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Abstract. Here we study the univariate quantitative approximation of time separating stochastic process over the whole
real line by the normalized bell and squashing type neural network operators. Activation functions here are of compact
support. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of
the engaged stochastic function or its high order derivative. The approximations are pointwise and with respect to the Lp
norm. The feed-forward neural networks are with one hidden layer. We finish with a great variety of special applications.
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1. Introduction

The first author in [2] and [3], was the first to establish neural network approximation to continuous functions
with rates by very specifically defined neural network operators of Cardaliaguet-Euvrard and “Squashing” types,
by employing the modulus of continuity of the engaged function or its high order derivative, and producing
very tight Jackson type inequalities. He treats there both the univariate and multivariate cases. The defining
these operators “bell-shaped” and “squashing” activation functions are assumed to be of compact support. The
functions under approximation were from the whole R into R. Here we perform quantitative approximations of
time separating stochastic processes by these neural network operators. We follow the above-described pattern
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and produce pointwise and Lp quantitative estimates. This article is a continuation of [4], where the activation
functions had been over the whole real line.
We give several interesting applications. Specific motivations came by:

1. Stationary Gaussian processes with an explicit representation such as

Xt = cos (αt) ξ1 + sin (αt) ξ2, α ∈ R,

where ξ1, ξ2 are independent random variables with the standard normal distribution, see [6].

2. By the “Fourier model” of a stationary process, see [7].

Feed-forward neural networks (FNNs) with one hidden layer, the only type of networks we deal with in this
article, are mathematically expressed as

Nn (x) =

n∑
j=0

cjσ (⟨aj · x⟩+ bj) , x ∈ Rs, s ∈ N,

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ Rs are the connection weights, cj ∈ X are the coefficients,
⟨aj · x⟩ is the inner product of aj and x, and σ is the activation function of the network.

2. About Neural Networks Approximation

In this section we follow [3].

Definition 2.1. (see [5]) A function b : R → R is said to be bell-shaped if b belongs to L1 and its integral is
nonzero, if it is nondecreasing on (−∞, a) and nonincreasing on [a,+∞), where a belongs to R. In particular
b (x) is a nonnegative number and at a b takes a global maximum; it is the center of the bell-shaped function. A
bell-shaped function is said to be centered if its center is zero. The function b (x) may have jump discontinuities.
In this work we consider only centered bell-shaped functions of compact support [−T, T ], T > 0.

Example 2.2. (1) b (x) can be the characteristic function over [−1, 1] .

(2) b (x) can be the hat function over [−1, 1], i.e.,

b (x) =


1 + x, − 1 ≤ x ≤ 0,

1− x, 0 < x ≤ 1

0, elsewhere.

Here we consider functions f : R → R that are either continuous and bounded, or uniformly continuous.

In the article we follow we study the pointwise convergence with rates over the real line, to the unit operator,
of the ”normalized bell type neural network operators”,

(Hn (f)) (x) :=

∑n2

k=−n2 f
(
k
n

)
b
(
n1−α

(
x− k

n

))∑n2

k=−n2 b
(
n1−α

(
x− k

n

)) , (1)

where 0 < α < 1 and x ∈ R, n ∈ N. The terms in the ratio of sums (1) can be nonzero iff∣∣∣∣n1−α

(
x− k

n

)∣∣∣∣ ≤ T , i.e.
∣∣∣∣x− k

n

∣∣∣∣ ≤ T

n1−α

iff
nx− Tnα ≤ k ≤ nx+ Tnα. (2)
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In order to have the desired order of numbers

−n2 ≤ nx− Tnα ≤ nx+ Tnα ≤ n2, (3)

it is sufficient enough to assume that
n ≥ T + |x| . (4)

When x ∈ [−T, T ] it is enough to assume n ≥ 2T which implies (3).

Proposition 2.3. Let a ≤ b, a, b ∈ R. Let card (k) (≥ 0) be the maximum number of integers contained in [a, b].
Then

max (0, (b− a)− 1) ≤ card (k) ≤ (b− a) + 1.

Note 2.4. We would like to establish a lower bound on card (k) over the interval [nx− Tnα, nx+ Tnα]. From
Proposition 2.3 we get that

card (k) ≥ max (2Tnα − 1, 0) .

We obtain card (k) ≥ 1, if
2Tnα − 1 ≥ 1 iff n ≥ T− 1

α .

So to have the desired order (3) and card (k) ≥ 1 over [nx− Tnα, nx+ Tnα], we need to consider

n ≥ max
(
T + |x| , T− 1

α

)
. (5)

Also notice that card (k) → +∞, as n → +∞.

