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1. Introduction

This manuscript deals with two eigensurface problems

AZ w4+ Hi (B, ui) = V() ug*tug TT Jugl® ™t = dmg(2)Jug [P~ 2wy, in
J=1g#i s
U; = AUL = O7 on aQ .
1<i<n
and
AZ w4+ Hi(B,us) = V() ug T ug TT Jug]® ™+ = dmg (@) Jug [P 20 = plug P~ 2, in
=1,
u; = Au; =0, on 02
1<i<n
(1.2)
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Existence of strictly or semitrivial principal eigensurface for cooperative (p1, ..., p, )-biharmonic systems

where )\ and 1 are real parameters, @ C RY (with N > 1) is a bounded domain with smooth boundary 92 and for
n
i€ {l,---,n} a; p; are numbers satisfying a; > 0, p; > 1 with 21 O‘#“ =1; Ai“i = A(JAu; [Pi72 Auy)

is the p;-biharmonic operator and H;(3,u;) = 283 - V(|Au;[Pi~2Au;) + |B8)?|Au;[Pi~2Au;. Let us suppose
throughout this work that the functions V' and m; lie in L°°(£2) and are nonnegatives. In this paper, we are
essentially interested in the existence of non-trivial solutions of (1.1) that is ((u1,---,us),3,A) € W(Q) \
{(0,---,0)} x RY x R with

W@ = [Jws @ nwi» (@),

=1

The Cartesian product of n Sobolev spaces W (€2) is a reflexive Banach space (see [1, 9] for details) endowed
with the norm

n
(s uz, - un) | = D 1Ay,
i=1

where |.||, stands for the Lebesgue norm in L for all p € (1,00]. When the eigensurface parameter j3 is
neglected in (1.1), the authors in [4] have recently established the existence of weak solutions via mountain pass
theorem as well as the positivity and simplicity results for semitrivial and strictly principal eigenvalues of the
problem. So the question of considering the presence of such a term becomes natural. This justifies the scalar
version of (1.1) in the case V' = 0, namely

Find (u,3,T) € (W2P(Q) nW,?(Q))\ {0} x RN x R such that
A(|AuP2Au) + 28 - V(|Au[P72Au) + |B)?|Au[P~2Au = Ta(z) [u[P~2u in Q
u=Au=0 on 012,

investigated in [10] where the authors proved the existence of a sequence of positive eigensurfaces (I'2(.,a)),,.
Later on, the first eigensurface I'} (., a) is then characterized and it is shown that if a > 0 a.e. in Q, then '} (., a)
is simple and principal (see [11]). But the question of the impact of a weight V' on the structure of the spectrum as
we consider in the current work is left open so far. For some additional results on the spectrum of p-biharmonic
operator, we refer to [2, 3, 5, 8, 12, 14]. Considering the Poisson equation subject to Dirichlet boundary condition

(1.3)

—Au= f(z) in Q
u =0 on Of)

where f € LP(Q), it is known from [9] that (1.3) has a unique solution in W22 () N WP () and the inverse A
of Laplace operator possesses the following properties that are of interest for our results:

Proposition 1.1. [7, 15].
1. (Continuity) There exists a constant ¢, > 0 such that
IAfllwze < cpll fllp
holds for all p € (1,00) and f € LP(Q).
2. (Continuity) Given k € N¥, there exists a constant cp ;. > 0 such that
IAfllwn+2r < cpillfllwns

holds for all p € (1,00) and f € W*P(Q).
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/Au.vdx:/u.Avdx
Q Q

holds for u € LP(Q2) and v € L (Q) withp = s27 and p € (1,00).

3. (Symmetry) The identity

4. (Regularity) Given f € L>(Q), we have Af € CY¥(Q) for all v € (0,1). Moreover, there exists ¢, > 0
such that

IAfllcrv @) < cull flloo-

5. (Regularity and Hopf-type maximum principle) Let f € C(Q) and f > 0 then w = Af € C1¥(Q), for all
v € (0,1) and w satisfies: w > 0 in (), g%‘: < 0 on 0.

6. (Order preserving property) Given f, g € LP(Q) if f < ginQ, then Af < Agin Q.

