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Abstract. In this paper we study the polynomial stability of a Rayleigh system with distributed delay in dynamic control.
After studying the existence and uniqueness of the solution, we showed polynomial stability and finally proved that this
polynomial stability is the best that can be had by establishing that there is no exponential stability. Our contribution is the
introduction of the distributed delay term in the control.
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1. Introduction

In this paper we focus on the Rayleigh problem subject to a single dynamic control with a distributed delay as
follows
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Polynomial stability of a Rayleigh system with distributed delay

(2, ) — Ygr (T, 1) + Ugzer (2, ) = 01in ]0,1[x (0, +00)
w(0,t) = u,(0,¢) =0
Urx(lﬂt) + n(t) = 07

Uzzx (1, 1) — Vg (1,8) =0, V¢ € (0, 400) (1.1)

nn () — e (1, ) + Bun(t) + / " Ba(s)(t — $)ds = 0, V't € (0,400)

u(,O) = Uo, ut('ao) = U in]oa 1[7 77(0) =" € C

77(—’5) = fO('a _t)a Vite (OaTQ),

T2
where 7 denotes the dynamical control, / B2(s)n(t — s)ds is the time delay, (; is a positive constants and the
T1

initial data (ug, u1, fo) belong to a suitable space. The damping of the system is made via the indirect damping
mechanism.
Throughout this paper, we assume that 35 : [71; 2] — R, B2 is in L*T>° and is a bounded function satisfying

/ ’ Ba(s)ds < By. (1.2)

It should be that D. Mercier and al. studied in [9] the problem
Ut (X, 1) — YUgatt (T, 1) + Ugpar (2, ) = 01in ]0,1[x (0, +00)
u(0,t) = uz(0,t) =0
Uz (1,8) +1(t) = 0,
(1.3)

Upga (1, 1) — YUz (1,8) =0 Vit € (0, +00)

nt(t) - uxt(l,t) + 577(” =0Vte (0,+OO)

u(-,0) =wup, u(-,0) =w; in]0,1[, 7n(0)=mnye€C

where £ is a positive constant and 7 the dynamical control.
A study in which they showed the polynomial decay of the solution of the system (1.3).

Then, the important and interesting case when the Rayleigh beam equation is damped by only one dynamical
boundary with distributed delay remaine open. The aim of this paper is to fill this gap by considering a clamped
Rayleigh beam equation subject to only one dynamical boundary feedback whith distributed delay (1.1).

The paper is organized as follows: In the second part we will establish the well posedness of problems (1.1)
using semi-group theory. In the sections 3 and 4 respectively we will establish the strong and polynomial stability
and finally in section 5 the absence of an exponential decay.

e
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2. Existence and uniqueness of solution

Here we study the well posedness for the problem (1.1) using the semigroup theory.
As we did in [11, 12] and [13] let’s

z(p,t,s) =n(t—sp), pe(0,1),s€ (m1,m), t>0. (2.1)

Now the problem (1.1) is equivalent to

Ut (X, 1) — YUgrtt (T, 1) + Uggae (2,t) = 0in ]0,1[x (0, +00)
sze(p,t) + 2p(p,t) =0 in (0,1) x (0, +00)

w(0,t) = u.(0,¢) =0

Use (1,8) +1(t) = 0,

Upaz(1,1) — YUz (1,8) =0V ¢ € (0, +00) 2.2)
ne(t) — uge(1,8) + Bin(t) / B2(s)z(1,t,s)ds =0 V't € (0,+00)

u(+,0) =wug, u(-,0)=wy in]0,1[, 7n(0)=mn€C

Z(paovs) = fO('vpr) vp € (0,1),8 € (7_177—2)7

2(0,t,5) = n(t) Vi e (0,400)

The well posedness of problem (1.1) follows from standard semigroup theory.

Now let
2 ! 2 2
V= {ue #0000 =0}, Jull} = [ (uf® 7 luf)do
0

1
W = {ue H2(0,1),u(0) = 0,u,(0) = 0}, [[ul? = / iz |? da
0

and the energy space

H:WxVx(CxLQ((o,n x (71,72))

with the inner product

U
o* 1 L 1 o o 1 o

, i :/ umu_;zder/ (vv*+’yvzv;)dz+m}*+/ / 552(5)|z|2d5dp.
n 0 0 0 Jn
z

H
Let u, n and z be smooth solutions of the system. Then multiplying the first equation of the system by ® € W
and integrating by part on (0, 1) , we get

SIS IS S

1 1
/ U P — YUgrn ® d + / Ugppwe @ dr = 0
0 0

i
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Polynomial stability of a Rayleigh system with distributed delay

Setting
1 o 1 o
I= _/ ’yuwzttq)dx +/ uza:a:az(bdm
0 0

We obtain that

1 1
0 0
+ Upar (1) P(1) — Uzpz (0)P(0) — gy (1) Py (1) 4 gy (0)
1 1
0 0

Now the relation 2.3 becomes

1 1 1
/ un®dz + / s i+ / s By di + 1, (1) = 0 2.4)
0 0 0

Now we define the linear operators A € L(W,W'), B € L(R, V'), C € L(V,V"), by the following way

1
< Au, @ >yrww= / Uy Popzdr, Yu,® € W
0

< Bn,® >wiow=nP,(1), Vn e R,V® € W
1
< Cu,® >V’><V:/ (u® + yu, @, )dr, Vu,® € W
0

