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Abstract. We prove a hybrid fixed point theorem for partial completely continuous operators in a partially ordered metric
space and derive an applicable hybrid fixed point result in an ordered Banach space as a special case. As an application,
we discuss a nonlinear hyperbolic partial differential equation for approximation result of local solutions by constructing the
algorithms. Finally, an example is indicated to elaborate the hypotheses and abstract result of this paper.
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1. Introduction

Relaxing the convexity condition of the well-known Schauder fixed point theorem in a Banach space, the present
author in Dhage [6] proved the following hybrid fixed point theorem in a partially ordered Banach space.

Theorem 1.1. Let S be a non-empty, partially compact subset of a regular partially ordered Banach space(
X, ∥ · ∥,⪯

)
and let every chain C in S be a Janhavi set. Suppose that T : S → S is a partially continuous and

monotone nondecreasing operator. If there exists an element x0 ∈ S such that x0 ⪯ T x0 or x0 ⪰ T x0, then T
has fixed point ξ∗ and the sequence {T nx0}∞n=0 of successive iterations converges monotonically to ξ∗.

Theorem 1.1 yields an applicable hybrid fixed point theorem in an ordered Banach space having numerous
applications to nonlinear analysis. See Dhage [4], Dhage et al. [9–12], Dhage and Dhage [7], Dhage et al. [8] and
references therein. Note that Theorem 1.1 removes the convexity condition from Schauder fixed pint theorem and
replaced it by monotonicity condition of the operator in question. However, as a result we obtain an additional
feature that it gives the algorithms which can be used to obtain the approximation of solution to the nonlinear
problems. Now, the problem with the above hybrid fixed point theorem is that it is difficult to find the partially
compact subset of an ordered Banach space always. To overcome this difficulty, here we relax the condition of
existence of a partially compact subset and replace it by partial complete continuity of the operator T on S which
is the main motivation of the present paper.

∗Corresponding author. Email address: bcdhage@gmail.com (Bapurao C. Dhage)

https://www.malayajournal.org/index.php/mjm/index ©2024 by the authors.



Partial completely continuous operators and applications

2. A Hybrid Fixed Point Principle

Before going to the main hybrid fixed point result, we give some preliminary definitions which we need in what
follows. The details appear in Dhage [4, 5] and references therein.

Let
(
E, d,⪯

)
be a partially ordered metric space and let S ⊂ E. E is called regular if a monotone

nondecreasing (resp. monotone nonincreasing) sequence {xn} in E converges to x∗, then xn ⪯ x∗ (resp.
x∗ ⪯ xn) for all n ∈ N. The metric d and the order relation ⪯ are said to be compatible in S if a monotone
sequence {xn} in S has a convergent subsequence, then the original sequence {xn} is convergent and converges
to the same limit point. S is called a Janhavi set if d and ⪯ are compatible in it. S is called partial bounded
(resp. partially closed, partially compact) if every chain C in S is bounded (resp. closed, compact).

A mapping T : S → S is called monotone nondecreasing (resp. monotone nonincreasing) if x ⪯ y implies
T x ⪯ T y (resp. x ⪯ y implies T x ⪰ T y). T is monotone if it is either monotone nondereasing or monotone
nonincreasing. T is called partial bounded (resp. partially totally bounded or partially precompact) if T (S) is
partially bounded (resp. partially totally bounded or partially precompact for partially bounded S). T is partially
continuous if {xn} ⊂ S converges to x∗ with xn ⪯ x∗, then T xn → T x. T is called partial completely
continuous if it is partially continuous and partially totally bounded.

Now we are equipped with all the necessary details to state our main result if this section.

Theorem 2.1. Let S be a non-empty, partial closed and partial bounded subset of a regular partially ordered
complete metric space

(
E, d,⪯

)
and let every chain C in S be Janhavi set. Suppose that T : S → S is a

partial completely continuous and monotone nondecreasing operator. If there exists an element x0 ∈ S such
that x0 ⪯ T x0 or x0 ⪰ T x0, then T has a fixed point ξ∗ and the sequence {T nx0}∞n=0 of successive iterations
converges monotonically to ξ∗.