The objective of this work is to examine the extent to which the results, on one hand in [4] on principal
eigenvalue of biharmonic system and on the other hand in [6], hold for eigensurface problems in a context of
cooperative (p1, - - , p,,)-biharmonic systems such as(1.1) and (1.2).

The rest of the paper is organized as follows. In Section 2, we introduce some definitions and preliminary
results before completing the section with the statement of our main results regarding (1.1) and (1.2). The proofs
of our main results are given in Section 3.

2. Preliminaries and Main Results

We begin with some well-known transformation (see for example [10]) that helps rewriting both problems
(1.1) and (1.2) into a different form as follows: For all 5 € RY, we have
A (eﬂ'm|Au|p_2Au) =V|[V (eﬁ'm|Au|p_2Au)]
=V|[V (e’B'I) |AulP~2Au + %%V (|Au/P~2Au)]
=" [A2u+28 -V (|AuP72Au) + |B]*|AulP 2 Au]
A (77| AulP?Au) = ”F[A2u+ H(B, u)],

and setting AZPu = A (e77| Au[P~2 Au), one can see that (1.1) (resp. (1.2)) is equivalent to

Find ((u1,--- ,un),A) € W(Q)\ {(0,---,0)} x R such that

n
Af,;ﬁui —V(@)eP T lus|*tuy  TT ||t = Amy(z)e? @ |uy P 2w, in
J=1,j#i 2.1
u; = AUZ = O7 on 89

1<1<n

(resp.

Find ((u1,- - ,un),p) € W(Q)\ {(0,---,0)} x R such that

n

AZPu; = V(@)eP lu|* ruy TT Jug|* ™+t = Mmg(2) el u [P~ u; = pef #lu; [P 2w, in Q
=1t
U; = Aul = 0, on aQ
1<i:<n
2.2)

). For the sake of clarity, we introduce a series of definitions and framework in order to well understand the
presentation of our main results.

e
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Existence of strictly or semitrivial principal eigensurface for cooperative (p1, ..., p, )-biharmonic systems

. The set of couples (8, A) € RY x R (resp. (8, ) € RY x R) such that there exists a solution

((ut, -+ un), B, N) e WEQ\{O,0)} x RY x R (esp.
((ur.-+ yun),Byp) € W(Q)\{(0,---,0)} x RY x R) of (1.1) (resp. (1.2)) is called the third-order
spectrum of the (p1, - - - , p,)-biharmonic operator plus potential. The couple (5, A) (resp. (8, 1)) is then
called a third-order eigenvalue and (uq,--- ,u,) is said to be an associated eigenfunction of (1.1) (resp.

(1.2)). Moreover, a set of third-order eigenvalues of the form (3, f(3)), for 3 € R and some function
f:RY — R, is called an eigensurface.

. For B € RY, ((uy,-++ ,un),\) € W(Q) x Ris a (weak) solution to problem (2.1) if

P Uzépzdl’,

n
/ 65'””|Aui Pi=2 Au; Ag;dx 7/ Vel H \uj|°‘j+1|ui @i Ly pide = /\/ mieﬁ'ﬂu
Q Q J=1,j7 ¢

for1 <i < nandforall (p1, - ,p,) € W(Q).

. For B € RY, ((ug,- -+ ,up), u) € W(Q) x Ris a (weak) solution to problem (2.2) if

n

/eﬂ'x|Aui|p"_2AuiA<pidx—/Ve’B'x H |uj|af+1|ui|o"'_1uig0idx—)\/mieﬁ‘$|u|pi_2ui4pidx
Q Q Q

J=1,j#i

= u/ eﬁ'm|ui|p"—2ui<pidx, forl <i<mn, (2.3)
Q

for all (9017 U a@n) € W(Q)

I (g, ooy un), A) € W(Q) x R (resp. ((ug, -+, un), ) € W(Q) x R) is a (weak) solution to problem

(2.1) (resp. (2.2)), (uy,--- ,uy,) shall be called an eigenfunction of the problem (2.1) (resp. (2.2))
associated to the eigenvalue A (resp. p). Let us agree to say that an eigenvalue of (2.1) or (2.2) is strictly
principal (resp. semitrivial principal) if it is associated to an eigenfunction (uq, - - - ,u,) such that u; > 0
oru; <0,Vi € {1,--- ,n} (resp. there exist ) # J,, C {1,--- ,n} such that ux, = 0, Vk € J,, and u; > 0
oru; <0,Vi € {l,--- ,n}\ Jp).

