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Some coefficient properties of a certain family of regular functions
associated with lemniscate of Bernoulli and Opoola differential operator
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Abstract. In this exploration, we introduce a certain family of regular (or analytic) functions in association with the right-
half of the Lemniscate of Bernoulli and the well-known Opoola differential operator. For the regular function f studied in
this work, some estimates for the early coefficients, Fekete-Szeg6 functionals and second and third Hankel determinants are
established. Another established result is the sharp upper estimate of the third Hankel determinant for the inverse function
flof f.
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1. Introductory Statements

Firstly, we represent by A, the family of normalized and regular functions whose form is of the Taylor’s series
fR)=2+> a.2" f(0)=f(0)-1=0 (1.1)
r=2

and z € X := {z € C, such that |z| < 1}. Also, represented by S is the family of functions f € A that are also
univalent in Y. A famous subfamily of S is the family S7 of starlike functions. A function f € § is said to be
in ST if the condition Re(z(f'/f)) > 0 holds. For function class S, the Koebe one-quarter theorem, see [10],
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Coefficient properties of a certain family of regular functions

is a famous theorem that affirms that the range of every function f € S includes the disk {w : |w| < 0.25}. For
this purpose, f € S has the inverse function f~! where

FFHf@) =2 z€X,
FEHw) =w,  fw| <7ro(f), ro(f) > 0.25,
and some computations show that
FHw) = w — agw? + (203 — az)w® — (5a3 — bagas + as)w* + - - - . (1.2)

We represent the family of regular functions of the form
p(z) =1+ pg2*, z€X (1.3)
r=1

by P where P is called the family of functions with positive real parts in 2. A generalization of (1.3) is the
function

pg(z)zl—l—(l—a)z:pwzr, 2€e X 0<o<1, (1.4)
=1

known as the function with positive real parts of order 0. Let P (o) represent the family of functions g, (z).
Let ”<” represent subordination. Then for f, F' € A, f(z) < F\(z) if there exists a Schwarz function

such that s(0) = 0, |s(z)| = |z| < 1, and f(z) = F(s(z)). Suppose F(z) is univalent in X, then
f(2) < F(z) if and only if f(0) = F(0) and f(X) C F(X).

Recently, the direction of research in theory of geometric functions shows that the study of some prescribed
domains p(X) is inexhaustible. In fact, special cases of functions p(z) have greatly motivated many researchers
to study various kinds of natural image domains of p(X'). Some of these domains can be found in [7, 9, 12,
13, 15, 16, 18, 21, 25-27, 29, 31] and the citations therein. Precisely, Sokél and Stankiewicz [32] reported the
subfamily SL(¢b) C ST satisfying the condition

e(z)=2(f/f) =b(z)=V1+2 zeXx (1.5)

such that function ¢ lies in the domain bounded by the right half of the lemniscate of Bernoulli which is
geometrically represented by |p? — 1| < 1, Vz € X. One can find some descriptive diagrams and more properties
of domain |p? — 1| < 1 in [32]. The work of Lockwood [20] is a treatise of curves available for further research.

The differential operator Df’f : A — A was announced by Opoola [23], see also [4, 17, 27]. For f € A of
the form (1.1),

DY f(2) = f(2)

Drff(z) =1+ (B—p—D7)f(2) — 27(8 — p) + 27f'(2) = T-(f(2))
D20 f(z) = T (Drh f(2))

D0 f(2) = T (D20 f(2))

and

DIf(2) = T (D7 £(2)
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which can be simplified as

Df;ff(z)zz—i—Z(l—l—(m—i—B—u—1)T)"a$z”3, zeX (1.6)

r=2

for parameters in (2.2). It is clear that from (1.6),
L. DYRf(2) = D () = Doy f(2) = £ (2).

2. D’fﬁﬁ (2) = D} f(2) = D" f(2) is the famous Siligean differential operator, see [3, 30].

3. DZ”’B f(z) = Dl f(2) = D} f(2) is the famous Al-Oboudi differential operator, see [2].

2. A New Family of Regular Functions

The function f in A is in the family Bﬂf (0,7, €b) if it satisfies the condition
DI

1_—2i622
(1 e2iszen Do

0b(z) 2.1

for

neNg=NU{0}, 0<u< B Br206¢e(-2.7),0<y<1, 2€ 3, 22)

£b(z) and DZﬁLB f(2) are functions declared in (1.5) and (1.6), respectively. We however demonstrate that the
following are special cases of B2 (8,7, (b). Let go(z) = (14 2)/(1—z) and §,(2) = (1+ (1 —20)z)/(1—z)
be the extremal functions, respectively in P and P(o), then

1. Bg:g (0,0, po) = R, the family of bounded turning functions presented in [1].
2. B2£(0,0,9s) = R(0), the family of bounded functions of order o presented in [33] and
3. B2A(0,1,9) = H, the family of functions presented in [11].