Then by means of the Lax-Milgram theorem, the operator A (resp. C) is the canonical isomorphism of W (resp.
V) onto W’ (resp. V'). Then we can formulate the variational equation 2.4 as :

Cuy + Au+ Bn =0, in W’
If we assume that Ay + Bn € V', then we obtain that :
Uy + C_I(Au +Bn)=0, inV
If we denote by
U= (u,ut,n,z)T,

one has
T " i
Up = (e, e, e, 2¢) - = (Ut, —C7 (Au+ Bn),ug(1) = fin —/ Ba(s)z(1,t, s)ds, _571%) :
T1

Therefore problem (2.2) can be rewritten as:

U, = AU
(2.5)
u(o) = (u07u17n0a fO('7 _pS)Ta

where the operator A is defined by
T T2 T
A (’LL, v, 1, Z) = (Ut, _C_l(Au + Bn)v ul’t(l) - ﬂ177 - / ﬂQ(s)Z(lv tv s)ds, _8_129) )
T1
with domain
D(A) = { (u,v,n,z)T eH,veW,Au+Bne V' and z € H1<(O,1) X (7'1,7'2)) |Z(O) =1 }7

As in [19] let’s prove the following lemma.

e
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Lemma 2.1. Let (u,v,n,2)' € H. Then (u,v,n,2z)" € D(A) if and only if u € W N H3(0,1), v € W,
ze H' ((Oa 1) x (7'1,7'2)) and z(0) = n such as

taza(1) +7[C7 (Au+ By)| (1) =0;

Uss (1) + 1 = 0. '

Proof. The sufficiency is obvious. Indeed let (u, v, 7, z)T e H.

Assume w € W N H3(0,1),v € W,z € H! ((O, 1) x (71, 7'2)) and z(0) = 7 such as

taza(1) +7[C (Au+ By) | (1) = 0and g (1) + 1 = 0.
We know

z € Hl((O, 1) x (7'1,7'2)> and z(0) = n;

ueWNH30,1) =ueW,;

AsW cV,veW=wveV.

Moreover, if gz, (1) + 7{0‘1(1411 + Bn)| (1) = 0, this implies that the equation is well posed and this

x
necessarily leads to

Au+ BneV'.
So (u,v,n, Z)T € D(A)

To prove the necessity, let (u,v,7,z)" € D(A) and
A (u,v,m, z)T = (g,k, h, q)T. Then we obtain

v=geW
—C Y (Au+Bn) =k
T2
va(1) = Bin— [ Ba(s)2(L,t,s)ds = h 2.6)
T1
—s’lzp =q€ L2<(07 1) x (7'177'2)).
If the relation z(0) = 7 is obvious, we obtain from the first and last equations of the system (2.6) that

v € W, and then z € H! ((0, 1) x (11, Tg)).
Then since k € V and C : V. — V' is an isomorphism, so the equation (2.6), can be rewritten as

Au+ Bn=—-CkinV' Cc W'
So for all » € W we have

1 1
/ Upa Ve d + by (1) = — / (k) + vkytpy)dx 2.7
0 0

This means
1

1
/ Uga Wz dT + 105 (1) + / (kY + vk )dz = 0 (2.8)
0 0
On the one hand, let’s take ¢ € C5°(0, 1) and take ¢ = / ¢(s)ds .
0

We know ¢, = ¢ and Y., = ¢,
By replacing in (2.8) we obtain

/Olum%d:c-i-ﬂ(ﬁ(l)—i—/ol {k(/j(]ﬁ(s)ds)}da:—&—/olvkxqbdxzo
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Polynomial stability of a Rayleigh system with distributed delay

Since ¢ € C§°(0,1) then ¢(1) = 0, so we get

/Olumgbmdz+/01 [k(/owgb(s)dsﬂder/olfykr(bde (2.10)

In integration by parts we have

]~ [ vaecao s [([ ). ( [ 30a5)]] - [ ([ koras) ot

1
+ / vkzpdr =0 (2.11)
0

But [(/lx k(s)ds).(/om ¢(s)ds)}; - {uma]; =0

Consequently, the (2.11) equation can be rewritten

/01 Unaa () du — /01 (/j k(s)ds) d(x)d + /01 ks B (@)da = 0

By inverting the 1 and x terminals in / k(s)ds we have
1

1 1 1
/ Uz P(2) dx = —/ [(/ k(s)ds)dm +’yk4 (x)dx,Yp € W
0 0 T
However
1
Uz = / k(s)ds + vk, pp in L*(0,1) (2.12)

This leads to u € H3(0,1) N W.

In particular, (2.12) allows us to write

while k, (1) = — [0} (Au + Bn)} (1)

From which we finally obtain

Ugae (1) +y[C*1(Au+Bn)L(1) =0 (2.14)

On the other hand, for any ¢ € V such that ¢(1) = 1, let’s pose ¢ = / o(s)ds.
0

Based on the previous calculations, we have

/01 UpePo () dz 4+ 1 + /01 [/: k(s)ds + vkx}%d:n =0 (2.15)

1
From (2.12) we have / k(s)ds + vky = Ugen

By replacing in (2.15) we obtain

e
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1 1
/ oo @) d + 1+ / Upaa$(@)dz = 0
0 0

By integration by parts we have

1 B 1 L
o (VB0 = e O)50) = [ trasfda -+ [ sl = 0
This implies that

iz (1)6(1) — 1z (0)6(0) + 7= 0
Since ¢(1) = 1 and $(0) = 0, we finally obtain
Ugz(1) +n =0 (2.16)

The neccessity is also proved.