I ((ug, o un), w(B,A)) € W(R) x R(resp. ((ur, -+, un), AV, B,m1, -+ ,my)) € W(R) xR) is a

weak solution to problem (2.2) (resp. (2.1)), (u1,-- - ,uy) shall be called an eigenfunction of the problem
(2.2) (resp. (2.1)) associated to the eigenvalue (3, A) (resp. A(V, B, mq, - ,my)). So (u1, - ,up)
shall be called an eigenfunction of the problem (1.1) (resp. (1.2)) associated to the eigensurface
AV, .,mq, -+ ,my) (resp. u(.,\)). We can say that an eigensurface of (1.1) or (1.2) is strictly principal
(resp. semitrivial principal) if it is associated to an eigenfunction (u1, - - - , u,) such that u; > 0 or u; < 0,
Vi € {1,--- ,n} (resp. there exist ) # J,, C {1,--- ,n} such thatuy, = 0,Vk € J, and u; > 0 or u; < 0,
Vie{l,---,n}\ Jpn).

Let then introduce the following energy functional

where

J)\,g : W(Q) — R
(U1,"' 7un) — J)\,B(uh"' 7un) = Eﬁ(ula 7un) - Vﬂ(ula ,’U,n) _)\Mﬁ(uh ,Un),

Eﬁ(ula"' 7un) = Za ki /eﬁx‘Auz Pidy
—~ pi Jo
. "o +1
Vﬁ(ul’ - 7un) = / Veﬂ'm H |u1 aiJrld.r, ]\4{3(1117 .. ,Un) = Z zp Mi”@(ui)
Q i=1 i=1 i

e
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with
M; g(u;) = / mie? ®|uPide,  Y(ui,---u,) € W(Q).
Q

Equation (2.3) is therefore equivalent to
v‘])\w@(ul’ e ?un) = leﬁ(ula e ,’U,n)

where

n i 1
Ig(uq,- - ,un)zz%/ﬂeﬁﬂuﬂpidm V(up, - un) € W(Q).
i=1 g

We state our main results in the following and the first reads as:
Theorem 2.1. (i) Forany fix A\ € R, there is an eigensurface of (1.2) given by
p1(B, A) = inf{Jy g(u) : u € Mg} 24)
for B € RN where
Mgp ={u=(ur, - ,un) € W(Q): Ig(ug, - ,u,) =1}
Furthermore, 111(8, \) is the smallest eigensurface of (1.2).

(ii) For 3 € RN, the function X € R + p1(3, \) is concave and differentiable, strictly decreasing and goes to
—o0 as \ tends to oo with 11y (8, \) = —Mpa(u1,0, -+ ,Un,o) where (u1,0, - ,Un o) is Some eigenfunction
of (2.2) associated to p1 (B, \).

i) If ((u1, -+ ,un), B, w(N)) is a solution of (1.2) then —Au; € C(Q) and u; € CH(Q), for 1 <i < nand
forallv € (0,1).

ForV =m; =0,Vi € {1,--- ,n}, letus set

s (B) = inf{ZW/ | Ay,
o1 Pi Q

Note that g, (-) > 0 and if g1 (., A(.)) = 0 then 8 — A(3) is an eigensurface of problem (1.1). So, our second
main result is based on the following assumption (A): ||V || < u«(-) and gives the existence of an eigensurface
for (1.1).

Pidz : (uy, -+, up) GMg}.

Theorem 2.2. Assume that hypothesis (A) holds. The following conclusions hold.
(i) Forall B € RN, uy(3,0) > 0.
(i1) There exists an eigensurface of (1.1).
(iii) If p1(., A(.)) = O then the eigensurface \(-) is a semitrivial principal eigensurface or strictly principal

eigensurface of problem (1.1). Moreover, the eigensurface \(-) is simple.

We complete this section with our last main result which establishes the lowest positive eigensurface for (1.1)
and its simplicity.