Proof. Assume first that we have an element x0 ∈ S such that x0 ⪯ T x0 and define a sequence {xn}∞n=0 of
points in S by

xn+1 = T xn, n = 0, 1, 2, . . . . (2.1)

From the monotonic nndecreasing nature of T , it follows that {xn}∞n=0 is a nondecreasing sequence of point
in S, i.e., we have

x0 ⪯ x2 ⪯ · · · ⪯ xn ⪯ · · · . (2.2)

Consequently, {xn}∞n=0 is a chain in S. Denote C = {xn}∞n=0. Then, C is bounded and by the construction
of {xn}∞n=0, we have

C = {x0, x1, x2, . . .}
= {x0} ∪ {x1, x2, . . .}
= {x0} ∪ T (C). (2.3)

As T is partially completely continuous, we have that T (C) is compact. From (2.3), C is also a compact set
in S. As a result, {xn}∞n=0 has a convergent subsequence {xnk

}∞k=0 converging to a point, say, ξ∗. By hypothesis,
C = {xn}∞n=0 is a Janhavi set in S, so the original sequence {xn}∞n=0 converges monotone nondecreasingly to
ξ∗. Since (E,⪯, d) is a regular, we have that xn → ξ∗ and that xn ⪯ ξ∗ for all n ∈ N. Finally, from partial
continuity of T , it follows that

ξ∗ = lim
n→∞

xn+1 = lim
n→∞

T xn = T
(
lim

n→∞
xn

)
= T ξ∗.

Similarly, if x0 ⪰ T x0, it can be shown using analogous arguments that T has a fixed point ξ∗ and the
sequence {xn}∞n=0 of successive iterations converges monotone nonincreasingly to ξ∗ Thus, in both the cases T
has a fixed point ξ∗ and the sequence {T nx0}∞n=0 of successive iterations converges monotonically to ξ∗. This
completes the proof. □
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Corollary 2.2. Let S be a non-empty, partial closed and partial bounded subset of a regular partially ordered
Banach space

(
X, ∥ · ∥,⪯

)
and let every chain C in S be Janhavi set. Suppose that T : S → S is a partial

completely continuous and monotone nondecreasing mapping. If there exists an element x0 ∈ S such that
x0 ⪯ T x0 or x0 ⪰ T x0, then T has a fixed point ξ∗ and the sequence {T nx0}∞n=0 of successive iterations
converges monotonically to ξ∗.

If the Banach X is partially ordered by an order cone K in X , then in this case, we simply say that X is an
ordered Banach space and we denote it by (X,K). The details of order cones and related fixed point theorems
appear in the monographs Guo and Lakshmikantham [13] and Granas and Dugundji [14]. Then, we have the
following useful results proved in Dhage [4, 5].

Lemma 2.3 (Dhage [4, 5]). Every ordered Banach space (X,K) is regular.

Lemma 2.4 (Dhage [4, 5]). Every partially compact subset S of an ordered Banach space (X,K) is a Janhavi
set in X .

As a consequence of Lemmas 2.3 and 2.4 we obtain an applicable hybrid fixed point theorem in the area of
nonlinear analysis and applications.

Theorem 2.5. Let S be a non-empty, partially closed and partially bounded subset of an ordered Banach space
(X,K) and let T : S → S be a partially completely continuous and monotone nondecreasing operator. If there
exists an element x0 ∈ S such that x0 ⪯ Tx0 or x0 ⪰ Tx0, then T has a fixed point ξ∗ ∈ S and the sequence
{T nx0}∞n=0 of successive iterations converges monotonically to ξ∗.

Theorem 2.5 is an improvement of the following hybrid fixed point theorem of Dhage et al. [9] which is
comparatively more convenient for applications to nonlinear equations.

Theorem 2.6 (Dhage et al. [9]). Let S be a non-empty and partially compact subset of an ordered Banach space
(X,K) and let T : S → S be a partially continuous and monotone nondecreasing operator. If there exists an
element x0 ∈ S such that x0 ⪯ Tx0 or x0 ⪰ Tx0, then T has a fixed point ξ∗ ∈ S and the sequence {T nx0}∞n=0

of successive iterations converges monotonically to ξ∗.