We can now state the following existence results.

Theorem 2.2.
Assume that (1.2) holds. Then for any datum Uy = (ug, u1,no, fo) belongs to H, the problem (1.1) has one and
only one weak solution U = (u, ug,n, 2) verifying:

u € C([0,00), V)N C* ([0,00), L*(0,1))
{77 € C([0,0)) (2.17)

Moreover, if Uy = (ug, u1, 10, fo) belongs to D(A), then problem (1.1) has one and only one strong solution
U = (u,u,n, z) which satisfies

{u € C ([0,00), H*(0,1) N V) N C* ([0,00), V) N C? ([0, 0), L*(0,1)) 2.18)
n e C'([0,00)). '
Proof. We have
u u v u
nE v - —C7}(Au+ Bn) ;
n ’ n B ( ) - 517] - 52(8)2(17ta8)d3 ’ n
z z 2 —sTl_lzp z y
= (v,u)wxw + (=C ' (Au+ Bn),v)vxv
( — Bin — / Ba(s)z(1,t S)ds) _
- / / Ba(5)2(0)2, () ds dp.
= < Av,u >wixw + < —(Au+ Bn),v >vyixy o (1)
/ Ba(s)2(1,t, 5)dsT — Bulnf? — / / Ba()2(p) 27 ds dp.
S
i
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Polynomial stability of a Rayleigh system with distributed delay

Since (u,v,7,2)" € D(A), then Au+ By € V' and v € W then we have

—(Au+ Bn),v >yixy = < —(Au+ Bn),v >wixw
= — < Au,v >wixw — < Bn,v >wixw

= — < Au,v >wrxw —ng(1).

We can deduce

(4

> =R (< AU,U Swixw — < Au, v Swrxw +’Uz(].)ﬁf m)z(l))

</ Ba(s)z(1,t, s)ds) )/ Ba(s)]2(1,t, 5)|*ds

/‘@ 20,1, 5)[2ds — Bu|n|?

</ Ba(s)z(1,t,s)ds) )/ Ba(s)|2(1,t, 5)*ds

f/ Ba(5)2(0,, 5)2ds — Bl

ISIENS S
ISEENS S B

l\DM—A

< = /Bg 1ts2ds+ / Ba(s |n\ ds—ﬁl|n|

2/71 52(8)|Z(1,t, 5)|2d5 +% 52(5)|Z(0,t,5)|2d5

T1

T1

1 [m 1 [
<5 | Blslnds - alnf + 5 [ Balonls

< (—51+/:2 BQ(S)dS)InI2

and
U U
v v 2
R(A , < (*51 +/ 52(5)d5)\77|2
n n .
z z 2
Now the relation (1.2) allows to conclude that
U U
w{al ], " <0
n n
V4 z

H
which implies that the operator A is dissipative.
Let us prove that the operator AI — A is surjective for at least one A > 0.
For (f,g,h, k)T € H, we look for (u,v,n, 2)T € D(A) solution of

/\u—v:f in 0, 1]
A+ O~ ! (Au+Bn)—g in V'’
AN — vy (1) +5177+/ B2(8)z(1,t,8)ds = h
Ae+sTtz, =k in]0, 1[.
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Suppose that we have found u with the appropriate regularity. It means that we have also found 7. Then
v = Au — f and we can determine z by solving the system

-1 _ .
sz, +Az=k in]0,1] (2.20)
z(0) =n.
We obtain ,
2(p) = ne % + sefASp/ k(0)e do.
0
In particular
1
z(1) = ne=* + Tef)‘s/ k(a)e)‘s" do.
0
The function u verifies now
MNCu+ Au=C(g+\f) —Bn inV’
u(0) =0 (2.21)

u,(0) =0
By using Lax-Milgram’s Lemma, the problem (2.21) admits a unique weak solution. Indeed multiplying the
first equation by v € V and by integrating formally by parts we get

a(u,v) = F(v),Yv eV, (2.22)

where the bilinear and continuous form a is given by

1
a(u,v) = / (/\Q'yuwvx + Nuv + uuvu) dx Yu,veV,
0
while the linear form F' is

1
F(v):/o(g+)\f)v+'y(g+)\f)$v$dx—m}x(l), YovelV.

Since a is clearly strongly coercive on V' and F' is continuous on V, by Lax-Milgram’s Lemma, problem (2.21)
admits a unique solution v € V. By taking test functions v € D(0;1), we recover the first identity of (2.21).
This guarantees that u belongs to H?(0, 1). Using now Green’s formula, we see that u satisfies the third identity
of (2.21).

Finally, we define 7 and v by setting

vy (1) — /T2 Ba(s)z(1,t,s)ds + h
81+ A

This shows that the operator .4 is m-dissipative on 7 and it generates a Cy-semigroup of contractions in #, under
Lumer-Phillips theorem. So, we have found (u, v, 7, z)T € D(.A) which verifies (2.21). The proof ends by using
the Hille-Yosida theorem. u

v=Au— fandn =

3. Strong stability

The main results of this section reads as follows.
Theorem 3.1.
The Cy-semigroup (etA) +>0 I8 strongly stable on the energy space M, that is for any Uy € H,

th_H}OHetAUUHH =0.

3

s
2
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Proof. We use the spectral decomposition theory of Sz-Nagy-Foias and Foguel [3, 6, 18]. According this theory,
since the resolvent of 4 is compact, it suffices to establish that A has no eigenvalue on the imaginary axis. For
our purpose, it is easy to prove that the resolvent of the operator A defined in (2.5) is compact. We are ready now
to achieve the proof of theorem 3.1 with the following lemma.