Denote by [·] the integral part of a number and by ⌈·⌉ its ceiling. Here comes the first result we use.

Theorem 2.5. ([3], Ch.1) Let x ∈ R, T > 0 and n ∈ N such that n ≥ max
(
T + |x| , T− 1

α

)
. Then

|(Hn (f)) (x)− f (x)| ≤ ω1

(
f,

T

n1−α

)
, (6)

where ω1 is the first modulus of continuity of f .

The second result we use follows.

Theorem 2.6. ([3], Ch.1) Let x ∈ R, T > 0 and n ∈ N such that n ≥ max
(
T + |x| , T− 1

α

)
. Let f ∈ CN (R),

N ∈ N, such that f (N) is a uniformly continuous function or f (N) is continuous and bounded. Then

|(Hn (f)) (x)− f (x)| ≤

 N∑
j=1

∣∣f (j) (x)
∣∣T j

nj(1−α)j!

+ (7)

ω1

(
f (N),

T

n1−α

)
· TN

N !nN(1−α)
.

Notice that as n → ∞ we have that R.H.S.(7)→ 0, therefore L.H.S.(7)→ 0, i.e., (7) gives us with rates the
pointwise convergence of (Hn (f)) (x) → f (x), as n → +∞, x ∈ R.

Corollary 2.7. ([3], Ch.1) Let b (x) be a centered bell-shaped continuous function on R of compact support

[−T, T ]. Let x ∈ [−T ∗, T ∗], T ∗ > 0, and n ∈ N be such that n ≥ max
(
T + T ∗, T− 1

α

)
, 0 < α < 1. Consider

p ≥ 1. Then

∥Hn (f)− f∥p,[−T∗,T∗] ≤ ω1

(
f,

T

n1−α

)
· 2

1
p · T ∗ 1

p . (8)
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From (8) we get the Lp convergence of Hn (f) to f with rates.

Corollary 2.8. ([3], Ch.1) Let b (x) be a centered bell-shaped continuous function on R of compact support

[−T, T ]. Let x ∈ [−T ∗, T ∗], T ∗ > 0, and n ∈ N be such that n ≥ max
(
T + T ∗, T− 1

α

)
, 0 < α < 1. Consider

p ≥ 1. Then
∥Hn (f)− f∥p,[−T∗,T∗] ≤ (9) N∑

j=1

T j ·
∥∥f (j)

∥∥
p,[−T∗,T∗]

nj(1−α)j!

+ ω1

(
f (N),

T

n1−α

)
2

1
pTNT ∗ 1

p

N !nN(1−α)
,

where N ≥ 1.

Here from (9) we get again the Lp convergence of Hn (f) to f with rates.

2.1. The ”Normalized Squashing Type Operators” and their Convergence to the Unit with Rates

We need

Definition 2.9. Let the nonnegative function S : R → R, S has compact support [−T, T ], T > 0, and is
nondecreasing there and it can be continuous only on either (−∞, T ] or [−T, T ]. S can have jump
discontinuities. We call S the ”squashing function” (see also [5]).

Let f : R → R be either uniformly continuous or continuous and bounded.
For x ∈ R we define the ”normalized squashing type operator”

(Kn (f)) (x) :=

∑n2

k=−n2 f
(
k
n

)
· S

(
n1−α ·

(
x− k

n

))∑n2

k=−n2 S
(
n1−α ·

(
x− k

n

)) , (10)

0 < α < 1 and n ∈ N : n ≥ max
(
T + |x| , T− 1

α

)
. It is clear that

(Kn (f)) (x) =

∑[nx+Tnα]
k=⌈nx−Tnα⌉ f

(
k
n

)
· S

(
n1−α ·

(
x− k

n

))
W (x)

, (11)

where

W (x) :=

[nx+Tnα]∑
k=⌈nx−Tnα⌉

S

(
n1−α ·

(
x− k

n

))
.

Here we give the pointwise convergence with rates of (Knf) (x) → f (x), as n → +∞, x ∈ R.

