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Abstract. In this paper, we consider a one-dimensional porous thermoelastic system with herditary heat conduction and a
distributed delay time acting only on the porous equation, where the heat conduction is given by Gurtin Pipkin law. Existence
and uniqueness of solution are obtained by the use of Hille-Yosida theorem. Then, based on the energy method as well as by
constructing a suitable Lyapunov functional, we prove under some assumptions on the derivative of the heat-flux kernel, that
the solution of the system decays exponentially without any assumptions on the wave speeds.
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1. Introduction

In this paper we are concerned by the following porous thermoelastic system with distributed delay time

T2

plutt:Muww+b@x_ﬁ9w_’ylut_/rYQ(U)ut(xvt_o')da mn (O,?T)X(0,00)

J (1.1)
Jptr =@ ppy —buy —Eo+060 — Ty in (0,7) x (0,00)
cOp = —qp — Buge — 0y in (0,7) x (0,00)
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Porous thermoelastic

with the boundary conditions and the initial data

(m,t) = o (0,t) = @ (m,t) =0, (0,t) =0, (m,t) =0, t >0
0($) ’ 90(%0):4?0(90) ) 9(%,0):90(1‘) ) $6(077T)

(@0) = (1) o o (@.0) = (1) . @€ (0,7) (-2

where v = u(x,t) is the transversal displacement, ¢ = ¢ (z,t) is the volume fraction, § = 6 (x,t) is the
temperature variation from an equilibrium reference value and ¢ = ¢ (z,t) is the heat flux. The coefficients
p1, J, ¢, w, a, b, £ T, v are positive constitutive constants such that

pé > b (1.3)
The coefficient 5 and ¢ are the coupling constants that are different from zero but their signs does not matter in
T2

the analysis. The term [ 2 (0) u; (z,t — o) do is a distributed delay that acting only on the porous equation
T1

and s : [11, 2] — R is a bounded function, where 71 and 75 are two real numbers satisfying 0 < 77 < 79. The

initial data ug, w1, o, @1, B, fo belongs to the suitable functional space.

In order to determine system (1.1)-(1.2), an additional equation relating ¢ and # must be used.

Over the years, many scientists and researchers have come up with theories about thermoelasticity. In the
classical model of heat diffusion or what is known as the classical theory of thermoelasticity, heat flow obeys
Fourier’s law of thermal conductivity, which states that heat flow is proportional to a temperature gradient. The
thermal conductivity equation is given by Fourier’s law as

q= —kKb, (1.4)

where x > 0 represents the coefficient of thermal conductivity of the material.

In the last three decades much has been written on the analysis of the longtime behavior of porous
thermoelastic systems. Casas and Quintanilla [3] proved the exponential decay of the solution of the following
system

P Utt :Muwz+b()oa: _ﬁem m (Oaﬂ-) X (0700)
Jou =@ —buy —Ep+850 — T in (0,7) x (0,00)
cO; = KOpp — Bugs — 0oy in (0,7) x (0,00)

In [24, 30] Quintanilla and co-authors showed the slow decay for the solution of the above system when the
frictional damping is removed (7 = 0) or replaced by a viscoelastic damping. Moreover, in [30] they established
a polynomial rate of decay provided that § (b — d ) > 0.

Closely to the porous thermoelastic systems, Mufioz Rivera and Racke [31] studied the Timoshenko type
system

p1 e = k(pe +1),
Cat = "iea:m _/th:z:

with different boundary conditions, where i represents the rotation angle of the filament, they proved that the
solution of the system is exponentially stable in the case of the wave speeds are equal.

It should be noted that Fourier’s thermal conductivity equation is an equation of parabolic type, which leads to
the physical contradiction of the infinite speed of heat diffusion, in other words any thermal disturbance at a point
will instantly transfer to other parts of the body. To overcome this paradox, other theories of thermoelasticity
have emerged.

e
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Green and Naghdi [14, 15] proposed a way to eliminate the paradox of infinite velocities, they used an analogy
between the concepts and equations of purely thermal theories and purely mechanical theories and came up with
three types of constitutive equations for heat flow in a fixed solid cohesive material classified as type I , type 11
and type I11 , where Type I leads to the usual thermal conductivity according to Fourier’s law. In type I and
type 111 theories, the constitutive equations for the heat flux are given by

q:_fldjz 3 q:_fl'l/}m_fZQI (1.5)

respectively, where

is the thermal displacement and f7 , f> are positive constants.
In the framework of Green and Naghdi theory, Quintanilla and co-workers [21, 29] considered the following
porous thermoelastic system

P1 UL = U Ugy +’7¢a: —Blﬁm
Jd)tt :b¢rz+m 1/11:,: 75¢+dwt77ux 7T¢t
athy = kYos + M Gpp — dhy — By + k¥ 0

where (z,t) € (0,7) x (0, 00) with coefficient satisfy u& > 2 and bk > m? Precisely. Leseduarte et al [21]
examined the type ] case (k* = 0) with (7 # 0) and Miranville and Quintanilla [29] considered the type 111
case (k* # 0) with (7 = 0) . Both have proven that the solution is exponentially stable.

In [11, 19, 25, 27, 28] the authors were considered Timoshenko systems with thermoelastic dissipation of
type 111, the exponential stability was obtained provided that the wave speeds associated to the hyperbolic part
of the system are equal. Otherwise, the solution decays polynomially.

In [22] Lord and Shulman propose a second theory to overcome the paradox of infinite velocity due to
Fourier’s law, They suggest to replace Fourier’s law with the following Cattaneo’s law of heat conduction

T0q+q+rK0, =0 (1.6)

where Ty is a positive constant represents the time lag in the response of the heat flux to the temperature gradient
and is referred to as the thermal relaxation time.