Lemma 3.2.
There is no eigenvalue of A on the imaginary axis, that is

iR C p(A).

Proof. By contradiction argument, we assume that there exists at least one i\ € o(A), A € R, A # 0 on the
imaginary axis. Let U = (u,v,7,2)T € D(A) be the corresponding normalized eigenvector, that is verifying
|U|| = 1and

Alu,v,m,2)" = i\w, v, 2)T, 3.1
which is equivalent to
v—idu =0 in]0, 1]
-C~ (Au—f—Bn )—ilv=0 in V'
— pin — / B2(8)z(1,t,8)ds —iAn =0 3.2)
szrz)\sz in ]0, 1].
Recalling the dissipativity of A and setting
M=6- [ sals)ds (3.3)
T1
in the proof of theorem 2.2, it follows that
0= Re (A(u,v,7,2)7, (w,0.0,2)7),, < ~Alnl? (3.4)

So we deduce that p = z = 0.

Now (3.2) becomes
v—ilu=0 1in(0,1)

C'Au+idv=0 1in(0,1) 3.5)
v(1,.) = 0.
From the first equation of (3.5) we deduce that
u(l) =0
Setting v = i\, it remains to find u € V which verifies
Au—MNCu=0 1in (0,1)
ug (1) =0 (3.6)
u(1) = 0.
By Cauchy-Kowalevski theorem, there exists a nonempty neighbourhood O of 1 such that w = 0in O N (0, 1).
Then the unicity theorem of Holmgren (see [7]) allows to conclude that

uw=0, on(0,1). (3.7)
We deduce that (u, v,7,2z)" = (0,0,0,0)" which contradicts the fact that ||| = 1. We conclude that .4 has no
eigenvalue on the imaginary axis. |

As the conditions of the spectral decomposition theory of Sz-Nagy-Foias and Foguel are full satisfied, the
proof of theorem 3.1 is thus completed. |
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4. Polynomial stability

In this section, we shall analyze the rational decays rate in the form ¢ ~* of the energy of system. For that purpose
we recall first the following result due to Borichev and Tomilov [4].

Lemma 4.1.
Let A be the generator of a Cy-semigroup of bounded operators on a Hilbert space X such that iR C p(A).
Then we have the polynomial decay

C
tA
200 < 70 [Uoll, t >0,
if and only if
1 _
lim sup H(z)\ —A) 1H < 00.
IA—+oo Al

The main result of this section is the following theorem

Theorem 4.2.
The semigroup of system (1.1) decays polynomially as

|0 || S%HUOH, VU € D(A), Vit >0. 4.1

Proof. It suffices to show following the results in [10, 20] and the above theorem, that forany U = (u, v, 7, z)T €
D(A) and
F =(f,g,h,k)" € H, the solution of

(N[ -A)U=F 4.2)

verifies
U]l < CA||F)|24; 4.3)

where A > 0 and C' > 0.

Problem (1.1) without delay is the following one

Ut (2, 1) — Yot (T, 1) + Uggar (2, ) = 01in ]0,1[x (0, +00)
u(0,t) = uz(0,t) =0

Uz (1,8) +1(t) = 0,

Uzgz (1, 1) — Vg (1,8) =0V ¢ € (0, +00)

ne(t) — uze(1,8) + Bin(t) =0 Vi € (0, +00)

U(,O) = Ug, ’LLt(‘,O) = U1 in]O, 1[; 77(0) =To S (C

nt—7)=folt—7)Vte(0,r),

which is well-posed in
Ho =W xV xC 4.4)

3
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endowed with the norm

o[ o= Mol Eacony + Nl + 7 el 2oy + Il 45)
The generator of its semigroup is A defined by
Ao (u,v,m)" = (v, —C~'(Au+ Bn),v,(1) — Bln)T (4.6)
with domain
4.7

D(Ao) = { (wo.) € Hove W, Au+ Bye V'],

Thanks to [9], the operator A, generates a polynomial stable semigroup with optimal decay rate ¢ ~!. Therefore

the solution (u*, v*, 77*)T of

U U
(A —Ag) v ]| =|w (4.8)
n U
verifies
T T
o <C/\H 0, H 49
et or ), < Cor || (49)
where () is a positive constant.
On the other hand the system (4.8) can be rewritten as
i —v*=u
iz + C~Y(Au* + Bn*) =v (4.10)
ian* —vi(1) + Bin* =n.
S
Vi
MJM
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Let o € R, with the help of integrations by parts and using (4.10) we have

" u* AU — v u*
v o iz + C~1(Au + Bn) V"
AI _ A , — ) T2 ,
<(Z ) n n* > < iAn — v, (1) + fin + B2(s)z(1)ds n* >
z oz . ik oz
H iAz+ s 1z,, u

_ . _ * . —1 *
= (z)\u v, U )WXW—F(z/\v—i—C' (Au + Bn),v )va
—|—(i)\77 — (1) + Bin + / Bg(s)z(l)ds) n*
1 T2 '
—|—a/ / sBa(s)(iXz + s 1z,)Zds dp
0 T1
1 1
= / (idu —v),, ut, dr+ / (idv + C~H(Au + Bn)) vidx
0 0

1
—m/ (ixv + C~'(Au+ Bn))  v¥pda
) .