In this investigation, a new subfamily of regular functions is defined and some estimates for early coefficients,
Fekete-Szego functional (for both real and complex parameters), and the second, and third Hankel determinants
for the functions f € A are established. We also established the upper estimate for the third Hankel determinant
for the inverse function f~! of f € A. We are inspired by the works in [18].

3. Lemmas

The lemmas that follow shall be needed.
Lemma 3.1 ([6]). If p(z) € P and a € R, then

2(1 — a) when a <0,
< 2 when 0 < a < 2,
2(a — 1) when a> 2.

p fapj
2 2

Lemma 3.2 ([6]). If p(z) € P and 3 € C, then
2
1

po — ;#’2 < 2max{1, |1 — |}

Lemma 3.3 ([14]). If p(z) € P, a € Rand x,y € N, then

2 when 0<a<1,

iy — ; <
[Paty = appy| < { 2|2 — 1| elsewhere.

Lemma 3.4 ([10]). If p(2) € P, then |p;| < 2and x € N.
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4. Main Results

Henceforth, it is assumed that all parameters are as declared in (2.2) unless otherwise stated. Our results are

therefore as follows.

4.1. Coefficient Estimates

Theorem 4.1. If f € B2(5,7,(b), then

laz] < =
2¢
13 + 842
8¢3
25 + 82
1664
1603 + 83272 + 512+*
51265

las| <

las| <

las| <

where
Gr = (L (o 4+ f = = 1))+

Proof. Let f € B?(6,, (b), then the definition of subordination permits us to represent (2.1) as
T, p

DL f(2)

1 — 200,22
( )

e 7z

— tb(s(2))

or
(1 = e 292 22) (DI 1 (2)) = 21 + 5(2)] /2,

For brevity, we use ¢, in (4.5) so that simple computation shows that (4.6) expands as

2+ ¢oas2® + (B3a3 — e 209)23 + (daaq — e 202 Pran) 2 + (¢5as — e 202 p3az)z” + - -

1 1 8 1\ 3217 ]
1(419 , 105, 5
1

1 1 17 1/13 )
=z+-p12+ - (pz - p%)zs +7 < P — P2 +p3)24

204871 96 4 8

so that the comparison of the coefficients yields

az = 2L
42

0y — P2 WP e
43

(ps — %p1p2 + %p‘;’) + e 20y 2p,

2o

aq =

and

105 o 99 5
+ PiP2 — —P1P3 Py +pg |27+

as =

4¢s

221

(pa — 2pips — 203 + 32P3p2 + 59kP1) + (P2 — p7)e 21092 4 dem 41044

A.1)

4.2)

4.3)

4.4)

4.5)

(4.6)

4.7

(4.8)

4.9)

(4.10)
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Application of triangle inequality and Lemma 3.4 in (4.8) yields our result in (4.1). Also, from (4.9),
P2 — 03| + 4le ]
4¢3

and the application of Lemma 3.1 yields the result in (4.2). From (4.10), we have the presentation

laz| <

s — Spipe| + 58| + [e >y |p

4¢4
which by the application of Lemmas 3.1 and 3.4 yields our result in (4.3). To obtain estimate for a5 we have from
(4.11) that

las| <

2 2
oo = P = 3p1ps) = §pa(p2 = 5%5) + gquspi + (P2 — T )0y + dem M0y
5 — .
4¢5
and )
as] < P2 = Spups + Slpallpe — 351 + o2 pd] + |p2 — T B |le=2 |y + dle 0|y
50 <
495

which by the application of Lemmas 3.1, 3.3 and 3.4 yields our result in (4.4). |

4.2, Estimates for Fekete-Szego Functional
Another commonly studied property of the coefficient problems of f € A is the Fekete-Szego functional
FS(e,f)=|ag—ea3|, c€R (4.12)

announced in [8]. Interested reader may see [4, 5, 17-19, 24] and the citations therein for more properties,
applications, and background details.