In accordance with this theory, a hyperbolic system was obtained, and as a result, the heat spreads with a
finite speed and a new component of the wave speed appears. The heat is transferred by the process of wave
propagation rather than the usual diffusion, and this process is known as the second sound, making the first sound
the usual sound.

Fernandez Sare and Racke [12] considered a Timoshenko system coupled with the heat equation modeled by
Cattaneo’s law, they prove that the solution of the system losses the exponential stability in the case of equal wave
speeds.

By introducing a new stability number Y that links all the wave speeds (three), Santos et al [35] refined the
results found in [12] and demonstrated the exponential stability of the solution in the case of xo = 0 where

( Hp1)< bpl) T52p1
xo=\(1T——=)|p—— ) - ———
p3 K K ps

In the setting of hyperbolic type porous thermoelastic systems, Han and Xu [17] considered the non uniform
porous system with second sound thermoelasticity

p(2) uy = [1(x) ug (2)], + [0 (2) ¢ ()], — [B () 0 ()],

gt (x) + 6q (z) + 1y () =0
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Porous thermoelastic

where p, p, J, a, b, € and T are positive function in [0,1] and p(z) & () > (b(z))? for any z € [0,1] ,
they have used the spectral method and proved that the solution decays exponentialy. Messaoudi and Fareh [26]
studied the uniform case of (1.7). they used the multiplier method and established an exponential stability result.
Fareh and Messaoudi [9] examined the solution of the following system

PUL — MUy +bPy =0
J¢tt_a¢xz+bux+§¢+/8020
i+ qe +B o +00=0
T0qt+q+ kb, =0

in the case when j & = b2. They introduce the stability number

o (Lo se) (£ o)
X p To )\ p

and showed that the solution is exponentially stable if and only if x = 0.

It is important to note that the second sound and type III theories cannot adequately explain the memory
effect that predominates in specific materials, especially at low temperatures. As a result, a more general
fundamental assumption about heat flow to thermal memory is required. In [16] Gurtin and Pipkin prosed that
heat flux depends on the integrated history of the weighted temperature gradient against a relaxation function
called the heat flux kernel. They developed a general nonlinear theory in which thermal disturbances propagate
with a finite speed. According to this theory, the linear constitutive equation for q is given as follows

t

q:—/k(t—s)&v(x,s)ds (1.8)

— 00

where k (s) is the heat conductivity relaxation kernal. The presence of the convolution term (1.8) renders the
porous system coupled with the heat equation into a fully hyperbolic system, this allows the heat to propagate
with finite speed and admits to describe the memory effect of heat conduction. We note that many different
constitutive models arise from different choices for & (s), in particular, if we take k (s) = k¢ (s), where ¢ is the
Dirac mass weighted at 0, then (1.8) reduced to the Fourier’s law (1.4), and if we choose
k(s)= L , T0>0
70
we obtained Cattaneo’s law (1.6). So (1.8) is a generalized from Fourier’s and Cattaneo’s law.
In [6] Dell’Oro an Pata extended the result of [35] to the following system

p1 ot — K(pa + 1), =0
ptht*bwzz+H(§0x+w)+§9z:0
00

pget—%/m)em(t—s)dwawm:o
0

they introduce hte stability number

_ <m6> (&f@)fimz
Xk = psk k(0) kb k(0) pskb

and proved in the case of x; = 0 that the solution of the system is exponentially stable. For other models with
Gurtin-Pipkin composition, we refer the readers to [2, 4, 5, 8, 10, 18, 33].
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In the present paper we consider the porous thermoelastic system (1.1)-(1.2) coupled with the heat equation
via the constitutive equation (1.8) and establish an exponential stability result without any restriction on the
coefficients. We note that our work is an extension of the results obtained in [7].

The rest of this article is organized as follows: In section 2, we introduce some transformations and state the
assumptions needed in our work. In section 3, we use the semigroupe method to prove the well-posedness of
problem. Finally, in section 4, we state and prove our stability results. We use ¢ throughout this paper to denote
a geniric positive constant.

2. Preliminaries

We note that the presence of the convolution term in the constitutive equation for ¢ renders the family operators
mapping the initial value (ug, u1, @0, ©1, 0o, fo) into the solution (u,¢,d) not match the semigroup
properties. This is due to the fact that the solution value of 6 at time ¢ depends on the whole function up to time
t. In order to overcome this difficulty we introduce the new variables

0" (z,8) =0 (x,t—s) , s>0 2.1)
and
n(ams):nt(x,s):/Qt(x,)\)d/\ , §>0 (2.2)
0

which denote the past history and the summed past history of 6 up to ¢, respectively.
Clearly, n* (x, s) satisfies the following conditions

Nz (0,8) =1y (m,8) =0 , s>0,t>0
n° (x,s) =no(x,8) , z€(0,m) , s>0
n(w,O)zi%nt(x,s)zO , x€(0,m) ,t>0
and it’s easy to prove that
ne(x,8) =0 —ns (z,s)  in (0,7) x (0,00) x (0, 00) (2.3)

Moreover, we assume that lim k (s) = 0 then a simple computations give us
S— 00

q=- / k(t—S)%(%S)dS=7’<’(S)n§(w75)d8
0

— 00

setting  (s) = —k’ (s), system (1.1)-(1.2) and equation (2.2) become

plutt=uum+bs0z—591—%ut—/vz(ff)ut(w»t—a)df? in (0,7) x (0,00)
J(Ptt :Ogésoww_buw_ggp—’—ée_T(pt in (O,W)X(0,00) (24)
c€t:/fc(s)n;m (x,8)ds — Bugt — 0 in (0,7) x (0,00)
0
ne (z,8) =60 —ns (x,s) in (0,7) x (0,00) x (0,00)