(Mn—vx( +B117+/ Ba(s )ds)n —|—z/\oz// sfP2(8)zZds dp

—|—a// B2(s)z,Zds dp
1

1 1
= z)\/ Uz, dr — / Vgt dr +iX | vvrde + i)\v/ vpvidT
0 0 0

+/ C~(Au + Bn)v* +~yC~'(Au + Bn)v¥dx

=[x = vz(1) + pur| n+/ a(s)2(1)ds.ir — 03 (0 — v (Vi + 28077

—|—z'/\a/ / 5P2(s)|2|? ds dp + a/ / B2(8)zpZ ds dp
0 T 0 T1
1 T2 1 T2
—|—i)\0</ / sPa(s)zZdsdp + a/ / B2(s)zp,Z ds dp
0 T1 0 T1

1 1 1 1

= i)\/ Uggp Uk, dx —/ Vgt dr + N | vvrde + i)«y/ vpvidT
0 0 0 0
—nl*+ | Ba(s)z(D)dsi® — vi(1)n — va(1)1" + 2B

7'1

+<cc! Au+Bn) v >yiwy

+ida / / sPa(s)zZdsdp + a/ / Ba(s)zp,Zds dp
= z)\/ Upp AT — / Vgt dx +z)\/ vo*de —i—z)\’y/ vpUkdT
0 0 0 0

nf? + / " Ba(s)2(1) ST — 2 (D)1 — v (LT + 28077

+ < Au+Bv7,v* Syrky

1 T2 1 T2
—|—i/\oz/ / sPa2(s)zZdsdp + 04/ / Ba(s)z,zdsdp
0 T 0 T
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nf? + / Ba(5)2(1)dsTF — VE (1)1 — v (L)TFF + 2By

+ < Au,v Syrxy + < Bn,v* >Svikv

1 T2 1 T2
—l—i/\a/ / $fa(s)zz dsdp + a/ / Ba(8)zpz ds dp
0 T1 0 T

1 1 1 1
> = i)\/ Uzt dr — / Vgl dr + X [ vvrde + i)\v/ vpvide
0 0 0 0

1 1 1 1
i)\/ Ugpg Ut dr — / Vgppt dr + i)\/ vo*dx + i)«y/ vpvidx
0 0 0 0

ﬂW+/2&@wﬂﬁﬂmefmmF+MMF

+/ U UF, da + no(1)
0

1 T2 1 T2
Jri)\a/ / $B2(s)zZzdsdp + oz/ / B2(8)z,Zds dp
0 T1 0 T1

1 1
—/ Ugg (IAUF — v )mdgc—/ v(iAV*) + Yz (iAvE)da
0

*/ U Uy, dx*|77|2 / Ba(s dS?? *vm(l)ni*JFQﬂlnni*
0

—I—i)\a// sﬁg(s)zfdsdp—i—a// Ba(s)zpz ds dp
0 T1 0 T1

1

7/ UpaUgrdr— < Cv, A" >yiy —< Au™, v >Syigy

0
—nl* + B2z2(1)n" — < Bn*,v >vixy + 2Bimn*

1 T2 1 T2
—l—i/\a/ / $fa(s)zz dsdp + a/ / B2(8)zpz ds dp
0 T1 0 T

_HumHZL?(O 1~ (v, iIM )y xy — (CL AU v)y «v

P+ /" Bo(5)=(1)dsT* — (C BT o)y + 26800

1 T2
—|—i)\a/ / $Pa(s)zZ ds dp—l—a/ Ba2(s)z,Zds dp
0 T1 0 T1
w7201y = (0,000 )y <y — (0, CH AU v v

wﬁ/@ (V)dsT* — (0,C By )y + 2800

1 T2
—|—i)\a/ / sﬁg(s)zfdsdp—i—a/ / Ba2(8)z,Z ds dp
0 T1 0 T1

2 -1 * * Sy 2
7Huzx”L2(0 1) (U7C (Au + Bn )+Z)\’U )VXV — ‘77|

/ Ba(s)z(1)dsn* + 2B1mn*

1 To
—l—z’)\a/ / $02(8)zZ ds dp+a/ / Ba(s)zpz ds dp
0 T1 0 1
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. v* T2 o o
<(MI —A) s > = —lluaelliz(.1) = (v, 0)vxv = nf? +/ Ba(s)z(1)dsn* + 261"

NS e g

1 T2 1 T2
—&—Moz/ / sﬂg(s)zédsdp—i—a/ / B2(8)zpz ds dp
0 1 0 T1
= _”“M”%Z‘(o,l) - HU”%Z(OJ) - 7””@5”%2(0,1) — [n]?

200+ [ Bas)a(1)ds
1 7'21 1 T2
—‘ri/\a// sﬁQ(s)zEdsdp—i—oz// Ba(8)z,Z ds dp
0 T1 0 T1

= (v, |2, + 2600 + / Ba(s)2(1)ds.T

1 T2 1 T2
+i)\a/ / sfa(s)zzds dp + a/ / B2(s)z,Zdsdp
0 T1 0 T1

So

. 20 :8‘%<F, v > + (28007 ) +§R([2 Ba(s)=(1)dsTF)

U, V,
e[,

H

1 To
—|—§R(oz/ / B2(8)z,Z ds dp) 4.11)
0 T1

-1
Take o« = — with € > 0.Then (4.11) becomes
€

*

T i :%<F, z > +&e(2ﬂmﬁ) +§R(/T ﬁz(s)zu)dsﬁ*)

-1
1 1 T2
_%(g/o /T 52(s)zpzdsdp) (4.12)

= * x

We have by Young’s inegality

R (260077 ) < 280l n’|

i .
< —nl* +eln? .13)