Remark 2.7. We mention that Theorem 2.5 is an ordered Banach space version of the Schauder fixed point
theorem wherein the convexity argument is altogether omitted and replaced by the monotonicity of the operator
in question. The advantage of this approach over Schauder is that we obtain an algorithm which goes to the fixed
point when applied repeatedly.

3. Hyperbolic Partial Differential Equations

Given the closed and bunded intervals Ja = [0, a] and Jb = [0, b] in the real line R, for some real numbers a > 0

and b > 0, consider the nonlinear IVP of hyperbolic partial differential equation (in short HPDE)

∂2u

∂x∂y
= f(x, y, u(x, y)), (x, y) ∈ Ja × Jb, (3.1)

satisfying the initial conditions
u(x, 0) = ϕ(x) and u(0, y) = ψ(y), (3.2)

where f : Ja × Jb × R → R, ϕ : Ja → R and ψ : Jb → R are continuous functions.

Definition 3.1. By a solution of the HPDE (3.1)-(3.2) we mean a function u ∈ C(Ja × Jb,R) that satisfies
the equations in (3.1)-(3.2), where C(Ja × Jb,R) is the space of continuous real-valued functions defined on
Ja × Jb. If a solution u exists in a neighbourhood of a point z ∈ C(Ja × Jb,R), then we say that it is a local or
neighbourhood solution of the HPDE (3.1)-(3.2) defined on Ja × Jb.
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The HPDE (3.1)-(3.2) is fundamental in the theory of nonlinear hyperbolic partial differential equations and
widely discussed in the literature for existence of solution. See Lakshmikantham and Pandit [15] and references
therein. But to the knowledge of present author no approximation result is proved for local solution without the
assumption of Lipschitz condition on the function f or without the assumption of existence of both lower as well
as upper solution for the HPDE (3.1)-(3.2) on Ja × Jb. Therefore, the approximation result of this section seem
to be new to the theory of hyperbolic partial differential equations.

We put the HPDE (3.1)-(3.2) in the Banach space C(Ja × Jb,R). We introduce a supremum norm ∥ · ∥ in
C(Ja × Jb,R) defined by

∥u∥ = sup
(x,y)∈Ja×Jb

|u(x, y)|. (3.3)

and an order relation ⪯ in C(Ja × Jb,R) by the cone K given by

K = {u ∈ C(Ja × Jb,R) | u(x, y) ≥ 0 ∀ (x, y) ∈ Ja × Jb}. (3.4)

Thus,
u ⪯ v ⇐⇒ v − u ∈ K, (3.5)

or equivalently,
u ⪯ v ⇐⇒ u(x, y) ≤ v(x, y) ∀ (x, y) ∈ Ja × Jb.

It is known that the Banach space C(Ja × Jb,R) together with the order relations ⪯ becomes an ordered
Banach space which we denote for convenience, by

(
C(Ja ×Jb,R),K

)
. We denote the open and closed spheres

centred at z0 ∈ C(Ja × Jb,R) of radius r by

Br(z0) = {u ∈ C(Ja × Jb,R) | ∥u− z0∥ < r} = B(z0, r),

and
Br[z0] = {u ∈ C(J,R) | ∥u− z0∥ ≤ r} = B(z0, r),

respectively.

Remark 3.2. It is clear that an open ball B(z0, r) in C(Ja × Jb,R) centred at a point z0 ∈ C(Ja × Jb,R) of
radius r > 0 is a neighbourhood of the point z0, so if a solution u∗ of the HPDE (3.1)-(3.2) lies in a closed ball
B(z0, r) in C(Ja × Jb,R), then it is a local solution in view of the fact that B(z0, r) ⊂ B(z0, r) ⊂ B(z0, r + ϵ)

for every ϵ > 0. Note that the idea of local or nbhd-solution is different from the usual notion of a local solution
as mentioned in Coddington [1].

4. Local Approximation Results

We consider the following definition in the sequel.

Definition 4.1. A function f : Ja × Jb × R → R is said to be L1
R-Carathéodory if

(i) the map (x, y) 7→ f(x, y, u) is jointly measurable for each u ∈ R,

(ii) the map u 7→ f(x, y, u) is continuous for each (x, y) ∈ Ja × Jb, and

(iii) there exists a function h ∈ L1(Ja × Jb,R) such that

|f(x, y, u)| ≤ h(x, y) a.e. (x, y) ∈ Ja × Jb,

for all u ∈ R.

