a minimum q∗ = 2 exists with the T -pair,
(2, 2n− 1).
(iv) If n is odd, a minimum ℓ∗ = 2n− 3 exists with the T -pair, (3, 2(n− 1).

Proof. Observe that in any graph a pendent vertex is connected by a pendent edge. Hence, in a minimum
Chinese-T-walk a pendent edge can be traversed once if and only if the edge serves either as the origin-edge or
as the terminus-edge. Otherwise, the minimum number of times a pendent edge can be traversed is twice.
Part 1. Let n ≥ 4 and even and let vertex v0 be the origin of the Chinese-T-walk. Without loss of generality the

(v0v1v0v2v0v3 · · · v0vn
2
v0)-section

is possible since deg(v0) = n. Finally, the

(v0vn
2 +1v0vn

2 +2v0 · · · v0vn)-section

yields the desired Chinese-T(q∗)-walk with corresponding T -pair, (2, 2n− 1).
Part 2. Let n ≥ 4 and even and without loss of generality let vertex v1 be the origin of the Chinese-T-walk. The
first section can only be v1v0 since deg(v1) = 1. Without loss of generality the

(v0v2v0v3v0v4 · · · v0vn
2 +1v0)-section

is possible since deg(v0) = n. Finally, the

(v0vn
2 +2v0vn

2 +3v0 · · · v0vn)-section

yields the desired Chinese-T(ℓ∗)-walk with corresponding T -pair, (3, 2(n− 1)).
Part 3 and Part 4. The respective proofs follow in similar fashion as in Part 1 and Part 2. ■

For stars Proposition 2.5 show that the minimum T -pairs for respectively q∗ and ℓ∗ are not equal. However,
in the case of the star it is indicated that r∗ = q∗+ ℓ = q+ ℓ∗. Characterizing graphs for which two distinct walk
W1, W2 exist such that, (q∗, ℓ) ̸= (q, ℓ∗) and r∗ = q∗ + ℓ = q + ℓ∗ remains open.

Theorem 2.6. A t-regular graph G of order n ≥ 3 with t is even has an optimal Chinese-T(r∗)-walk W with
corresponding T -pair, (⌈n

2 ⌉,
nt
2 ).

Proof. Since G is t-regular, t is even, the graph G has an Euler tour. Hence, for a minimum Chinese-T(r∗)-
walk W read together with Proposition 2.3(ii), the value q∗ is given by ⌈ ε

t ⌉ = ⌈n×t
2t ⌉ = ⌈n

2 ⌉. Finally since,
ℓ∗ = ε(G) = nt

2 the T−-pair is given by (⌈n
2 ⌉,

nt
2 ) and is optimal. ■
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Recall that a wheel graph (wheel for brevity) W1,n is obtain by taking a cycle Cn and attaching each vertex
vi ∈ V (Cn) to a central vertex v0. The edges v0vi, 1 ≤ i ≤ n are called the spokes of the wheel. The edges of
the cycle are called the rim edges of the wheel. Consider a wheel W1,n, n ≥ 4 and even. If every second rim
edge is deleted a Dutch windmill graph, DW1,n is obtained.

Proposition 2.7. Consider a complete graph Kn, n ≥ 4.
(i) For n ≥ 5 and odd the complete graph Kn has an optimal Chinese-T(r∗)-walk W with corresponding T -pair,
(⌈n

2 ⌉,
n(n−1)

2 ).
(ii) For n ≥ 4 and even the complete graph Kn has an optimal Chinese-T(r∗)-walk W with corresponding
T -pair, (n+2

2 , n2−2
2 ).

Proof. As convention we only consider graphs of order n ≥ 2 so K1 is excluded. Since K2 is a path and K3 is
a cycle and both have been dealt with let n ≥ 4.
(i) For n ≥ 5 and odd all Kn the result is proved in Theorem 2.6.
(ii) For n ≥ 4 and even consider Kn. Begin by considering the induced subgraph G = Kn−1 on vertices
v1, v2, v3, . . . , vn−1 This subgraph G has all degrees even at n − 2. However, artificially ”increase” each
vertex-degree by +1. Since G structurally yields an Euler tour and Definition 1.1 permits a maximum section of
length n − 1, (”increase” +1 included) it takes exactly q1 = (n−1)(n−2)