Then by Fubbini
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_R i/ol /TT Ba(s)zp7ds dp) —3%(2—16 /TT 52(5)“42};615)

1 [m 1 [m™
=5 | BOEOPds+ o [ 0P ds
=L [T B ds - [ ma@ds? @1s)
=) 2(s)|2z 32571 2(s) ds.In .
Moreover, by the Cauchy-Schwarz inequality
u*
'U* * * * ]'
§R<F, - > < 1F e 1 0%, m7) o + Z I F 112410, 0,0, 2) e
oz

H
* * * 1
< N Flell w00 ") s + I el v,m, 2) e

1
< CoMlFllae-M1(ay v,1) g + g L VY L e (4.15)

Finally, Young’s inequality gives us

/Bz 1)dsi <f/ Ba(s)]=(1)Pds + = / B (s)ds. " | “.16)

Summing (4.13),(4.14),(4.15) and (4.16) we have

2 i .
JwvnT[}, < B el = 5 [ o as+ —/ a(s) ds.Inf
+ CoNF e )y + LI F e 10T+ 5 [ Ba(o)l=0)Pds
€ = * 2
+5 [ als)dshn’]
ﬁ12 1 T2 2 1 T2 * |2
<(Tag [ @) e(ie g [ pates)n
+ (Con+ 2)IF I e (4.17)

Using the fact that A4 is dissipative and Cauchy-Schwarz inequality we have

(81 [ Baloyds) P < RGN = AUV < [l Ul (4.18)
This leads to
9 1
| < 2 [E 21U |3 (4.19)
s [ pats)as
S
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Note also that (4.9) and the dissipativity of Aq give
51|77*|2 S §R <(Z)\I - -AO) (U*7 U*a n*)T’ (U/*) ’U*, n*)T>7_[O
< ety 0, m) -l % 0% %)
< CO)‘” (uv v, 7])T||’2Ho
This means that

oa . CoX
In*|? < Wll(u,v,n)Tllio

In other words

Lo CoA
n*|? < ﬁ—olllUII%

Using (4.19) and (4.24) in (4.17) we get

2 1
|won[ < OBl s+ ACAUIB, + (Cor+ ) 1T U 1

where C and C5 are constants that do not depend on A defined by

Bt 1"
W d
- +2€ . Ba(s) ds

B~ [ Bals)ds

T1

C, =

and

T2

C'0<1+% j ﬂg(S)dS)

A

Cy =

1 1
Lete = m so Co e = §.Hence (4.25) becomes

lw o[ < (4t CoN) 1Pl 01+ 5 1013
) Ho = 9 H

with Cj3 1: Co + 2C5.
T2
If we add / / 5f2(s)|z|*dsdp member by member we have
0 1

1 1 T2
SN0 < (€t NIl U+ [ [ sa(o)lzPdsdp
0 T1

Now we need a better estimate for
1 T2
[ smato)lzpasip
0 T1

{ s71z, +idz =k in]0,1]
z(0) = n.

From (4.2) we get
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We obtain
. p .
2(p) = ne” P 4 s/ k(o)ere=P) dg.
0

By the triangular inequality we have

o<+ [ " |k(o) dor

This implies that
9 9 P 9 P 2
o) < ol + 2lnls [ k(o) do+ 52 ( [ k)] do)
0 0

On the one hand, using Cauchy-Schwarz inequality, we have

(/Op|k(o)|dg)2 < (/Opk(a)|2do)(/0p o) g/opm(g)pdg.

On the other hand, Young’s inequality gives us
P P 2 p
25fuls [ b@)]do < lnf* +5*( [ Ik(o)lda) < I+ 57 [ k(o) do
0 0 0
Using (4.30) and (4.31) in (4.29) we get
p
o) <2l +25° [ k(o) dor
0

Let’s now integrate (4.32) on (0,1) x (71, 72). We have

(4.29)

(4.30)

431

(4.32)

/01/;2552(5)I 2dsdp<2// s5B2(s)|n dsdp—|—2// Ba(s /|k ) dodsdp

<2/ dp/ sBa2(s ds|77|2+2/ Ba(s /|k V[2dsdp

<on [ ga(s)ashl? + 273 / [ Bals)slhtp. ) Psdp
T1 0 T1
1 T2
< 2Tzﬂ1|n|2+2722/ / Ba(s)s|k(p, s)|*dsdp.
0 T1

Using (4.19) and the definition of the norm in ‘H we deduce from (4.33) that

/ / 5B2(5)|2(p) Pdsdp < Cal| Fllae.|U 12 + 272 F |3

with
27531

61/62

Combining (4.27) and (4.34) we get

1015, < 2(Cr+ CaX + Ca) IF e Ul + 472 F
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Taking ambda to be sufficiently large, we obtain

1015, < CsMIF U1l + 473 | F 3, (4.36)
< C(MIFIhe Ul + 1 FIR) (437)
where C' > max {03, 4722}
Hence the result
[Ully, < CAIF[3- (4.38)

1 _
Therefore limsup,, _, | X H (iA—A) ! H < 00, whence the semi-group decreases polynomially according to

the rate ¢ 1.
[ |

5. Exponential unstability

In this section, we show that the semigroup generated by the operator .4 is not exponentially stable. For that we
use the frequency domain approach (see Huang [8] and Pruss [5]), namely the below result.