Theorem 4.2. If f € B;‘f (8,7, €b), then for real parameter ¢,

2 2
% when e< — 127;;2
2 14242 1763 993
’ag 5a2’ < ST when — 2¢32 <e< — 2¢§ (4.13)
2
7“_21;“327 when > 7%

where
1743 + 2e¢3

4¢3
Proof. Let e € R. If we substitute (4.8) and (4.9) into (4.12) we will arrive at

(4.14)

a5 — ca?| = (p2 — §pi) +4e72°9*  ep?
o 463 1693
so that
17¢5 + 2245\ pi| | e %92
az — Ea’2| —_ 2 o +
4¢ 4¢3 2 ¢3
or
p1 ’72
az — €a §—p —a— + —
| 3 2| 4¢ ¢3

where « is defined in (4.14). The application of Lemma 3.1 means that for « that satisfies conditions o < 0,
0 < a<2and a > 2, we have the results in (4.13).
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Theorem 4.3. If f € Bﬁ[j (8,7, €b), then for complex parameter &,

1 72
as — &a2l < — max{1,[1 - B|} + — (4.15)
Jas = a3 < 5 mase{L. |1 3} + -
where )
17¢5 + 283
f=—"F" 4.16)
4¢3
Proof. Let ¢ € C. If we substitute (4.8) and (4.9) into (4.12) we will arrive at the inequality
1 17¢2 42 gb p2 6721'6 2
|a3—£a§|§p2—<22€3 =1 7
4¢3 4¢3 2 b3
or ) )
1 P gl
_fall < — _ gL .
las §a2\_4¢3 p2 = B5 4—¢3
where £ is defined in (4.16). The application of Lemma 3.2 produce the result in (4.15). |
4.3. Estimates for some Hankel Determinants
The yth-Hankel determinant
1 Q41 Az42 - Qpiy—1
Ar4+1 Qr42 oo ... Qgiy
HDy,T(f) — Ar4+2 Ag43 .- oo Op4yt1 (4_17)
Agt+y—1 Qz+y -+ - Qpp2(y—1)

(z,y € N) was introduced by Pommerenke [28]. (4.17) has its elements from the coefficients of f in (1.1).
Observe that from (4.17), we can establish that

[HD21(f)] = |as — a3], (4.18)
|HD22(f) = |azas — a3, (4.19)
HD31(f) = as(azas — a3) + as(azas — as) + as(asz — a3) (4.20)

hence,
[HD31(f)| < lasl|HD22(f)| + laal|G2(f)] + las||[HD2,1(f)]- 4.21)

where
G2 (f)] = |aztzi1 — azta|, = =1{2,3,4,...}. (4.22)

Even though the functionals in (4.12) and (4.18) have different historical background, yet it can be observed that
the functionals are related since |[HD21(f)| = FS(1, f).
For the inverse functions f~! in (1.2), Obradovic and Tuneski [22] established that

HD31(f )| = [HD31(f) — (az — a3)?| (4.23)

and obtained some estimates for some subfamilies of S. Interested reader may see [4, 5, 17-19] and the citations
therein for some properties and applications; and more background details on Hankel determinants.

Theorem 4.4. If f € B2(5,7,(b), then

1+ 242
HDy (f)] < (4.24)
203
Y A
MIM
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Proof. Substituting £ = 1 in (4.15) yields (4.24). |
Theorem 4.5. If f € B™P(6,,(b), then

oy

4
HDoo(f)| < —4A + 8B — 2C + 8D — E + 4F + L 4.25)
) ¢2
2
where
A= 1 _ 289¢2¢4—226¢§ N
6h2¢a’ 1024¢ J 1692’
L s 420
_ - _ 1.2 _ +93 .2
D= Gigsater E=27 and F =500
Proof. Substituting (4.8), (4.9) and (4.10) into (4.19) simplifies to
1 289¢24 — 2693 4 1 5 174 —5¢3 ,
H _ _
22 Z160,0, "7 T T 11bstfen 7 1637 T Gdgaddes T
1 iy 17 + 2 iy €—4i6 4
~ e 20,200 4 ¢2¢42 ¢3e 2572‘”?_ 2’Y
203 1620504 o3
and for brevity we get
4 2 2 2i6 ais o € M0t
HDs2o(f) = Apips — Bp] — Cp; + Dpips — Ee” “"py + Fe™""py — 72
2
for A, B, C, D, E and F in (4.26). Now some rearrangement and simplifications yield
B 2D p2 L 2F p2 6741'5,74
D = A - —p})-C — =) e - =)
[HDa,2(f)] ‘ P1 (ps Ap1> P2 (p2 C 2 ) € D2 E 2 ¢§
so that
B 2D p? iy 2F p? e 4104
D < |A — s C it ' § Fe—210 _ 2 A
|H 2,2(f)|—\ p1| |p3 Apl + |Cpa| |p2 C 2 + |Ee | 1p2 oo + tb%
and the appropriate application of Lemmas 3.1, 3.3 and 3.4 yields (4.25). |
Theorem 4.6. If f € B7(5,7,(b), then
Ga(f)| < —2G + 4H + 8T +2J (4.27)
where
G- 1 _ $at50a¢s 1792+ 13¢2ds 0 $ads — ¢472 4.28)
4y’ 16¢2¢3¢4 128¢2¢3hs 4p2¢304
Proof. Substituting (4.8), (4.9) and (4.10) into (4.22) simplifies to
¢4+ Dpadp3 1704 + 130203 3 a3 — Pa 95 o
G =aga3 — a4y = ——p3+ ——— - - e ™
2] = 0t == st Gt P2 T 128000 P Abadta
and for brevity we get 4
Go(f) = —Gps + Hpips — Ipi — Je *p,
for G, H, I and J in (4.28). Now some rearrangement and simplifications yield
H 3 —2i§
G2(f)| = |-G Ps = HP1p2 —Ipy —Je " m
so that "
(G2(N) <1 = Gl |ps = Grava| + pi] + [Je™**p1]
and the appropriate application of Lemmas 3.3 and 3.4 yields (4.27). |
S
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Theorem 4.7. If f € B22(5,7,(b), then