30
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Theorem 2.3. Assume that hypothesis (A) holds. The lowest positive eigensurface of problem (1.1) is defined by

A1(Vv7ﬁa’rnlv"' 7mn): min E,@,V(uh'” ,Un),
(ug-+,un)ESH

forall B € RN and

E,@,V(u17"' 7un) - Eﬁ(uh aun) _Vﬁ(ula 7un)7
S = {(u1, -+ ,un) € W(Q): Ma(u, -+ ,u,) =1}

Furthermore,
@) M(V,.,mq,--- ,my) is a semitrivial principal eigensurface or strictly principal eigensurface.
@) M(V,.,mq,--- ,my,) is simple.

(i) M (V,.,my, - ,my) <min{TV (., m;),i € {1, -+ ,n}} with

v e RN, TP (B,m;) inf sup/eﬂ"”\Ampdxwhere
Q

KCBi yek
B; = {K C N3: K is compact, symmetric and genus of K > i},

Np = {v e W2P(Q) N Wy P(Q) : / ae? T lu|Pdr = 1} .
Q

3. Proofs of the Main Results

3.1. Proof of Theorem 2.1

Lemma 3.1. Let (w1, - ,wy) € [L®(Q)]". Ifw1,- - ,wn > 0 on Q then there exist n + 1 positive constants
C1,8," " ,Cnt1,8 Such that

ZHAUZ

Sforevery (uy,--- ,up) € W(Q).

Proof. From [4, Lemma 2.3], we conclude the existence of n + 1 positive constants k1, - - -, k,, such that

Z HAuZ p‘ < kny1dao,n (ug,--- ,un)—i-z <k1/w1ul p"'dx).
i=1 i=1 Q

Consider the function fz : z € Q ¢, Then, there exist two positive constants k1 s = min fg(x) and
€N

n
P < cepg1,8a 58U, U) + Zci*ﬂ/ wie? ;P da
i=1 @

ko g = max fz(x) satisfying
e

]{5175/101"“1' pldmﬁ/wleﬁﬂuz
Q Q

k1 gdnopn (Wiy s un) < Jxplur, o un) < ko gdyo,y (Un, o un).

As a consequence, we obtain

Pidy < kgﬁ/ wi|u;|Pide, forl <i<mn
Q

and

n
kl,ﬂZ”Aul”% Sk,L+1J>\75(u1,--- Up, +Zk / u;|Pid.
i=1
One can therefore take ¢; g = k; X k:f },, 1 <4 < n+ 1 to complete the proof. [ |
S
Vo
MM
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Proof of Theorem 2.1. (i) Let 3 € R™ and apply Lemma 3.1 for w; = 1,1 <4 < n. Then

n

0= Y (18wlg) < cvnpplun ) + Y (can [ 5 hupao)
i=1 2

i=1

n
a; +1 .
CoirgTas (U, un) +cop Y (Zp‘ / e fu;
i=1 LAY

= cnt1,80 58U, un) +cop, V(ug, - un) € Mg

IN

Dpi dl’)
PiCi,B

where co g = max{ ;7,1 < i < n}, so that J) g is bounded below on Mp. Furthermore any sequence
(1,5, ,Un,) that minimizes Jy g on Mg is bounded in W (€2). Thus there exists (w10, -, Un,0) € W()
such that, up to a subsequence, (u1 g, - - , Un, i) converges weakly to (u1,0, -, Un,0) in W(€2) and strongly in

IT LP(2). As aresult,
i=1

In (Ui, 5 vn0) < klinoo Inp(urp, s vng) = p(B,0), (w0, unpo) € Mp
and consequently Jy g(u1,0,- - ,Un0) = #1(8, A). By the Lagrange multipliers rule, p; (8, A) is an eigenvalue
for (2.2) and (uq,0,--- ,un,0) is an associated eigenfunction. Moreover for any eigenvalue p(5, ) for (2.2)

associated to (ux 1, ,uxn) € W(Q\{(0,---,0)},onehas Jx g(ur1, - ,urn) = p(A)Ig(uri, -, urn)
with Ig(ux1,- -+, uxy,) > 0. Consequently

Ur1 U Inglurt, - uan
(B, A) < Jxs TR e Iﬁ( ) = (B, A).
Iﬁ(u/\»h”' ’u/\yn)pn B(u)\,17"' au)\,n)

Ig(uxi, - s urn)™

We then conclude that pq(3,\) is the smallest eigenvalue of (S)). Consequently pq(.,\) the smallest
eigensurface for (1.2).