2(n−1) = n−2
2 sections say,

W1 = S1S2S3 · · ·Sq1 to yield an optimal Chinese-T(r∗)-walk through G. Without loss of generality assume
that v1 serves as the origin and the terminus. Since q1 is a divisor of (n − 1)(n − 2) it follows that no other
partial minimum Chinese-T-walk in Kn can improve on the minimality of W1 in order to traverse all edges in G.
We are left with (n− 1) edges to traverse in a minimum number of additional sections with the additional aim to
minimize the number of edges to be traversed twice. Consider the wheel W1,n−1 on the cycle
Cn−1 = v1v2v3 · · · vn−1v1 and central vertex vn. Note that all rim edges were traversed in W1. Clearly v1
serves as origin of say W2. Traverse along a section of maximum length n − 1 in a Dutch windmill fashion as
follows:

S1 = v1vnv2v3vnv4v5vn · · ·�︸ ︷︷ ︸
ℓ=n−1

, where � signals the end.

It is easy to see that exactly two sections are required. Hence, q∗ = n−2
2 + 2 = n+2

2 . Finally, it follows through
enumeration and immediate induction that ∀n ≥ 4 and even,

ℓ∗ =
(n− 1)(n− 2)

2︸ ︷︷ ︸
ε(Kn−1)

+ (n− 1) +
n− 2

2︸ ︷︷ ︸
Dutch windmill fashion

= n2−2
2 .

■

Claim 2.8. The claim is that the second term in the line above, namely

(n− 1) +
n− 2

2︸ ︷︷ ︸
Dutch windmill fashion

is indeed a minimum. Any reader who doubt the validity of the claim may attempt to disprove it.

3. On trees

Consider a tree T on n ≥ 2 vertices. Select a path Pt+1 in T between any pair of distinct pendent vertices. Note
that the length of Pt+1 equals t. Label the vertices of this path, v1, v2, v3, . . . , vt+1. Label the rest of the vertices
from vt+2 through to vn. If a vertex vj ∈ V (Pt+1) exists with deg(vj) = k ≥ 3 it is said that k − 2 branches
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sprout from vj . Denote these branches as T s
vj , s = 1, 2, 3, . . . , k − 2. Note that each branch is a sub-tree hence,

has no cycles. It implies that if a Chinese-T-walk traverses a branch from vertex vj , the return to vj in order to
proceed along the path Pt+1 will require that each edge of the branch be traversed at least twice. It is easy to
see that in a minimal Chinese-T-walk it is required and, it is indeed possible to traverse each edge of a branch
exactly twice. This observation is called the principle of twiceness. By traversing all branches which sprout from
vj before proceeding to vertex vj+1 it can be seen that the principle of twiceness does not apply to the edges of
path Pt+1. The methodology is called the the Descriptive Heuristic Method or DHM(T ).

Theorem 3.1. Consider a tree T on n ≥ 2 vertices. In respect of ℓ∗ a minimum Chinese-T(ℓ∗)-walk has T -pair,
(q, 2(n− 1)− t) where diam(T ) = t or more specifically, ℓ∗ = 2(n− 1)− t.

Proof. It follows from the DHM(T ) that to obtain a minimum Chinese-T(ℓ∗)-walk the length of the path Pt+1

in T must be a maximum. For a tree T under consideration select a path Pt+1 in T such that the length of Pt+1

equals diam(T ) = t. Clearly, the origin (by arbitrary choice) say, v1 and the terminus say, vt+1 of Pt+1 will be
pendent vertices.
For the only tree on n = 2 i.e. P2 (or K2) the result ℓ∗ = 1 = 2(2 − 1) − 1 holds. Similarly for the only tree
on n = 3 vertices i.e. P3 the result holds. For n = 4 the result is equally obvious for the tree, P4. However,
the star S1,3 must be considered as well. Without loss of generality consider the diam-path P3 = v1v0v2. Note
that the path P2 = v0v3 sprouts at v0. A minimum (in fact, optimal) ℓ∗ is obtained by the minimum Chinese-
T(ℓ∗)-walk, W = (v1v0)(v0v3v0v2). Hence, ℓ∗ = 4 = 2(4 − 1) − 2. So the result holds for all trees on
n = 4 vertices. Similarly as reasoned thus far the result holds for the three distinct trees on n = 5 vertices (see
https://www.graphclasses.org>smallgraphs). Assume the result holds for all distinct trees for each n, 6 ≤ n ≤ k.
Consider any tree T on n = k+ 1 vertices. Remove any pendent vertex say, vm (with edge thereto) to obtain the
tree T1 on k vertices. For T1 the result ℓ∗ = 2(k − 1)− t, diam(T1) = t holds. Replace vertex vm with pendent
edge thereto. If the replacement was at a branch sprouting from the diam-path then a minimum edge-traverse
count of +2 is required. Hence, ℓ∗ = [2(k− 1)− t] + 2 = 2((k+1)− 1)− t. Note that the salient implication is
that, diam(T1) = diam(T ). Hence, the result holds. If vm sprouted directly from some internal vertex of Pt+1