Lemma 5.1. A contraction semigroup on a Hilbert space is exponentially stable if and only if

iR ={i\, A€ R} C p(A) (5.1)
and
sup || AL — A)7" || < +oc. (5.2)
[A|—o00

p(A) denotes the resolvent set of the operator A.
We state on the following result that constitutes the main of this section
Theorem 5.2. The system (2.2) is not exponentially stable on the H energy space.

Proof. Following the lemma (5.1), we prove that the condition (5.2) is not satisfied satisfied in the sense that
there are sequences (), ), (U, ) and (F,,) such that

[ Fnll2 = O(1); (5.4)
lim ||U,||x = +o0. (5.5)
n—-+oo

Note that this technique was used in [15], [2], [16], [17] and in several other articles
Let Un = (u7L7 ,Un’ "’In) Z',L)T et Fn = (fln’ f2/n7 f3n’ f4n)T

Assuming that (5.3) is verified, we have

Z')\nun — " = f'ln
iAp 0™ _|_C—1(Aun + Bnn) — f2n
T2
A —02(1) + Bin™ + / Ba(s)2™(1,t,8)ds = f3"
T1

A2+ 5712 = A
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We are looking for a particular solution defined for f!" = f3" = f4" = ( and f?"(z) = ev7® — eV solution

of the differential equation —v f,, + f = 0.
The system becomes
"™ =i\ u"
—A2Cu" + Au" + Bn" = Cfay,
iAnn"™ — iAqul(1) 4+ By + Ba2(s)z"(1,t,8)ds =0 5.7

A 2™ + s’lz:} =0.
Using the definition of the operators A, B and C, we obtain for any & € W the following variational

formulation

1 1 1
/ u” Py dr — N2 / u"® 4 yu"®, dr 4+ 1" P, (1) = / P+ f2, dx (5.8)
0 0

Integration by parts gives

_q1 g1 L — Lo a1
[uZI(I)w} - [u;’m@} + / u”, O dr — N2 / u"®dxr — N2y [u;@}
0 o Jo 0 0

1 o o 1 o 91 1 o
+A3ﬂ/ ugz@dx—kn’@m(l):/ f2”<1>dx+7[f3nq>}o—7/ fAdda (5.9
0 0 0
This leads to
W (DB (1) ~ e (O 0) = o (VB + s OFO) + [ Fdo = 22 [ 0T
0 0
1 J—
N DB() + A2l (0)F(0) + A2 [, B + "B,
0
1
= [ [z R A 2 (0B) -2 0)3(0)
0
(5.10)

Since ®(0) = ®,.(0) = 0 and —f2? + f2" =0, (5.10) can be written as

/0 1 [t + A2ty = X2y [ B e+ [l (1) + 0 | Ba(1) = [ty (1) + A2y (1) + 772 ()| B(1) <0.11)

rTrrxr n-xrx

This is equivalent to the system
e FA2UR, — X2yu™ = 0;

Uy, (1) + 1" = 0;
n 5.12
ul (1) + A27ul (1) +vf27(1) = 0 (-12)

u™(0) = u2(0) = 0.

Let’s now try to express ™ as a function of «". To do this, we’ll solve the equation of the (5.7) system, which is

M2+ s12) =0 (5.13)
The solution of (5.13) is of the form 4
2" (p,s) = Ce™nsp (5.14)
S
=]
MJM
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Now 2" (0) = n"(t) so C := n"(t).
Thus (5.14) is written as
2"(p, s) = " (t)e " PnsP (5.15)
When we derive this solution with respect to ¢ and with respect to p we obtain the equation

nr— iAan™ =0 (5.16)

After integration, we also obtain that (5.16) has the solution
n" = ke'**, with k € C.

Since " (0) = ngy we obtain k = 7, from which n™ = nje
Replacing 7™ by niie*»t in (5.15) gives us

iApt

2(p) = g0,

In particular
Zn(l) _ ngez)m(t—s) _ nne_M"S.

From the third equation of (5.7) we finally obtain by replacing z"(1) by n"e = »*
tAnuy (1
. LA ) ‘ (5.17)
iAn + B1 +/ Ba(s)e” s ds
T1
The (5.12) system thus becomes
iAn
Uz, (1) + 7 uz (1) = 0;
)\n 72’)\nsd
iAn + B1 —i—/ﬁ Ba(s)e s (5.18)
Uhae (1) + Aoy (1) +9£2(1) = 0;
u™(0) = u(0) = 0.
For the rest of the proof, let’s assume, as in article [9]
nm 7r
A =—+—+0(1 (5.19)
v e
In other words
M= T yn) with lim I(n) =0 (5.20)
ﬁ 2ﬁ n—-+o0o
It is clear that from a certain rank n > ng, ng very large
iAn

~1

T2 .
A+ B +/ Ba(s)e™nods
T1
and
1

~ Uy (1) + Anyug (1)

e
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We therefore conclude that when \,, — +o0 the system (5.18) is equivalent to the system

n 2,n 2
Ugzzz + /\nua:a: - >‘n

yut = 0;

ul, (1) +uf(1) = 05
(5.21)
ully, (1) + A2yul (1) = 0;

u™(0) = u(0) = 0.

On the one hand, Serge Nicaise and associates have shown in [9] that (5.21) admits a solution verifying

|lu"||w ~ n? et ||u™|y ~n when n — +o0

This gives us (5.5).