3

s
2
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Porous thermoelastic

with the boundary conditions and the initial data

w(0,t) = u(m,t) = oz (0,t) = g, (m,t) = 0, (0,t) =0, (m,t) =0 , t >0

Nz (0,8) =n (m,8) =0, s>0,t>0

w(z,0) =up(x) , ¢(z,0)= Lp()() , 0(z,0)=00(z) , =€ (0,m)

ue (2,0) = uqy (z) cpt(:c 0)=¢i1(z) , ze€(0,m) (2.5)
770 (1‘,8) =To (LE,S) ) (O’ﬂ-) ;, 520

n(z,0)=0 |, x€(077r),t>0

ug (x,—t) = fo(z,t) , z€(0,m) , te(0,7)

Conserning the memory kernel «, we assume the following set of hypotheses:
(H1): k€ C(IRT)NL* (IR")
(H2):k(s) >0, k' (s) <0, Vs>0
(H3):k(0)>0
o0
(H4): /n(s)ds = ko = k(0)

0
00

(Hs):/m(s)ds=1

0
(H6):3r >0 ; K (s)<-rk(s) , Vs>0
(H7): lim k(s)=0

§—00
concerning the weight of the delay, we only assume that

/ b2 (o) do < m 2.6)

In view of the boundary conditions, our system can have solutions (uniform in the variable x), which do not
decay. In other words, it is known that for the problem determined by (2.4)-(2.5) we can always take solutions
where ¢ and 6 are constant, for this reason, we impose that

T T

/(,00 (z)dx = /<p1 (z)dx = /TrGO (x)dx=0 2.7
0

0 0

It is worth noting that condition (2.7) is imposed to guarantee that the solution decays. Thus, if we want to avoid
this behavior we need to impose condition (2.7). In addition as in [1], to be able to use Poincaré’s inequality for
 and 0 we perform the following transformation

From (2.4), and (2.4)3 respectively we have

T s T

/gpttdx—i—T/gotdx—i—{/godx— /de:O

Or 5 0 (2.8)
/Ht dw—i—&/gp =
0
If we take ¢ (t) = /<p dx and 9 (¢ /Gdaz we observe that ¢ (0) = /goo dz , ' (0) = /cpl dx and
0 0 0

3

s
2
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9(0) = / 0o dx . Moreover, (1), ) is a solution of the following initial value system

0

JU"+ 7 L€ =9 =0 , ¥&>0
cd +6¢'=0 ) vt >0

0= [0 do=0

0
™

v )= [ do=o0

g
ﬁ(O):/Hodxzo
0

The solution of systemis ¢ (t) =9 (t) =0 , Vt>0
Consequently

™ T

Further more, from (2.2) we get

3. Well-posedness

In this section, we give the existence and uniqueness of solutions for the system (2.4)-(2.5) using semigroup
theory.
First, we introduce as in [32], new dependent variable

z(z,p,0,t) =u (x,t —po)  in (0,7) x (0,1) x (11, 72) x (0,00) (3.1)
A simple differentiation shows that z satisfies
oz (z,p,0,t)+ 2, (x,p,0,t) =0 in (0,7) x (0,1) X (11, 72) x (0,00) (3.2)

Hence problem (2.4) takes the form:

T2

e = s+ bp — B0 i~ [ 22(0)2 (@ 1,0yt doin (0.7) x (0,50)
J :Ooasﬁmfbugﬁffcan(;Gchptﬁ in (0,) x (0,00)

cl, = //1(5) nt. (z,8)ds — Bug — 5 o4 in (0,7) x (0,00) G
ozt zo—zp in (0,7) x (0,1) x (11, 72) x (0,00)
ne (x,8) =0 —ns (x,8) in (0,7) x (0,00) x (0,00)

Jie
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with the boundary and the initial data
w(0,t) = u(m,t) = vz (0,t) = @y (m,t) =0, (0,) =0, (m,t) =0, t >0

Nz (0,8) =ng (m,8) =0 , s>0,t>0
($ 0)*u0() ) ‘P(x70):900($) ) 0(9370):00(1') ) SCE(O,W)
ug (2,0) =uy () , ¢ (2,0)=¢1(x) , z€(0,m) (3.4)
770<337 )—Tio( ) ) $€(077T) ;520
7n(z,0)=0 |, € (0,m) ,t>0
z (x, p, 0, O) fo (x,po) i (0,7) x (0,1) x (0,72)

Second, we introduce the vector function U = (u,v, @, ¢,0,z,17)T , with v = u;, and ¢ = ;.
We consider the following Hilbert spaces:

L2(0,7) = {we L?(0,7) , /w(m)dx:O ,
0
0,7)

H}(0,m) = H' (0,m) N L2 (0,
H?(0,7) = {we H?>(0,7) ; w, (0) = w, (1) =0}

Furthermore, we introduce the weight Hilbert spaces

oo

My =12 ((0,00);Hi (O,w)) =Qw: R, — H(0,7) ; /H(S) [lws (s)||§ ds < 0o
0

and
H= H:i ((0,00) ) Hi (077T)) = {77 / m,Ms € Ml}

We define the enegy space by
H =H} (0,7) x L? (0,7) x H! (0,7) x L2 (0,7) x H} (0, )
X L2 ((O,TF) X (071) X (7'1,7'2)) X ./\/11

Then H, along with the inner product

<U,I]'>H:p1/ vidz + J ¢¢3dx+c/ 9§daz+a/ 0o Bods
0 0 0

T2 00 ™

/ |2 (o \zidadpda:—&—/m(s)/nz 7l dx ds (3.5)