(i1) This follows a proper modification of the proof of Proposition 2.5 in [4], so we omit it.

(ii1) An easy adaptation of Lemma 3.2 in [13]. |

3.2. Proof of Theorem 2.2

We collect in the following some essential results adapted from [4, 7, 15] which are of need to handle the rest of
our statements.

1. Forallp > 1,u € W2P(Q) N Wy P (Q), v € LP(Q), one has v = —Au <= u = Aw.
2. If p > 1, and N,, denote the Nemytskii operator defined by

()P 2u(x) if u(x) # 0

Np(u)(@) = {O ifu(z) =0,

we have the following
Vv e LP(Q), Yw € i Q) Np(v) =w = v=Ny(w)

/ p
where p = T

3. If (uy,--- ,u,) is an eigenfunction of (1.2) associated with y(.) then for 3 € RY, (uy,--- ,u,) is an
eigenfunction of (2.2) associated with p(/) and the functions p; = —Aw;, 1 < i < n check
PN, (97) = A | [u(N) + Amle® N, (M) + Vel T |Ag
i=1,i#]

Furthermore,

32
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(@ ((u1,0,- - Un0), B, 1(A)) is a solution of (1.2) if and only if ((¢1,0, .-, ¥n,0), B, (X)) verifies
Find ((¢1,- - ,¢n), (N)) € L(Q) such that
7Ny, () = A[1(A) + Amyle?* Ny, (Ap;) + Vel i_ﬂ# [A(0a)[* A () T A (97))43.1)
1<j<n, |

where L(Q)) = (lﬁ Lri(Q)| \ {(0,--- ,O)}) x Rand ;o= —A(ujo).

®) ((¥1,0, ,Un,0), #1(N)) € Lo(£2) is a solution of (3.1) if and only if ((¢1,0,- - , ¥n,0), A) € L(2)
satisfies

Find ((¢1,--* ,¢n),A) € L(Q) such that

7 TN, (1) = A (Amﬂ'eﬂ"r% (Apj) + Vel TT |A(e:)

i=1,i#j

O‘i“IA(w)Ia”A(sﬁj)> :
1<j<n

Based on all stated above, we can give a new characterization of (2.4) as follows.

Nl(ﬁ7)‘(ﬂ)) := inf FB,/\(QOD"' a‘pn) : (8017"' 79071) € H Lpi(Q% Rﬁ(ﬁpl,"' 7(»071) =1

i=1,i#j
where
F,B,A(@l, Ce 780n) = Z (z [/ eﬁ-zhpi Pidy — /\/ mieﬁ'm|Acpi Pzdxil) _ / Veﬂ-z H |A‘Pz‘ Oéi+1dx
1 Di Q Q Q i1
and
i+ 1 @ .
Rp(p1,-++ s n) = Z 17/ e’ |Ap; [P dz.
-1 P Ja

Lemma 3.2. ((v11, - ,91,n), #1(B, ) € L(Q) is a solution of problem (3.1) if and only if

G ey P1n) =0= min G s eeey Py 32

BA(P1,15 5 P10) L BA(P15 s o) (3.2)
where
Gﬂ,k((pla e ,<pn) = Fﬁ)\(@h U a@n)_,ul(/ga /\)Rﬂ((ﬂl, e 7@”) and L*(Q) = HLP1(Q) \{(07 e 70)} .
i=1
Proof. Assume that ((w1,1, - ,91n),01(8,A) €  L(Q) is a solution of (3.1). Then
Fga(p1,1, ,01,0) = (B, N Ra(p1,15 5 p1.0) and
Goalpr - pin) = Faalern- @) — mBNRs(10,--910) = 0. Let us set
@; = : — forevery (¢1,--- ,¢n) € L*(2) and 1 < i < n. Thus Rg(p1,- -+ ,¢,) = 1 and we
[RB(@la 79071)}“ F