Theorem 2.10. ([3], Ch.1) Under the above terms and assumptions we obtain

|Kn (f) (x)− f (x)| ≤ ω1

(
f,

T

n1−α

)
. (12)

We also give

Theorem 2.11. ([3], Ch.1) Let x ∈ R, T > 0 and n ∈ N such that n ≥ max
(
T + |x| , T− 1

α

)
. Let f ∈ CN (R),

N ∈ N, such that f (N) is a uniformly continuous function or f (N) is continuous and bounded. Then

|(Kn (f)) (x)− f (x)| ≤

 N∑
j=1

∣∣f (j) (x)
∣∣T j

j!nj(1−α)

+ (13)
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ω1

(
f (N),

T

n1−α

)
· TN

N !nN(1−α)
.

So we obtain the pointwise convergence of Kn (f) to f with rates.

Note 2.12. The maps Hn, Kn are positive linear operators reproducing constants, in particular

Hn (1) = Kn (1) = 1. (14)

3. Time Seperating Stochastic Processes

Let (Ω,F , P ) be a probability space, ω ∈ Ω;Y1, Y2, . . . , Ym,m ∈ N, be real-valued random variables on Ω with
finite expectations, and h1(t), h2(t), . . . hm(t) : R → R, such that hi(t), i = 1, 2, ... . . .m are all uniformly
continuous or hi(t) i = 1, 2, ... . . .m are all continuous and bounded for every i = 1, 2, ... . . .m .
Clearly, then

Y (t, ω) :=
m∑
i=1

hi(t)Yi(ω), t ∈ R, (15)

is a quite common stochastic process separating time.
We can assume that hi ∈ Cr(R), i = 1, 2, ...,m; r ∈ N. Consequently, we have that the expectation

(EY ) (t) =

m∑
i=1

hi(t)EYi ∈ C(R) or Cr(R). (16)

A classical example of a stochastic process separating time is

(sin t)Y1(ω) + (cos t)Y2(ω), t ∈ R.

Notice that |sin t| ≤ 1 and |cos t| ≤ 1.
Another typical example is

sinh(t)Y1(ω) + cosh(t)Y2(ω), t ∈ R. (17)

In this article we will apply the results of section 2, to f(t) = (EY ) (t). We will finish with several applications.
See the related [6], [7].

4. Main Results

We present the following general approximation of the seperating stochastic processes by neural network
operators.

Theorem 4.1. Let (EY )(t) as in (16), Let also t ∈ R, T > 0 and n ∈ N such that n ≥ max
(
T + |x| , T− 1

α

)
.

Then

|(Hn (E(Y ))) (t)− (E(Y )) (t)| ≤ ω1

(
(E(Y )) ,

T

n1−α

)
, (18)

where ω1 is the first modulus of continuity of E(Y ).

Proof. E(Y ) are uniformly continuous or continuous and bounded in R, Thus, the conclusion comes from
Theorem 2.5. ■

Our second main result follows.
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Theorem 4.2. Let (EY )(t) as in (16), Let also t ∈ R, T > 0 and n ∈ N such that n ≥ max
(
T + |x| , T− 1

α

)
.

Then

|(Hn (E(Y ))) (t)− (E(Y )) (t)| ≤

 N∑
j=1

∣∣∣(E(Y ))
(j)

(t)
∣∣∣T j

nj(1−α)j!

+ (19)

ω1

(
(E(Y ))

(N)
,

T

n1−α

)
· TN

N !nN(1−α)
.

Notice that as n → ∞ we have that R.H.S.(19)→ 0, therefore L.H.S.(19)→ 0, i.e., (19) gives us with rates the
pointwise convergence of (Hn (E(Y ))) (t) → (E(Y )) (t), as n → +∞, x ∈ R.

Proof. Notice that Let (E(Y )) ∈ CN (R), N ∈ N, such that (E(Y ))
(N) is a uniformly continuous function or

(E(Y ))
(N) is continuous and bounded. Thus, the conclusion comes from Theorem 2.5. ■

We continue with,

Corollary 4.3. Let (EY )(t) as in (16). Let also b (x) be a centered bell-shaped continuous function on R of

compact support [−T, T ]. Let t ∈ [−T ∗, T ∗], T ∗ > 0, and n ∈ N be such that n ≥ max
(
T + T ∗, T− 1

α

)
,

0 < α < 1. Consider p ≥ 1. Then

∥Hn (E(Y ))− E(Y )∥p,[−T∗,T∗] ≤ ω1

(
E(Y )

T

n1−α

)
· 2

1
p · T ∗ 1

p . (20)

From (20) we get the Lp convergence of Hn (E(Y )) to E(Y ) with rates.