T1 0 0

A YA T W
+20/<um+uso)<u””+u<p>dx+ (“ >0/ ot
¢ b b 1/, W [

/

0

o/
0

is a Hilbert space for any U = (u,v, ¢, ¢,0,2z,n7)T e Hand U = (4,7, , ¢, 0, z,7)T € H.
The system (3.3)-(3.4) can be rewritten as follows:

WO _qvw), >0,

U(LL‘,O) = UO (ZC) - (uo,ulaSDOaQOlvomevnO)Ta

e
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where the operator A : D (A) C H — H is defined by

v
T2
Bt opa = 20,20 = [0 (0) 201 0y 1) do
1 P1 1
T1
¢
Q@ b £ 6 T
= FT¥xx — U T 7 —0— -
AU = NAd Gz — P+ 5 J¢
17 5
E/H(S) Ny (T, 8) dsffvrfgqﬁ
0
1
Pl
0 —ns

The domain of A is given by
D(A)Z{UEH/uGHQ(O,ﬂ')ﬂHOI(O,ﬂ') s @,0€ H2(0,7)NH!(0,7) ;
UEH(} (077T) ; ¢€Hi (Oaﬂ') ; szpeLQ((077T)X(Ovl)X(TlvTQ)) ;

oo

neH; /n(s) Naw (x, 8) ds € L2 (0,7) ; n(x,0) =0}.
0
Now we have the following existence and uniqueness result

Theorem 3.1. Let Uy € H and assume that (1.3) holds. Then, there exists a unique solution U € C (R4, H) for
problem (3.3)-(3.4). Moreover, if Uy € D (A), then

UecC(R,,D(A)NCR,,H).

Proof. We use the semi-group approach. So we prove that A is a maximal dissipative operator.
First, we prove that A is dissipative. Let U € D (A) , then we have

(AU,U>H:f’yl/v2da:77/¢2d:£+///€(s) Ns Nea ds d
0 0 00

T To T 1 7o
- /v/’yg (0)z(z, 1, 0, t)do dx — ///h’g (0)] 2o zdo dpdx (3.6)
0 1 0 0 m

Using integration by parts and the fact that z (z,0,t) = v (z,t) , the last term in the right-hand side of (3.6) gives

T 1 T2 T To
1
7///|fy(a)| zpzdodpdx:f5//|’y(0)|22(x, 1, 0, t)do dx
0 0 7 0 m
1 T2 K ,
—&—5 |y (0)|do v*dx
0

T1

3

s
2
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Porous thermoelastic

Also, using Young’s inequality we get

—/v/'y(a)z(a:, 1, o, t)do dx
0 T1

s s

™ T
1 1
< 5 /|’y(0)|d0 /v2do:+§//h(a)|zz (z, 1, o, t)do dx
\T1 0 T1

0

Furthermore, using integation by part and bringing in mind (H7) we have

T 0o . 0o -
//H(S) Ueﬁerdeii/H'(s)/nidxds
0 0

0 0

Consequently, using (H2) ,(3.6) and (2.6) yields

™

(AU U)y < — ’yl—/|’yg(0)|da /UQdJ’J

0

1 s
+§/f-@’(s)/nidmds—7/¢2d$§0
0

0 0

Therefore, the operator A4 is dissipative. Next, we prove that the operator A I — A is surjective. For any F' =
(f1, f2, f3, fas f5 f6, f7)T € H, we prove that there exists a unique U € D (A) such that

AN -AU=F 3.7
The problem (3.7) , leads to solve the following system
Au—v=f € HO0,)

(Am+ﬁﬂ”_ﬂwm—bwz+59r+/vﬂafﬂal,mtﬁw

= p1 fo € L?(0,m) h

Ap—¢=fse HL(0,m) (3.8)
AJ+7) 6= a gt bup+€p=00=1Jfi e LI(0,m)

Nt~ [ 56w (2,5)ds + B+ 50 = fy € H(0,7)

0
Noz+z,=0fs € L?((0,7) x (0,1) x (0,00))
An—60+n, = fre My

Suppose u and ¢ are given with the appropriate regularity. Then, the first and the third equations in (3.8) yield

v=Au—f; € Hy(0,7) (3.9)
and
p=Np— fs€ H (0,m) (3.10)
S
[\V =]

MIM

421



C. Boulkheloua, H. E. Khochemane, L. Bouzettouta

respectively.
The sixth equation in (3.8) together with (3.9) and the fact that z (x,0) = v (, t) gives

P
2(x,p,0,t) = Mu(z,t) e 7P — fre 7P +ae*“"/e“y fo (z,y,0,t) dy (.11
0

The last equation in (3.8) under the condition 1 (0) = 0 gives

S

n(x,s)= %0 (z,8) (1 —e ) + /eMw*s)ﬁ (w) dw (3.12)

0

Using integration by parts, it can easily be shown that the second, fourth and fifth equations in (3.8) satify the
following:

T sy s

()\pl+'yl)/vudm—|—,u/uzuxdx+b/<pumdx—ﬁ/@umdac
0 0
/ / z(z, 1,0, t)dodx—pl/fgudm
()\JJrT)/ngdeJroz/gngézderb/ungd:chf/(pcﬁdxf6/9<,5dx (3.13)
0 0 0 0 0

™ ~ 1 7T~ o0 ﬂ 6 T ¢ ™
c/&&dm—&—x/ez/ (5) ma ds da + X/ X/ X/
0 0 0 0

Furthermore, by using (3.9)-(3.12) , we have the following corresponding weak formulation for the second,

fourth and fifth equation in (3.8):
Finding (u,,0) € H{ (0,7) x H! (0,7) x H! (0,) such that for all (fm,é) € H}(0,7) x H!(0,7) x