first infer that pi(8,) < Fpa(@rc.@e) = palPL 5 0n) g econdly,

RB(@M U 7<)0n)
Goa(p1s-son) = Faa(pr, -, 0n) — (M) Rg(p1, -+ ,on) = 0 forall (o1, ,0n) € L*(2) so that
(3.2) is satisfied. Conversely, assume that (3.2) holds. We then have VG x(¢1,1, - ,¢1,n) = (0,--- ,0) thatis

oG 5
FTB.A ©11, - ,01m), ¥y = 0, forl < i < n,forall (Uy,---,¥,) € LPi(Q2). This implies that
0 ’ '
Pi i=1
L1 5 P1n)s #1(A)) € L(Q) is a solution of (3.1). n
({1, P1.n)s 1 (X))
S
V=)
MM
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Lemma 3.3. If (A) holds and ((011, ,p1.n), #1(B,A)) € Lo(2) = | [TTLP ()| \ {(0,---,0)} | x {0}
pi

is a solution of problem (3.1) then ((|¢11],- -, |¢1.n]), #1(B8, N)) € Lo() is also a solution of problem (3.1).

Proof. The ideas of the proof are similar to those of [4, Lemma 3.5]. [ |

Proof of Theorem 2.2. Assume that (A) holds.
(i) Let B € RY. We have Vg(u1, - ,un) < |[Veods(u1, -+, un), V(u1, - ,u,) € W(£) and also
Eﬁ(uh T vun) - ||VHOOIﬁ(u17 to aun) < Eﬁ(ulv T 7un) - Vﬁ(ulv T 7un)7v(ulv T ’un) € W<Q) Then

ps(B) < Eg(ur, -+ yun) = Va(ur, -+ un) + |V,  V(ui,---,un) € Mg

and 1, (B) — |V |loo < inf{Eg(u1, -+ ,un) — Va(ur, -+ ,un), (w1, -+ ,u,) € Mg} < p1(8,0). This ensures
that 111 (3,0) > 0 for all 5 € RV,

(ii) It follows from Theorem 2.1-(ii) that there is a unique A(-) > 0 such that p;(., A(.)) = 0 that is (1.1)
admits an eigensurface.

(ili)  Suppose that A(-) is an eigensurface of problem (1.1) associated to
(ug, -, up) € W(Q)\ {(0,---,0)}. To prove that either A(-) is a semitrivial principal eigensurface or strictly
principal eigensurface of (1.1), we proceed in two steps.
Step 1. Suppose that for all i € {1,---,n}, u; Z 0 and let 3 € R™. It follows from Lemma 3.3 that both
elements ((¢1,--- ,¢n), #1(8,A(B))) € Lo(2) and ((|e1], -, l¢nl), #1(B, A(B))) € Lo(2) are solutions of
(3.1) with p; = —Awu; # 0, for 1 < i < n. Since |p;| > 0, then A(Jp;|) > 0, for 1 < ¢ < n. Therefore for

1<i<n Ny (Alwi) > 05 TT (Al DI A(lil)|*) > 0and

J=Li#j

A(B)mie? " Ny, (Algs|) + Vel s ]

n
il = N,y | e=P*A
: J=L i

forl <i<n.

(A(Iw)l("i“A(I«m)IM)D >0

Hence ((¢1,- -, ¢n), #1(8, A(B))) satisfies (3.1) with ¢; > 0 or ¢; < 0. Since by regularity result Theorem
2.1-(iii), ¢; € C(Q), we conclude from Proposition 1.1 that u; = Ap; > 0 or u; = Ap; < 0. This expresses that
A(.) is a strictly principal eigensurface of (1.1).

Step 2. Suppose there are 4,j € {1,---,n} such that [u; = 0 and u; # 0], then one proves similarly that
[u; = 0and u; > 0in Q or u; < 0in Q] so that A(.) is a semitrivial principal eigensurface of (1.1) by Section
2. The rest of the proof is devoted for the simplicity of A(-) and we just consider the case A(-) is a strictly
principal eigensurface as the second one follows readily. Indeed, let (w11, ,u1,,) and (ug1,--- ,u2,,) be
two eigenfunctions of ((1.1)) associated with A(.). Then, ((¢1,1,- - ,¢1.0),0), ((p2,1, - ,921,),0) € Lo(2)
aswell as ((|¢1,1], -+ 5 [@1,0]),0), (2,11, » [@2,n]),0) € Lo(2), are solutions of (3.1) where ¢; ; = —Au; ;