Corollary 4.4. Let (EY )(t) as in (16). Let also b (x) be a centered bell-shaped continuous function on R of

compact support [−T, T ]. Let t ∈ [−T ∗, T ∗], T ∗ > 0, and n ∈ N be such that n ≥ max
(
T + T ∗, T− 1

α

)
,

0 < α < 1. Consider p ≥ 1. Then

∥Hn (E(Y ))− E(Y )∥p,[−T∗,T∗] ≤ (21) N∑
j=1

T j ·
∥∥∥(E(Y ))

(j)
∥∥∥
p,[−T∗,T∗]

nj(1−α)j!

+ ω1

(
(E(Y ))

(N)
,

T

n1−α

)
2

1
pTNT ∗ 1

p

N !nN(1−α)
,

where N ≥ 1.

We also give the next

Theorem 4.5. Let t ∈ R and (EY )(t) as in (16). Under the terms and assumptions of Definition 2.9 and the
”normalized squashing type operator” as defined in (10). We obtain

|Kn (EY ) (t)− (EY ) (t)| ≤ ω1

(
EY,

T

n1−α

)
. (22)

Proof. From Theorem 2.10. ■

We also give

Theorem 4.6. Let t ∈ R, T > 0 and n ∈ N such that n ≥ max
(
T + |x| , T− 1

α

)
. Let also (EY )(t) as in (16).

Then

|(Kn (EY )) (t)− (EY ) (t)| ≤

 N∑
j=1

∣∣∣(EY )
(j)

(t)
∣∣∣T j

j!nj(1−α)

+ (23)
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ω1

(
(EY )

(N)
,

T

n1−α

)
· TN

N !nN(1−α)
.

So we obtain the pointwise convergence of Kn (EY ) to (EY ) with rates.

Proof. (EY ) ∈ CN (R). Further more (EY )
(N) is a uniformly continuous function or (EY )

(N) is continuous
and bounded. Hence the conclusion comes from Theorem 2.11. ■

5. Applications

For the next applications we consider (Ω, F, P ) be a probability space and Y1, Y2 be real valued random variables
on Ω with finite expectations. We consider the stochastic processes Zi(t, ω) for i = 1, 2, 3, 4 where t ∈ R and
ω ∈ Ω as follows:

Z1(t, ω) = sin (ξt)Y1(ω) + cos (ξt)Y2(ω), (24)

where ξ > 0 is fixed;
Z2(t, ω) = sech (µt)Y1(ω) + tanh (µt)Y2(ω), (25)

where µ > 0 is fixed.
Here sechx := 1

cosh x = 2
ex+e−x , x ∈ R.

Z3(t, ω) =
1

1 + e−ℓ1t
Y1(ω) +

1

1 + e−ℓ2t
Y2(ω), (26)

where ℓ1, ℓ2 > 0 are fixed;
Z4(t, ω) = e−e−µ1t

Y1(ω) + e−e−µ2t

Y2(ω), (27)

where µ1, µ2 > 0 are fixed;
The expectations of Zi, i = 1, 2, 3, 4 are

(EZ1) (t) = sin (ξt)E(Y1) + cos (ξt)E(Y2), (28)

(EZ2) (t) = sech (µt)E(Y1) + tanh (µt)E(Y2), (29)

(EZ3) (t) =
1

1 + e−ℓ1t
E(Y1) +

1

1 + e−ℓ2t
E(Y2), (30)

(EZ4) (t) = e−e−µ1t

E(Y1) + e−e−µ2t

E(Y2). (31)

For the next (EZi) (t), i = 1, 2, 3, 4 are as defined in relations between (28) and (31) respectively.
We present the following result.

Proposition 5.1. Let t ∈ R, T > 0 and n ∈ N such that n ≥ max
(
T + |x| , T− 1

α

)
. Then for i = 1, 2, 3, 4

|(Hn (EZi)) (t)− (EZi) (t)| ≤ ω1

(
(EZi) ,

T

n1−α

)
, (32)

where ω1 is the first modulus of continuity of (EZi).

Proof. From Theorem 4.1. ■

We also give
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Proposition 5.2. Let t ∈ R, T > 0 and n ∈ N such that n ≥ max
(
T + |x| , T− 1

α

)
. Then for i = 1, 2, 3, 4

|(Hn (EZi)) (t)− (EZi) (t)| ≤

 N∑
j=1

∣∣∣(EZi)
(j)

(t)
∣∣∣T j

nj(1−α)j!

+ (33)

ω1

(
(EZi)

(N)
,

T

n1−α

)
· TN

N !nN(1−α)
.