H! (0,7) the following holds:
B ((u,gp,@); (a,¢,5)) .y (a,¢,é) (3.14)

where B : [H{ (0,7) x H} (0,7) x H! (0, 7r)}2 — R is the bilinear form defined by

T s K T

B((u,cp,@);(ﬁ,cﬁ,é)) :,uo/uﬁdx—ku/umﬂmdx—|—,u1/<p¢dx+a/gox@xdm

0 0 0 0

+c/9§dm+cn/9$9~wdx+b/(tpﬁw+Uz95) dx

s

+5/ﬁ(uméaax) dx+6/<g09~70¢> d
0

0

e
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Porous thermoelastic

and [ : H} (0,7) x HL (0,7) x H} (0, 7) — R is the linear form given by
l(ﬂ,@,é) :/gwldx—k/gzcﬁdx+/930~dx+/g4§zdm.
0 0 0 0
where
T2
to = A2p1 + Ay1 + )\/’}/2 (0) e %o >0
T1

pr=NJ+EFAT >0

oo

%/H(s)(lfe*)‘s)ds >0

0

Cr =

T2 1

g1 = %ﬁ +P1f2_/‘772 (o) e_m/e/\ayﬂs (z,y,0,t)dydo € L*(0,)
T1 0

Ga=\NJ+7)fs+Jf1 € L?(0,7)

_B 9, . ¢ 2
g3 = )\flw"' )\f3+)\f5 € L7 (0,m)

1 oo S
gr=—y [ " (s)/e/\(w_s)f7z (w) dwds € L*(0,7)

0 0
Now, for V = Hi (0,7) x H} (0,7) x H! (0, 7) equipped with the norm
(s 0,5 = llully + lluallz + llol3 + ezl + 1015 + 16213

we have

s s

IB((w%@);(u,%@))l:uo/uzdfv+u/u dw+u1/w2d$+a/sﬁidaf
0

—|—c/92dm—|—cﬁ/9 dx+2b/umcpdx
0

s

On the other hand , we can write

) ) b 2 b 2
Py + p1 o +20us o = 5 | [ uz+;<p + 1 s0+auz

1
2
1 b2 9 b2 9
to\#- )t (=)
2 23 iz
then, using (1.3) we deduce that

2 2 1 b2 2 b2 2
pug + 1" +20uUsp 2 5 S uy + po= )

consiquently
2
|B ((u> ') 9) ) (u7 1) 9))| 2 M ||(u7 1) 0)”\/
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. 2 2 . .
where M = min {% (u — Z—l) ; % (ul - %) Qs C Mo Ck } Thus, B is coercive. Moreover, we can

easily see that B and [ are bounded. Consequently, by Lax-Milgram Lemmam we conclude that there exists a
unique (u, ¢, ) € V which satisfies (3.14).
Substituting « in (3.9) and (3.11), respectively, we obtain

ve Hy(0,m) , z€L*((0,7)x (0,1) x (11,72))

and z in (3.8)g we find z, € L? ((0,7) x (0,1) x (71, 72))
then, inserting ¢ in (3.10) and we get
¢ H,(0,7)

Similarly, inserting 6 in (3.12) and bearing in mind (3.8) 7, we obtain
neM , n(z0)=0

Moreover, if we take (@, é) =(0,0) € H! (0,7) x H} (0, 7) , then (3.14) reduces to

s s

u/uwﬂxdx—kb/(pﬂxdx—ﬁ/ﬂﬂxdx:—/(—g1+uou)adx , Vi € Hy (0,7)
0 0 0 0

That is
Plge = —g1 + po — b, + 80, , in L? (0, )

which implies
u € H?(0,7) N Hy (0,7)

Then, we choose (’&, é) = (0,0) € H} (0,7) x H} (0,7) , then (3.14) become

T

oz/goxgﬁldacz—/(uup—&—bum—é@—gg) pdx V@EHi(O,ﬂ') 3.15)
0 0

Here, we can not use the regularity theorem, because ¢ € H! (0, 7) . So, we take ) € H} (0, 7) and we set
P@) =)~ [ do
0

It’s clear that ¢ € H} (0, 7) . Then, a substitution in (3.15) leads to

s T

a/%wmd:g:—/wdx , Yo € Hi (0,7)
0 0
where,
r=p1@+bu,—900—gs
That is
QPpze =19 +buy — 660 — gy, inL*(0,7) (3.16)
which implies
o € H*(0,)
S
Y =
MM
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On the other hand, from (3.15) and using integration by parts we get

™ s

a[%sﬁ}g—Oz/wm@dxﬂL/(msoeruz—59—92)@dx:o ., V¢ e HL(0,m)
0 0

and from (3.16) we obtain
Since ¢ € H} (0, ) is arbitrary then,

Consequently
p € HZ (0,m) N H, (0,7)

Similary if we take (@, @) = (0,0) € H} (0,7) x H} (0, ), we find
6c H2(0,7)NH!(0,7)
Finally, from (3.8)5; we get

//1 ) New (7, 8)ds € L* (0, )
0

Hence, there exists a unique U € D (.A) such that (3.7) is satisfied. Consequently, the operator .4 is maximal.
With this , we conclude that A is a maximal dissipative operator. Consequently, A is the infinitesimal generator
of a linear contraction Cy-semigroup on H. Therefore, the well-posedness result follows from the Hille-Yosida
theorem. ( see [34]) [ |

4. Exponential decay
In this section, we state and prove technical lemmas needed for the proof of our stability result.

Lemma 4.1. Let (u, , 0, z,m) be a solution of (3.3) - (3.4) . Then, the energy functional E (t), defined by