with ¢;; > Oor ¢;; < 0, forj € {1,2} and i € {1,--- ,n}. For zy € Q, let set k; = ‘%ESEO;
' ©1,i(To
wi i(x) = max {@a2,(x), kip1(x)} for all x € Q. From an extended version of [6, Lemma 9], we derive that
_ N, (0o
((w1,1, ..., w1,n),0) is a solution of (3.1). Hence, N, (¢1,:), Np, (02,:), Np, (w1;) € C1v(Q) and M €
pi\P1,i

C*(9). For any unit vector e = (0,--- ,e;,---,0) with j € {1,--- , N} and t € R, we have

Ny (p2,:) (0 + te) — Np, (p2,i)(w0) < Np, (w1,3) (w0 + te) — Np, (w1,i)(xo)
Np, (kp1,i)(zo +te) — Np, (kp1,i)(z0) < Np, (w1,:)(xo + te) — Np, (w1,i) (o)
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Using standard argument as in [4], we divide these inequalities by ¢ > 0 and ¢t < 0 and let ¢ tend to 0% to get

o D (22,0l (a0) < %{Nm Wl o ¥ (22.0)(w0) = 5 [N ) )
o (1)) 0) < 5 [Ny a1 ) W (a0 > 5 [N (0, )0)
0

5 V) 0) = -y, ] eo)

%[Nm(k@l,i)](dfo) = ij[Np" (w1,5))(o)

forallj € {1,---, N}. Thus, forallj € {1,---, N}. Hence,

VN, (02.4)(w0) = VNp, (w1,:)(0) = VN, (kp1,:)(w0) = K" "'V Ny, (01.5) (o)

and one easily checks that V (p(<ﬂ2)> (xp) = 0 which yields
Ny, (p1.4)

Npi(92i) v _ Noile2i) o (#2i(20) pi_lz pi—1
NG = e = (2455) -k

for all z € 2. Consequently @ ; = k;p1 ; and one can write ug ; = k;uy ; foralli € {1,--- ,n}. |

3.3. Proof of Theorem 2.3

Proof of Theorem 2.3. Assume that (A) holds. From Theorem 2.2, there is a unique Ay (V,.,mq, -+ ,my,)
solution of 1 (., A) = 0 so that A (V,.,mq,--- ,m,,) is an eigensurface of (1.1) and

:ull(ﬁa)‘l(‘/aﬂamh'” ;mn)) = —Mﬁ(ULO,"' aun,o) < O:M1(67A1(V767m1a'“ 7mn)>
= EB,V(ul,Oa"' 7un,0) - Al(vvﬁamla”' 7mn)M5(ul,Oa'"' 7un,0)

for all 8 € RY, with (w10, yUn0) € Mpg. Then, the positivity can be obtained Eg v (u1,0, - ,Uno) =
)\1(V, B, My, - .- 7’nln)]\45(’u,17(), cee 7’le()) > 0 and using (EI,O; cee ,En,o) with Ui = Yi,0 T
[Mﬁ(ui,()v T 7’“2}0)]137

as an admissible function for Ay (V, 8, mq,--- ,my), we reach Eg v (T1,0," - ,Uno) = M(V,B,m1,- - ,my).
Next, we can normalize any (ui,---,u,) € Sg and get Eg v (u1,- - ,u,) > M(V,5,mq,---,m,) which
shows that A (V, 8, my, - - ,my,) is the lowest positive eigensurface of (1.1).

(1)-(ii) follow from Theorem 2.2-(iii).

(iii) Let ¢ € {1,--- ,n} and pose ¢p, = (m”jrl )P%cppm Then, a straightforward computation yields
@it 11\41,5@0,,7.,) + Yy Y * 1Mm(0) = 1forall # € RV and it follows that A (V, 8,my,--- ,m,) <

Y23 = j
J=1,j#i
Ezv(0,--+,0,0p,,0,-,0) =T (8, m;) i.e. \(V,.,mq, - ,my) <min{TV (., m;),i € {1,--- ,n}}. A
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