a similar argument settles the result. However, if the replacement is to say, the terminus of the diam-path of T1 it
implies that diam(T ) = t+ 1 in the first instance and a minimum edge-traverse count of +1 is required. Hence,
ℓ∗ = [2(k − 1) − t] + 1 = 2(k − 1) + 2 − 1 − t = 2((k + 1) − 1) − (t + 1). Clearly, in all cases a minimum
edge-traverse count was obtained. This settles the result ∀ n ≥ 2. ■

Finding either the value or an upper-bound for q remains open.

For any tree T the value of q enumerated through the DHM(T ) is an upper bound. Hence, q∗ ≤ q. This
observation will be illustrated by an example. Consider Figure 1 below.
Let W1 = (v3v2)(v2v1)(v1v4v1v5v1v6v1)(v1v7v1v9v8), T -pair = (4, 12).
Let W2 = (v1v2v3v2v1v4v1)(v1v5v1v6v1v7v1)(v1v9v8), T -pair = (3, 14).
Let W3 = (v4v1)(v1v2v3v2v1v5v1)(v1v6v1v7v1v9v8), T -pair = (3, 13).
The Chinese-T-walk W1 yields ℓ∗1 = 12. However, the corresponding q1 = 4 > 3. r∗1 = 16

The Chinese-T-walk W2 yields ℓ2 = 14. However, the corresponding q∗2 = 3. r2 = 17

The Chinese-T-walk W3 yields ℓ3 = 13. However, the corresponding q∗3 = 3. r∗3 = 16

Note that both W1,W3 have a pendent vertex as origin and r∗1 = r∗3 = 16.

Theorem 3.2. Let G be a graph of order n ≥ 2 which does not have an Euler trail. Then there exist the T -pairs
(q∗, ℓ), (q, ℓ∗) and possibly (q∗, ℓ∗) such that in the corresponding minimum (possibly optimal) Chinese-T-walks
with regards to q∗, ℓ∗ or r∗ traverse an edge at most, twice.

Proof. Since any graph G has at least one spanning tree the family of spanning trees is denoted by,
T (G) = {T : T is a spanning tree of G}. We know that the result holds for any T ∈ T (G). Select a tree
T ∈ T (G) with ”weighed” degrees, degG(vi) 7→ degT (vi) and apply the Chinese-T-game rules per the
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v1

v2

v3
v4

v5

v6

v7
v8

v9

Figure 1: Tree graph T .

DHM(T ) with the proviso that each section traverses ”edge by edge”. If at an edge step a vertex vz ∈ V (T ) is
reached and there exists an edge vzvw ∈ V (G) not in T , then either add the edge to T to obtain graph H1 or
await reaching vw in T . Assume without loss of generality that the edge vzvw is added. Simply traverse the
added edge ”across and back”. Clearly, for each tree in T (G) the addition of edges from E(G)\E(T ) to obtain
successive graphs H1, H2, H3, · · · ,� is always possible. Hence, there exists at least one way to reconstruct
graph G such that each edge in E(G) is traversed at most twice. In fact the edges on a selected diam-path of T
are traversed once. The same reasoning is valid had the edge vzvw been added upon reaching vertex vw.

After repeating the DHM(T ) ∀T ∈ T (G) in all possible ways of selecting a diam-path, a set Y of all the
corresponding minimal T -pairs (q, ℓ) can be obtained. Certainly, q∗ ≤ min{q : (≤ q, ℓ) ∈ Y }, ℓ∗ = min{ℓ :

(q,≤ ℓ) ∈ Y } and r∗ ≤ min{q + ℓ : (≤ q,≤ ℓ) ∈ Y }. Hence, in the corresponding minimum Chinese-T-walks
an edge is traversed at most, twice. ■

Corollary 3.3. For any graph G with diam(G) = t and without an Euler trail the value ℓ∗ in a minimum
Chinese-T(ℓ∗)-walk is bounded by, ε(G) + 1 ≤ ℓ∗ ≤ 2ε(G)− t.