1
0
T 1 72 X o .
1
—|—§///a 172 ()] z2($7p70,t)d0dpdx+i/ﬁ(s)/ni(x,s)dxds 4.1)
0 0 7 ) 0

satisfies

T s

E'(t) < - ’)/1—/|’}/2(0')|d0' /utdm—l— / /7] xsdxds—T/gofdx 4.2)
T1 0 0

0

Proof. Multiplying (3.3)1, (3.3)2, (3.3)3 by u; , ¢ , 0 respectively, integrating over (0, ), and Multiplying(3.3),
by |v2 (0)| z , integrating over (0,7) x (0,1) x (1, 72) then,using integration by part and taking into account

e

[V =)
MM
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the boundary conditions and summing them up, we obtain

T

d
di /(Pluf"‘J@%+C‘92+/~Lui+as03;+£§02+2b50uz)dx

0
T 1
+ [ [ [ohe) # @potdodpds
00

T1

™ T T T2
:*'Yl/U?dI*T/gﬁfdl‘*/u /’yg(a)z(az 1,0,t)do dx

0

T2

T 1 7o

/9/& Nez (T, 8 dsdx—/// |2 (o (z,p,0,t)dodpdx

0

Using (3.3)5, we obtain

/ (prui +J @] +c0+ pu +ap? +E@* +2bpu,) de

2dt
0
T2
/// V2 (0)| 22 (z, p, 0, t) do dp dx
:—/ut/'yg(a) z(m,l,a,t)dodw—r/gpfdm—'yl/utzda: 4.3)
0 0 0
T 1 72
—///|72(J)|zpz(m,p,o,t)dodpdx
0 0 m
—‘r//K( ) Mt Naw (T, 8 dsdx—i—// ) Ns Naz (2, 8) ds dx 4.4)
0 0

integrating by part the last two terms of (4.4) we get

™

1
E(t)—7/(p1ut2+J<pf+c€2+uui+agpi+§<p2+2bcpu$)dx

2
T 1 72 1 [eS) ™
/// [v2 (o (z,p, 0, t)dadpda:+2/ (s )/ni(a:,s)dxds 4.5)
0 0
and
T T2 T 1 T2
E’(t):f/ut/’yg(a) z(:z:,l,a,t)dad:z:f/// |v2 (0)] 2, 2 (z, p,0,t) do dp dx
0 T1 0 0 T1
f’yl/ufdxfT/gothxf%/n(s)?/ni(aj,s)dmds (4.6)
s
0 0 0 0
S
Sy
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On the other hand we have z (z,0, 0,t) = us (x,t), then

///W2 z(z,p,0,t)dodpdx
:_7//|72 x,l,at)dadw—i—* /|72 )| do /U?dx

T1 0

using integration by part and bringing in mind (H7) we find

s

178 [,
fi/n(s)%/nm(x,s)dxds

0 0
g b=o0
1. 9 1 2 (
=—=lim |k(s) | n;(z,s)dx e ng (z,s)dxds
s—b 2
0 b=0 0
_ 1 ! 2
=5 /" (s) | nz (z,s)dzds
0 0
Then, using Young’s inequality on the first term in (4.6) we have
s T2 1 T2 T
—/ut/’yg(a)z(x,l,a,t)dadxgf /|’)/2(0'>|d0' /utzda:
0 T1 0

™ T2

//|’yg 2(x,1,0,t)do dx

Inserting (4.7) , (4.8) and (4.9) in (4.6), we get (4.2)
Remark 4.2. The energy function E (t) defined in (4.1) is nonnegative. In fact,

2 2
MU?E+§<p2+2bums0=1 u(uz+b<p) +§(s0+buz>
2 % 3
1 v\ b\
() ()¢

from (1.3) we deduce that

V2
N -
| — |
/N
|
~m%
~——
e
8
+
/
2
|
‘0'
[\v]
S~
AN
[\v}
| I |

pul + €@+ 2bu, ¢

consequently
2

(o}

&

\Y

N | =
3 O,\

N

0

then E (t) is nonnegative.
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2 2 2 1 b 2 1 b2 2
prui +J i +cb T3 s up +ap; + B f—* da

1 T2 ™
1 1
5 [ [ [ohe@) 2 @pondodpdes s [ws) [0 (s dnds
00 0

4.7)

4.8)

(4.9)
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Remark 4.3. From (H2) we conclude that the energy functional E (t) is decreasing and bounded above by E (0)

Lemma 4.4. Let (u, p,0,z,1) be a solution of (3.3) - (3.4). Then, the functional

™

Il(t):pl/ utudx—i—%/zfdnm t>0,
0

0

satisfies

T s U

Ill(t)gf%/uidz+p1/ut2d:c+(;0/(¢2+92)dx

0

//|’)/2 2% (z,1,0,t) dodz

(4.10)

Proof. By differentiating I; (), using (3.3); and integrating by parts together with the boundary conditions, we

obtain

sy

Ill(t):f,u/’uidxfb/gpumderﬁ/Huzd:rerl/ufdm
0 0 0

0
T2

*/U/’}/Q(O') z(x,1,0,t) dodx
0

T1

Young’s , Poincaré and Cauchy Schwarz inequalities lead to

[ 307
—b/gouxdxgﬁ/u de + — @2dx
6 21
0 0

2
B/(pu,dx E/ daz+3ﬂ /92dz
6 2u
0

and

/ /")/2 z(x,1,0,t) dodx
gg/u d:c+ /|’yg )| do //|"}’2 2(x,1,0,t) dodx

Substituting (4.12) , (4.13) and (4.14) in (4.11), we get (4.10).