333



B. C. Dhage

Lemma 4.2 (Granas and Dugundji [14]). If f(x, y, u) is L1
R-Carathéodory, then the function

(x, y) 7→ f(x, y, u(x, y)) is jointly measurable for each u ∈ C(Ja × Jb,R).

We need the following hypotheses in what follows.

(H1) The function f is L1
R-Carathéodory.

(H2) f(x, y, u) is nondecreasing in u for each (x, y) ∈ Ja × Jb.

(H3) f(x, y, z0(x, y)) ≥ 0 for all (x, y) ∈ Ja × Jb, where z0(x, y) = ψ(y) + ϕ(x)− ϕ(0).

Now, by using the theory of partial differentiation and integration, we obtain the following useful result.

Lemma 4.3. If h ∈ L1(Ja × Jb,R), then the IVP of ordinary second order linear hyperbolic partial differential
equation

∂2u

∂x∂y
= h(x, y), (x, y) ∈ Ja × Jb,

u(x, 0) = ϕ(x) and u(0, y) = ψ(y),

(4.1)

is equivalent to the integral equation

u(x, y) = z0(x, y) +

∫ x

0

∫ y

0

h(s, t) ds dt, , (x, y) ∈ Ja × Jb, (4.2)

where z0(x, y) = ψ(y) + ϕ(x)− ϕ(0) is a continuous function on Ja × Jb.

Theorem 4.4. Suppose that the hypotheses (H1), (H2) and (H3) hold. Furthermore, if ∥h∥L1 ≤ r, then the HPDE
(3.1)-(3.2) has a local solution u∗ in Br[z0] and the sequence {un}∞n=0 of successive approximations defined by

u0(x, y) = z0(x, y), (x, y) ∈ Ja × Jb,

un+1(x, y) = z0(x, y) +

∫ x

0

∫ y

0

f(s, t, un(s, t)) ds dt, (x, y) ∈ Ja × Jb,

 (4.3)

where n = 0, 1, . . .; is monotone nondecreasing and converges to u∗.

Proof. Set X = C(Ja × Jb,R). Clearly, X is an ordered Banach space ordered by the cone K defined by (2.2).
Let u0 be a function on Ja×Jb such that u0 ≡ z0 on Ja×Jb. Define a closed ballBr[z0] inX , where r ≥ ∥h∥L1 .
By Lemma 4.2, the HPDE (3.1)-(3.2) is equivalent to the nonlinear hybrid integral equation (HIE)

u(x, y) = z0(x, y) +

∫ x

0

∫ y

0

f(s, t, u(s, t)) ds dt, , (x, y) ∈ Ja × Jb. (4.4)

Now, define an operator T on Br[u0] into X by

T u(x, y) = z0(x, y) +

∫ x

0

∫ y

0

f(s, t, u(s, t)) ds dt, , (x, y) ∈ Ja × Jb. (4.5)

We shall show that the operator T satisfies all the conditions of Theorem 2.5 onBr[u0] in the following series
of steps.

Step I: The operator T maps Br[z0] into itself.
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Firstly, we show that T maps Br[z0] into itself. Let u ∈ Br[z0] be arbitrary element. Then, by hypothesis
(H1),

|T u(x, y)− z0(x, y)| =
∣∣∣∣∫ x

0

∫ y

0

f(s, t, u(s, t)) ds dt

∣∣∣∣
≤

∫ x

0

∫ y

0

∣∣f(s, t, u(s, t))∣∣ ds dt
≤

∫ x

0

∫ y

0

h(s, t) ds dt

≤ ∥h∥L1 .

Taking the supremum over x and y in the above inequality yields

∥T u− z0∥ ≤ ∥h∥L1 = r

which implies that T u ∈ Br[z0] for all u ∈ Br[z0].

Step II: T is a monotone nondecreasing operator.