Notice that as n → ∞ we have that R.H.S.(33)→ 0, therefore L.H.S.(33)→ 0, i.e., (33) gives us with rates the
pointwise convergence of (Hn (EZi)) (t) → (EZi) (t), as n → +∞, x ∈ R.

Proof. From Theorem 4.2. ■

We continue with,

Corollary 5.3. Let b (x) be a centered bell-shaped continuous function on R of compact support [−T, T ]. Let

t ∈ [−T ∗, T ∗], T ∗ > 0, and n ∈ N be such that n ≥ max
(
T + T ∗, T− 1

α

)
, 0 < α < 1. Consider p ≥ 1. Then

for i = 1, 2, 3, 4

∥Hn (EZi)− (EZi)∥p,[−T∗,T∗] ≤ ω1

(
(EZi)

T

n1−α

)
· 2

1
p · T ∗ 1

p . (34)

From (34) we get the Lp convergence of Hn ((EZi)) to (EZi) with rates.

Corollary 5.4. Let b (x) be a centered bell-shaped continuous function on R of compact support [−T, T ]. Let

t ∈ [−T ∗, T ∗], T ∗ > 0, and n ∈ N be such that n ≥ max
(
T + T ∗, T− 1

α

)
, 0 < α < 1. Consider p ≥ 1. Then

for i = 1, 2, 3, 4

∥Hn ((EZi))− (EZi)∥p,[−T∗,T∗] ≤ (35) N∑
j=1

T j ·
∥∥∥(EZi)

(j)
∥∥∥
p,[−T∗,T∗]

nj(1−α)j!

+ ω1

(
(EZi)

(N)
,

T

n1−α

)
2

1
pTNT ∗ 1

p

N !nN(1−α)
,

where N ≥ 1.

Proposition 5.5. Under the terms and assumptions of Definition 2.9 and the ”normalized squashing type
operator” as defined in (10). Then for i = 1, 2, 3, 4 we obtain

|Kn (EZi) (t)− (EZi) (t)| ≤ ω1

(
(EZi) ,

T

n1−α

)
. (36)

Proof. From Theorem 4.5. ■

We also give

Proposition 5.6. Let t ∈ R, T > 0 and n ∈ N such that n ≥ max
(
T + |x| , T− 1

α

)
. Then for i = 1, 2, 3, 4

|(Kn (EZi)) (t)− (EZi) (t)| ≤

 N∑
j=1

∣∣∣(EZi)
(j)

(t)
∣∣∣T j

j!nj(1−α)

+ (37)

ω1

(
(EZi)

(N)
,

T

n1−α

)
· TN

N !nN(1−α)
.

So we obtain the pointwise convergence of Kn (EZi) to (EZi) with rates.

Proof. From Theorem 4.6. ■
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6. Specific Applications

Let (Ω,F , P ), where Ω is the set of non-negative integers, be a probability space, Y1,1, Y2,1 be real-valued random
variables on Ω following Poisson distributions with parameters λ1, λ2 ∈ (0,∞) respectively.
We consider the stochastic processes Zi,1(t, ω) for i = 1, 2, 3, 4, where t ∈ R and ω ∈ Ω as follows:

Z1,1(t, ω) = sin (ξt)Y1,1(ω) + cos (ξt)Y2,1(ω), (38)

where ξ > 0 is fixed;
Z2,1(t, ω) = sech (µt)Y1,1(ω) + tanh (µt)Y2,1(ω), (39)

where µ > 0 is fixed.

Z3,1(t, ω) =
1

1 + e−ℓ1t
Y1,1(ω) +

1

1 + e−ℓ2t
Y2,1(ω), (40)

where ℓ1, ℓ2 > 0 are fixed;
Z4,1(t, ω) = e−e−µ1t

Y1,1(ω) + e−e−µ2t

Y2,1(ω), (41)

where µ1, µ2 > 0 are fixed;
Since E (Y1,1) = λ1 and E (Y2,1) = λ2 , the expectations of Zi,1, i = 1, 2, 3, 4, are

(EZ1,1) (t) = λ1 sin (ξt) + λ2cos (ξt) , (42)

(EZ2,1) (t) = λ1sech (µt) + λ2 tanh (µt) , (43)

(EZ3,1) (t) =
λ1

1 + e−ℓ1t
+

λ2

1 + e−ℓ2t
, (44)

(EZ4,1) (t) = λ1e
−e−µ1t

+ λ2e
−e−µ2t

. (45)

For the next we consider (Ω,F , P ), where Ω = R, be a probability space, Y1,2, Y2,2 be real-valued random
variables on Ω following Gaussian distributions with expectations µ̂1, µ̂2 ∈ R respectively.
We consider the stochastic processes Zi,2(t, ω) for i = 1, 2, 3, 4, where t ∈ R and ω ∈ Ω as follows:

Z1,2(t, ω) = sin (ξt)Y1,2(ω) + cos (ξt)Y2,2(ω), (46)

where ξ > 0 is fixed;
Z2,2(t, ω) = sech (µt)Y1,2(ω) + tanh (µt)Y2,2(ω), (47)

where µ > 0 is fixed.