13 4 82 4
[HD31(f)] < (;g) {—4A+8B—20+8D—E+4F+;3}

25 + 8v2 1603 + 832y2 4+ 51294\ [1 + 242
_ —2G +4H + 81 +2J 4.29
(16¢4)[ AT %( 51265 2 | “
where A, B,C, ..., J are defined in (4.26) and (4.28).
Proof. Substitute (4.2), (4.3), (4.4), (4.24), (4.25) and (4.27) into (4.21) yields (4.29).
[ |

Theorem 4.8. If f € B27(5,7,(b), then

1 2 2
< B8 [—4A+SB—2C+8D—E+4F+;2]
2

D —1
HD31(f )] < 10
1+272{ 74] {25+872]2 { 1 ]6
4L — 2K +4N —2M +8P —4R+16Q + — |+ | ————| + |=— 4.30
2¢3 @ o5 16¢4 2¢2 (4.30)

where A, B,C, ..., J are defined in (4.26) and (4.28), and

+

17¢3¢3—6¢5 2

— 1 _ _5 S _
=35 L= Toa M =157 N = "nizse 15 4.31)
R=_5 _ 6¢s5+35¢3¢3 0= 8165 —419¢2 p3 :

T 32¢5° T 128¢2¢3ds = T 8192424305

Proof. Substituting (4.20) into (4.23) yields

3
HDgJ(f_l) = (ag(a2a4 — CL%) + a4(a2a3 — CL4> + a5(a3 — CL%)) — (a3 — a%)
= 2aasa4 — 2a3 — a2 + azas — a3as + 3azas — 3ajas + aS
= 2a3(azay — a3) + as(as — a3) + 3a3as(az — a3) — aj + a$

= 2a3(agaq — a3) + (a3 — a3)(3a3a3 + as) — aj + a$

so that
(4.32)

(HDs1(f )] < 2|as||azas — a3| + |az — a3||3a3as + as| + |as]* + |az|°

or
(4.33)

[HDs1(f~1)] < 2las|[HD22(f)| + [HD2,1(f)|[3a5a3 + as| + |as|® + |az|°.

Observe that by using (4.8), (4.9) and (4.11),

5 1 173p3 — 65 o,
20802, 2 e 25721)%

1
3a3a3 +as = —ps — —— + —e
2080 = Y5 P T 1605 1P T g 320235
—4i6 4

4¢
5 5, 6¢5+354303 , 816¢5 — 4190303 4 e 10y
— D 5 DiD2 3 P+
32¢5 128¢5p3¢s 8192¢5 ¢35 o5
so that for brevity,
y ’ —4id 4

3a3as + a5 = Kps — Lpips + Me *py — Ne *“pt — Rp3 + Ppips + Qpi + .
D
~o
MM
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for K, L, M, N, R, P and @ in (4.31). Now some rearrangement and simplifications yield

L . 2N 2 2P 2 e—4i6 4
13a3a3 + as| = ‘K <P4 - PlPS) + Me™2P (pz - p1> — Rp <P2 - 1?1> +Qpi + i

K M 2 R 2 b5
so that
L . 2N p2 2P p2 6—41'5,)/4
3 2 — |K _ = M 218 v R 0 4
[3a3as + as| = | K| |pa — pips| + [Me™™ | \p2 — =250 + [Rpel |p2 — 7 51| + 1Qpi| + ™
and the appropriate application of Lemmas 3.4, 3.1 and 3.3 yields
4
\3a§a3+a5|§4L72K+4N72M+8P74R+16Q+; . (4.34)
Now substituting (4.1), (4.2), (4.3), (4.24), (4.25) and (4.34) into (4.33) yields (4.30). |
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