Let u, v ∈ Br[z0] be any two elements such that u ⪰ v on Ja × Jb. Then,

T u(x, y) = z0(x, y) +

∫ x

0

∫ y

0

f(s, t, u(s, t)) ds dt

≥ z0(x, y) +

∫ x

0

∫ y

0

f(s, t, v(s, t)) ds dt

= T v(x, y)

for all (x, y) ∈ Ja × Jb. So, T u ⪰ T v, that is, T is monotone nondecreasing on Br[x0].

Step III: T is partially continuous operator.

Let C be a chain in Br[z0] and let {un} be a sequence of points in C converging to a point u ∈ C. Then, by
dominated convergence theorem, we have

lim
n→∞

T un(x, y) = lim
n→∞

[
z0(x, y) +

∫ x

0

∫ y

0

f(s, t, un(s, t)) ds dt

]
= z0(x, y) + lim

n→∞

∫ x

0

∫ y

0

f(s, t, un(s, t)) ds dt

= z0(x, y) +

∫ x

0

∫ y

0

[
lim
n→∞

f(s, t, un(s, t))
]
ds dt

= z0(x, y) +

∫ x

0

∫ y

0

f(s, t, u(s, t)) ds dt

= T u(x, y)

for all (x, y) ∈ Ja × Jb. Therefore, T un → T u pointwise on Ja × Jb.

Next, we shows that T un is an equicontinuous sequence of functions on on the compact Ja × Jb. Let
(x1, y1), (x2, y2) ∈ Ja × Jb be arbitrary. Without loss of generality, we assume that x1 ≤ x2 and y1 ≤ y2. Then,
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by definition of T , we have that

|T un(x1, y1)− T un(x2, y2)|

≤ |z0(x1, y1)| − z0(x2, y2)|+
∫ x2

x1

∫ y2

y1

|f(s, t, un(s, t))| ds dt

≤ |z0(x1, y1)| − z0(x2, y2)|+
∫ x2

x1

∫ y2

y1

h(s, t) ds dt

→ 0 as (x1, y1) → (x2, y2), (4.6)

uniformly for all n, n = 1, 2, . . .. This shows that T un is an equicontinuous sequence of functions on Ja × Jb.
As a result, we have that T un → T u uniformly on Ja × Jb. Hence T is partially continuous operator on Br[z0].

Step IV: T is partially totally bounded.

Firstly, we show that T is partially uniformly bounded. Let C be a chain in Br[z0]. Then, by monotonicity
of T , the set T (C) is again a chain in T

(
Br[z0]

)
. Let v ∈ T (C) be arbitrary. Then, there is a point u ∈ C such

that v(x, y) = T u(x, y). Now, by hypothesis (H1),

|v(x, y)| =
∣∣T u(x, y)∣∣

≤ |z0(x, y)|+
∫ x

0

∫ y

0

|f(s, t, u(s, t))| ds dt

≤ ∥z0∥+
∫ x

0

∫ y

0

h(s, t) ds dt

≤ ∥z0∥+ ∥h∥L1 (4.7)

for all (x, y) ∈ Ja×Jb. Taking the supremum over (x, y), we obtain ∥v∥ ≤ ∥z0∥+∥h∥L1 for all v ∈ T (C). This
shows that T is a partially uniformly bounded on Br[z]. Next, proceeding as in the step III, it can be proved that
T (C) is an equicontinuous chain of points in T

(
Br[z0]

)
. As T (C) is uniformly bounded and equicontinuous

set, it is precompact. Consequently T is partially precompact or partially totally bounded operator on Br[z0].
Now T is partially continuous and partially totally bounded, so it is partially completely continuous on Br[z0].

Step V: The element u0 = z0 ∈ Br[z0] satisfies the order relation u0 ⪯ T u0 .

Since (H3) holds, one has

u0(x, y) = z0(x, y) +

∫ x

0

∫ y

0

f(s, t, u0(s, t)) ds dt

≤ u0(x, y) +

∫ x

0

∫ y

0

f(s, t, z0(s, t) ds dt

= z0(x, y) +

∫ x

0

∫ y

0

f(s, u0(s, t)) ds dt

= T u0(x, y)

for all (x, y) ∈ Ja × Jb. As a result, we have u0 ⪯ T u0 on Ja × Jb.