Lemma 4.5. Let (u, @, 0, z,m) be a solution of (3.3) - (3.4). Then, the functional
s s b s xr
=J/swtder%/902dx+ﬂ/so/ut(y)dydx , t>0,
]
0 0 0 0
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satisfies
L' (t) < —a/goidx— %/ 2dx—|—co/(ut2+<pf+92) dz
0 0
//|’)/2 2(x,1,0,t)do dx
0 71
b2
where y =& — —
I

(4.15)

(4.16)

Proof. By differentiating I2(t), using (3.3)2 and integrating by parts together with the boundary conditions, we

obtain

Ig/(t):—a/apidx— / de—l—J/ dm—l—(é—[)ﬂ)/apde
I
0

b
@t/ut dyda:—l / ug (y) dy dx

/ //’)/2 z(y,1,0,t)do dydx

Using Young’s and Cauchy Schwarz inequalities, we get

5——/ Odr < = /de+)1(<6—) /92

bp f bor [ o bplﬁ2] 2
< —
<pt/ ¢+ (y) dy dx o prdr + o uidz
0 0

o
0 0
b s xr U b - 271'
_l/sp/ut()dydx<x/ 2dp + — (71 ) /ufdx
% 4 X\ M
0 0 0 0
and
™ xr T2

_%/@//72(a)z(y,l,a,t)dadyda:

T1

2 [ 73
%/(pz (b”> /m (0)| do //w2 2(2,1,0,t) do da
N
71

Inserting (4.18)-(4.21) in (4.17), we obtain (4.16).

Lemma 4.6. Let (u, @, 6, z,m) be a solution of (3.3) - (3.4). Then, the functional
0= -co [0 [wdyds, t=0
0 0

429

(4.17)

(4.18)

(4.19)

(4.20)
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satisfies, for any €1 > 0, the following estimate

T

I (1) < -2 \m/utd:chel/(u +<p)dx+co<1+ 1>/92dx
0

+ p‘l/BITO /H(S)/Ufcda:ds+7r281 /|72 (0)] do //Wz *(z,1,0,t) dodx (4.22)
0 0 ™

Proof. Differentiating the functional I5(¢) using (3.3)1, (3.3)5 and integrating by parts together with the boundary

conditions,, we obtain
™

I3 (1) :—plﬁ/utd;v—uc/ﬁuwdx—bc/&odx—i—ﬂc/ﬁ dm—c*yl/uté’dx

0

T T2 T s}
—|—c/ //72 z(y,1,0,t) dodydx —l—p1/ /m(s) N (z,8) dsdz (4.23)
0 0
Using Young’s and Cauchy Schwarz inequalities,
—uc/&uwdxgel/uidx—kf/wda: (4.24)
0 0 1o
—be [ Opdxr <ey | podx+ e 0“ dx (4.25)
0 0 Lo
T T To
/0//72 (o) z(y,1,0,t) dodydx
0 0 T1
2 T T2 ™ T2
< % /02 dx + me; /|72 (0)| do // 1Yo (0)] 22 (x,1,0,t) do dx (4.26)
! 0 T1 0 ™
pl/ut/m(s) Ne (z,8)dsdx < p14\5| /uf dx + p‘l;lo /n(s)/nﬁ dx ds (4.27)
0 0 0 0 0
T T 2 T
—cvl/utGda: < 1Bl o1 /ufda:—&— (cy) /92dx (4.28)
4 ) 18] p1 )

0

Substituting (4.24)-(4.28) in (4.23), we get (4.22).

Lemma 4.7. Let (u, ¢, 0, z,1n) be a solution of (3.3) - (3.4). Then, the functional

sy oo

I4(t):—ﬁ—co 9//{(3) n(x,s)dsdx , t >0,

0 0

e
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satisfies, for any €5, €3 > 0, the following estimate

I4/(t)S—g/ﬁ2dx+62/gofdx+53/ufdx— C;sg)//f’(s)/nidxds
0 0 0 o 9 0
+ ¢ 1—1———1—6 Kk(s) | mydxds (4.29)
€2 €3
0 0

Proof. By differentiating 74(t), using (3.3)s, (3.3)5 and integrating by parts together with the boundary
conditions,, we obtain

- 2

1 oo
:—c/Qde—l——/ / ) ns (x,8)dsdx + — /ﬂ(s)ni(x,s)ds dx
Ko
0 \0

6 ™ o0
_A ut/m (s) ny (x,s)dsdx + — /(pt/li(s) n(x,s)dsdx (4.30)
K
% 9 0
Young’s , Poincaré and Cauchy Schwarz inequalities lead to
— | o | K(s) n(x,s)dsdx < e [ ¢; dx+ k(s) | m;dxds 4.31)
Ko 462 Ko
0o 0 0 0 0
B 2 B 2
—— Jus | K(S) ny(x,8)dsdx <e3 | uyde+ k(s) | mydxds (4.32)
Ko 453 Ko
0o 0 0 0 0
™ o0 2 o0 ™
1
— /Ii (8) Ny (z,8)ds | dx < /H(S)/T}i dx ds (4.33)
0 0 0 0
and
< / 0 | k(s)ns(x,s)dsdx < = /02 < 5 //1’ (s) /nf dz ds (4.34)
Ko 2K
0 0 0
Estimate (4.29) follows by substituting (4.31)-(4.34) into (4.30). |

Lemma 4.8. Let (u, @, 0, z,n) be a solution of (3.3) - (3.4). Then, the functional