On the other hand, according to the choice of F;, we have

1m0 = [ @] e

=2 2 . ;2$2
—2+ev? }—&-[eﬁ +2+ev7 } dx

2 11 —2 71
_ [ﬂe%x oy ﬂefix] . [ﬂeﬁm 4or ﬂw—%m]
2 2 0 2 2 0
= [ﬂe% -2- —’ye%} + [ﬂe% +2 - ﬂe\%}
2 2 2 2
_[J_J} _ {j_j}
2 2 2 2
b oA ¥ F
=) () o
2
= 2.sh(—>
Y
This means that
| Fnll# = O(1) (5.22)
Finally, we’ve found sequences (A, ), (Uy,) and (F,) satisfying (5.3) — (5.5). Consequently, the proof of Theorem
(5.2) is complete. [ |
Conclusion

In this paper we have studied a Rayleigh-type problem with a distributed delay. We used the tools of functional
analysis and semi-group theory to obtain the existence, uniqueness and polynomial decay. However, we have
established that this polynomial decay is the best in the sense that it is impossible to have an exponential decay.
In the future, we’d like to continue our study by replacing the distributed delay with a variable delay.

e

[V =)
MM

409



Innocent OUEDRAOGO, Désiré SABA, Cheikh SECK, Gilbert BAYILI

6. Acknowledgement

We would like to thank the reviewers who agreed to examine our work. May they be honoured.

References

(1]

(2]

(8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

B.C. TRIPATHY AND B. HAZARIKA, Z-monotonic and Z-convergent sequences, Kyungpook Math. J.,
51(2011), 233-239.

GILBERT BAYILI, SERGE NICAISE, AND ROLAND SILGA, Rational energy decay rate for the wave equation with
delay term on the dynamical control. Journal of Mathematical Analysis and Applications, 495(1):124693,
2021.

CLAUDE D BENCHIMOL, A note on weak stabilizability of contraction semigroups. SIAM journal on Control
and Optimization, 16(3):373-379, 1978.

ALEXANDER BORICHEV AND YURI TomiLov, Optimal polynomial decay of functions and operator
semigroups. Mathematische Annalen, 347:455-478, 2010.

FILIPPO DELL’ORO AND DAVID SEIFERT, A short elementary proof of the gearhart-pr\” uss theorem for
bounded semigroups. arXiv preprint arXiv:2206.06078, 2022.

R Foguel, Powers of a contraction in hilbert space. 1963.

HAAKAN HEDENMALM, On the uniqueness theorem of holmgren. Mathematische Zeitschrift, 281(1-2):357—
378, 2015.

FALUN HUANG, Strong asymptotic stability of linear dynamical systems in Banach spaces. Journal of
Differential Equations, 104(2):307-324, 1993.

DENIS MERCIER, SERGE NICAISE, MOHAMAD SAMMOURY, AND ALI WEHBE, Optimal energy decay rate of
rayleigh beam equation with only one dynamic boundary control. Boletim da Sociedade Paranaense de
Matematica, 35(3):131-171, 2017.

HIGIDIO PORTILLO OQUENDO AND PATRICIA SANEZ PACHECO, Optimal decay for coupled waves with kelvin—
voigt damping. Applied Mathematics Letters, 67:16-20, 2017.

INNOCENT OUEDRAOGO AND GILBERT BAYILI, Exponential stability for damped shear beam model and new
facts related to the classical timoshenko system with a distributed delay term. Journal of Mathematics
research, 15(3):45, 2023.

INNOCENT OUEDRAOGO AND GILBERT BAyILI, Stability of a timoshenko system with constant delay.
International Journal of Applied Mathematics, 36(2):253, 2023.

INNOCENT OUEDRAOGO AND GILBERT BAYILI, Stability for shear beam model and new facts related
to the classical timoshenko system with variable delay. Journal of Nonlinear Evolution Equations and
Applications, 2024(3):37-54, 2024.

INNOCENT OUEDRAOGO, SECK CHEIKH, SILGA ROLAND, AND GILBERT BAyILI, Lack of exponential stability
for rayleigh beam equation of only one dynamical boundary control with delay. Discussiones Mathematicae
Differential Inclusions Control and Optimization, 44(1):51-75, 09 2024.

ROLAND SIILGA AND GILBERT BAYILI, Stabilization for 1d wave equation with delay term on the
dynamical control. Journal de Mathématiques Pures et Appliquées de Ouagadougou (JMPAO),1 (01),
2022.

e

[V =)
MM

410



Polynomial stability of a Rayleigh system with distributed delay

[16] ROLAND SILGA AND GILBERT BAYILI, Polynomial stability of the wave equation with distributed delay term
on the dynamical control. Nonautonomous Dynamical Systems, 8(1):207-227, 2021.

[17] ROLAND SILGA, BILA ADOLPHE KYELEM, AND GILBERT BaYiLl, Indirect boundary stabilization with
distributed delay of coupled multi-dimensional wave equations. Annals of the University of Craiova-
Mathematics and Computer Science Series, 49(1):15-34, 2022.

[18] BELA SZOKEFALVI-NAGY AND CIPRIAN FolA, Analyse harmonique des opérateurs de I’espace de Hilbert.
Akademiai Kiado, 1967.

[19] JUN-MIN WANG, GEN-QI XU, AND SIU-PANG YUNG, Exponential stability of variable coefficients rayleigh
beams under boundary feedback controls: a riesz basis approach. Systems & control letters, 51(1):33-50,
2004.

[20] ALi WEHBE, Rational energy decay rate for a wave equation with dynamical control. Applied Mathematics
Letters, 16(3):357-364, 2003.

This is an open access article distributed under the Creative Commons Attribution

@ ® License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

3

s
2

411