Thus, the operator T satisfies all the conditions of Theorem 2.5, and so T has a fixed point u∗ inBr[z0] and the
sequence {T nu0}∞n=0 of successive iterations converges monotone nondecreasingly to u∗. This further implies
that the HIE (3.4) and consequently the HPDE (3.1)-(3.2) has a local solution u∗ and the sequence {un}∞n=0

of successive approximations defined by (4.3) converges monotone nondecreasingly to u∗. This completes the
proof. □
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Remark 4.5. The conclusion of Theorems 4.4 also remains true if we replace the hypothesis (H3) with the
following one.

(H4) The function f satisfies f(x, y, z0(x, y)) ≤ 0 for all (x, y) ∈ Ja × Jb.

In this case, the HPDE (3.1)-(3.2) has a local solution x∗ defined on Ja × Jb and the sequence {un}∞n=0 of
successive approximations defined by (4.3) is monotone nonincreasing and converges to the solution u∗.

Remark 4.6. If the initial condition (3.2) is such that z0(x, y) > 0 for all (x, y) ∈ Ja × Jb, then under the
conditions of Theorem 4.4, the HPDE (3.1)-(3.2) has a local positive solution u∗ defined on Ja × Jb and the
sequence {un}∞n=0 of successive approximations defined by (4.3) converges monotone nondecreasingly to u∗.

Finally, we give an example to illustrate the abstract ideas involved in our main approximation result,
Theorems 4.4.

Example 4.7. Given a closed and bounded interval J1 = [0, 1] in R, consider the IVP of nonlinear second order
HPDE,

∂2u

∂x∂y
= (x+ y) tanhu(x, y),

u(x, 0) =
x

2
and u(0, y) =

y

2
,

 (4.8)

for all (x, y) ∈ [0, 1]× [0, 1].

Here, f(x, y, u) = (x + y) tanhu, ϕ(x) == x
2 and ψ(y) == y

2 for (x, y) ∈ [0, 1] × [0, 1] and u ∈ R.
We show that f satisfies all the conditions of Theorem 4.4. Clearly, f is L!

r-Carathéodory on [0, 1] × [0, 1] × R
with h(x, y) = x + y, and so the hypothesis (H1) is satisfied. Also the function f(x, y, u) is nondecreasing in
u for each (x, y) ∈ [0, 1] × [0, 1]. Therefore, hypothesis (H2) is satisfied. Next, we have z0(x, y) = x

2 + y
2 .

Therefore, f(x, y, z0(x, y)) = (x + y) tanh
(

x+y
2

)
≥ 0 for each (x, y) ∈ [0, 1] × [0, 1], and so the hypothesis

(H3) holds. Now, by an application of Theorem 4.4, the HPDE (4.8) has a local solution u∗ in the closed ball
B1[z0] of C([0, 1] × [0, 1],R) which is positive in view of Remark 4.6. Furthermore, the sequence {un}∞n=0 of
successive approximations defined by

u0(t) =
x+ y

2
, (x, y) ∈ [0, 1]× [0, 1],

un+1(t) =
x+ y

2
+

∫ x

0

∫ y

0

(t+ s) tanhun(s, t) ds dt, (s, t) ∈ [0, 1]× [0, 1],

converges monotone nondecreasingly to u∗.

5. The Comparison

We observe that the existence of solutions of the HPDE (3.1) can also be obtained by an application of topological
Schauder fixed point principle under the hypothesis (H1) and restricted domain of intervals of the problem, but in
that case we do not get any sequence of successive approximations that converges to the solution. Again, we can
not apply analytical or geometric Banach contraction mapping principle to the problem (3.1) under the considered
hypotheses (H1)-(H3) in order to get the desired conclusion, because here the nonlinear function f does not satisfy
the usual Lipschitz condition on the domain Ja × Jb × R. Similarly, we can not apply algebraic Tarski’s fixed
point theorem [16] or its extension obtained in Dhage [3] to HPDE (3.1) for proving the existence of solution,
because the ordered Banach space

(
C(Ja × Jb,R),⪯

)
is not a complete lattice (see Davis [2]). Therefore, all

these arguments show that our hybrid fixed point principle, Theorem 2.1 is very much advantageous to get more
information about the solution of nonlinear equations in the subject of nonlinear analysis.
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