T2

T 1
:///oe*"p|fyg(0)|22(x,p,a,t)dodpdx t>0
00

T1

satisfies the estimate

1

I (t) < ml//hz 2(x,1,0, t)dadx+71/ufd:z:
0

—ml/// |2 (o (x,p,o,t)dodpdx ¢t >0 (4.35)
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Proof. By differentiating I5(¢), using (3.3)4, integrating by parts and using the fact that z (x, 0, 0, t) = uy (2, t)
gives, we obtain
™ T2 T2 T
B =- [ [ @2 eranddt | [held) [
0 7 T1 0

T 1 72
—///a Iy () 22 (2, p, 0, 1) do dp d
0 0 T1

using the fact thate= < e 7” <1 we get forall p € [0, 1]
™ T2 T2 T
I5' (t) < 7//670 Iy (0)| 2 (z,1,0,t) do dx + /|’y(0)|da /ufd:c
0 m T1 0

T 1 72
—///a Iy ()] 2 (2, p, 0, 1) do dp da
0 0 T1

Since —e ™7 is an increasing function, we have —e~? < —e~ "2 for all o € |11, 72| . Finally , setting m; = e~ ™
and bringing in mind (2.6) we get (4.35) |

Now, we define the Lyapunov functional £(¢) by

2

LO=NEQ+LH+MLO+ 55—

I3 (t) + NoIy (t) + NsIs (t) (4.36)

where N, Ny, Ny, N3 are positive constants.

Lemma 4.9. Let (u, ,0,z,1n) be a solution of (3.3) - (3.4). Then, there exist two positive constants A1 and A2
such that the Lyapunov functional (4.36) satisfies

ME (t) < L(t) < M E(t), VE >0, (4.37)
and -
L'(t) < —E(t) +§2//<;(s) n2]?ds ; <1, s> 0. (4.38)

0
Proof. From (4.36), we have

™ U

IL(t) — NE (1) < pl/ |utu|d3:+%/UZdJH—NlJ/\¢t<p|dx+ng/¢2dx
0
0 0 0

T x x

b 2c T
N1%/<P/Ut(y)dyd$+m/ H/ut(y)dy dx
0 0

0 0
g 00

+ 225 [l [ty e.s)ds| o

Ko

0 0
T 1 72
+N3///Ue—0l' |'Y(U)‘z2 (z,p,0,t)dodpdx
0 0~

e
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By using the Young’s, Poincaré and Cauchy-Schwarz inequalities, we obtain
L(5) = NE ()] < <E (1), s >0,
which yields
(N—E@)<L({t)<(N+g¢)E(t),

by choosing N (depending on N7, Ny, and N3) sufficiently large we obtain (4.37).

Now, By differentiating £ (t), exploiting (4.2), (4.10), (4.16), (4.22), (4.29), (4.35) and setting £; = —F p; 1A

1 P1
83 =
Ny Ny

€9 = we get

”‘N}

T1

™ N s
_(NT—CQNl—l)/(ptd (iX—CO—Z>/ 2dr —
0 0

CN2 260 < 8 >)/7r 2 /
— | —= —cg — ¢gN7 — 1+ 0“der —a N 2 dx
(55 —eomeom = 5 (4 / s

T 1 72

7m1N3///U|’YQ(U)|Z2(l’,p,0,t)d0'dpd$
0 0 T1

— | miN3 — cg — coNy — /\’yg )| do //hg 2(x,1,0,t)do dx

+(g‘053%)/nwm%@

% No\Y [
+ ( ﬁzo + coNy (1 + Ny + p2)> /H(s) 02| ds (4.39)
1
0

L) < - %—/ﬁﬂﬂdi+1-ﬂm—%M ]
It
4

w2
uydx

O\:\ O\

Now, we select our parameters appropriately as follows:
First, we choose N; large enough so that

=X B
a1 1 Co 4>

Next, we select N, large enough so that

N 2
a2:C 2—00—60N1— 0 <1+ 8 >>0
ppr Bl

We take N3 large such that

pr? |
77111\73—00—6()]\[1—74 /|72(0)|d0>0
T1

Finally, we choose N large enough so that (4.37) remains valid, further

N ¢k
CNT—Ny—1>0 |, Y _ckO)
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and
T2
oy = 'yl—/|’yg(a)|da N+1| —2p1 —cogN1 — 1 N3 > 0.
T1

Let as = % ,ag =a Ny ,ar =mq N3, ag = QﬂLgo—FCoNg (1+NQ+%>
Ultimately, (4.39) turns out to be

Lt <-w /(uf+<pf+02+ui+<pi+cp2)dx

0

s 17’2

_w///ahg (a)|z2 (x7p,a,t)dadpdm+ag/f<a(s) ||17I\|2d8
00 ™

0

Meanwhile, by revisiting the energy functional (4.1) and utilizing Young’s inequality we find (4.38) |
Now, we can state and prove the following stability result

Theorem 4.10. Assume that (1.3) holds and k satisfies (H1) - (HT). Then system (3.3)-(3.4) is exponentially
stable. In other words there exist two positive constants v and vy such that

E(t) <wvge ' | ¥t>0 (4.40)
Proof. Multiplying (4.1) by 7, using (H6), we end up with
V()< —raE(t) , V>0 (4.41)
where) (t) = rL (t) + 2w E (t).Using(4.37),it’s readily follows,for some ag, by > 0
apE (t) <Y (t) <bgE(t) , Vt>0 (4.42)
Consequently, inequality (4.41) becomes
Y'(t)<—uvY(t) , VE>0 (4.43)

where v = rbj A simple integration of (4.43) over (0, t) induces
0

Y(#) <Y (0)e "t | VE>0 (4.44)

Accordingly, by merging (4.42) and (4.44), we get (4.40). which leads to the conclusion of our stability result. W
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