Proof. Because any graph G has a diameter both t and some diameter path Pt+1 and a spanning tree T containing
Pt+1 exist. The aforesaid read together with the result for trees and the result of Theorem 3.2 settles this result.

■

Recall that a graph G contain a Hamilton path if and only if G has a path which contains each vertex of G
exactly once. A Hamilton graph G is said to be Hamilton connected if between any pair of distinct vertices of G
there exist a Hamilton path. If a Hamilton path in G can be closed in G then it is said that G has a Hamilton cycle
(or is Hamiltonian).

Theorem 3.4. For graphs G of order n which has a Hamilton path and a Hamiltonian graph H of order m there
exist for each, two pairs of T -pairs i.e. (q1, ℓ1), (q2, ℓ2) and (q3, ℓ3), (q4, ℓ4) respectively, such that:
(i) For G, (q∗, ℓ), q∗ ≤ q1 and (q, ℓ∗), ℓ∗ ≤ ℓ2 ≤ 2ε(G)− (n− 1).
(ii) For H , (q∗, ℓ), q∗ ≤ q3 and (q, ℓ∗), ℓ∗ ≤ ℓ4 ≤ 2ε(H)− n.

Proof. The results follow easily from reasoning similar to that found in the proof of Theorem 3.2. ■
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4. Conclusion

For a graph in general an upper bound for q∗ is conjectured as follows.

Conjecture 4.1. For any graph G the value q∗ in an minimum Chinese-T-walk is bound by,

⌈ ε(G)
∆(G)⌉ ≤ q∗ ≤ ⌈ nε(G)∑

vi∈V (G)

degG(vi)
⌉+ 1.

Recall Fleury’s algorithm from [1]. Consider the Eulerian graph G in Figure 2. Fleury’s algorithm will result
in at least ten possible Euler tours by simply selecting any origin from the ten vertices. Two such tours say,
W1,W2 are:

W1 = v1v10v6v7v8v9v10v8v6v5v4v3v2v1v3v5v1
W2 = v9v8v7v6v8v10v6v5v4v3v2v1v3v5v1v10v9.

v1

v2

v3v4

v5

v6

v7

v8 v9

v10

Figure 2: Eulerian graph G.

Applying the Chinese-T-game and traversing maximum section length at each step yields the following:

W1 = (v1v10v6v7v8)(v8v9v10v8v6)(v6v5v4v3v2)(v2v1v3)(v3v5v1) hence, q1 = 5

W2 = (v9v8v7)(v7v6v8)(v8v10v6v5v4)(v4v3v2)(v2v1v3)(v3v5v1v10v9) hence, q2 = 6.

Firstly, we observe that W1 yields the closer to optimal result since, ℓ∗ = 16 for all possible Euler tours. Since
G is not regular and ∆(G) = 4 the lower bound q∗ ≥ ⌈ ε(G)

∆(G)⌉ read together with the fact that ε(G)
∆(G) = 4

precisely (4 a divisor of 16) convinces that q∗ = 5 is optimal. In general such deduction is unreliable. Let Wi,
i = 1, 2, 3, . . . , s be all the possible Euler tours or Euler trails in a graph G which permits such. Let the T -pair of
Wj be (qj , ℓj). Then (q∗, ℓ∗) = (q∗, ε(G)) where, q∗ = min{qi : over all Wi, 1 ≤ i ≤ s}.
Problem 1: Can Fleury’s algorithm or other appropriate algorithm such as found in Edmonds et.al. [2] be adapted
to yield the minimum q∗ outcome for the Chinese-T-game? See Definition 1.1.
Problem 2. Investigate the Chinese-T-game by setting a min-max section length, k1 ≤ ℓ(S) ≤ k2, k1 ≥ 2.
The classical vertex parameter is the degree of a vertex. However, various other vertex parameters have been
published over the years. Clearly, any of these vertex parameters may serve as a bound for the length of a
section in a Chinese-T-walk. This remark opens a wide avenue for further research. Theorem 3.2 is regarded as
fundamental for further research.
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