Z3,2(t, ω) =
1

1 + e−ℓ1t
Y1,2(ω) +

1

1 + e−ℓ2t
Y2,2(ω), (48)

where ℓ1, ℓ2 > 0 are fixed;
Z4,2(t, ω) = e−e−µ1t

Y1,2(ω) + e−e−µ2t

Y2,2(ω), (49)

where µ1, µ2 > 0 are fixed;
Since E (Y1,2) = µ̂1 and E (Y2,2) = µ̂2 , The expectations of Zi,2, i = 1, 2, 3, 5 are

(EZ1,2) (t) = µ̂1 sin (ξt) + µ̂2cos (ξt) , (50)

(EZ2,2) (t) = µ̂1sech (µt) + µ̂2 tanh (µt) , (51)

(EZ3,2) (t) =
µ̂1

1 + e−ℓ1t
+

µ̂2

1 + e−ℓ2t
, (52)

(EZ4,2) (t) = µ̂1e
−e−µ1t

+ µ̂2e
−e−µ2t

. (53)
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Furthermore, we consider (Ω,F , P ), where Ω = [0,∞), be a probability space, Y1,3, Y2,3 be real-valued random
variables on Ω following Weibull distributions with scale parameters 1 and shape parameters γ1, γ2 ∈ (0,∞)

respectively.
We consider the stochastic processes Zi,3(t, ω) for i = 1, 2, 3, 4, where t ∈ R and ω ∈ Ω as follows:

Z1,3(t, ω) = sin (ξt)Y1,3(ω) + cos (ξt)Y2,3(ω), (54)

where ξ > 0 is fixed;
Z2,3(t, ω) = sech (µt)Y1,3(ω) + tanh (µt)Y2,3(ω), (55)

where µ > 0 is fixed.

Z3,3(t, ω) =
1

1 + e−ℓ1t
Y1,3(ω) +

1

1 + e−ℓ2t
Y2,3(ω), (56)

where ℓ1, ℓ2 > 0 are fixed;
Z4,3(t, ω) = e−e−µ1t

Y1,3(ω) + e−e−µ2t

Y2,3(ω), (57)

where µ1, µ2 > 0 are fixed;
Since E (Y1,3) = Γ

(
1 + 1

γ1

)
and E (Y2,3) = Γ

(
1 + 1

γ2

)
, where Γ (·) is the Gamma function, The expectations

of Zi,3, i = 1, 2, 3, 4, are

(EZ1,3) (t) = Γ

(
1 +

1

γ1

)
sin (ξt) + Γ

(
1 +

1

γ2

)
cos (ξt) , (58)

(EZ2,3) (t) = Γ

(
1 +

1

γ1

)
sech (µt) + Γ

(
1 +

1

γ2

)
tanh (µt) , (59)

(EZ3,3) (t) = Γ

(
1 +

1

γ1

)
1

1 + e−ℓ1t
+ Γ

(
1 +

1

γ2

)
1

1 + e−ℓ2t
, (60)

(EZ4,3) (t) = Γ

(
1 +

1

γ1

)
e−e−µ1t

+ Γ

(
1 +

1

γ2

)
e−e−µ2t

. (61)

We present the following result.

Proposition 6.1. Let t ∈ R, T > 0 and n ∈ N such that n ≥ max
(
T + |x| , T− 1

α

)
. Then for i = 1, 2, 3, 4 and

k = 1, 2, 3

|(Hn (EZi,k)) (t)− (EZi,k) (t)| ≤ ω1

(
(EZi,k) ,

T

n1−α

)
, (62)

where ω1 is the first modulus of continuity of (EZi,k).

Proof. From Proposition 5.1. ■

We also give

Proposition 6.2. Let t ∈ R, T > 0 and n ∈ N such that n ≥ max
(
T + |x| , T− 1

α

)
. Then for i = 1, 2, 3, 4 and

k = 1, 2, 3

|(Hn (EZi,k)) (t)− (EZi,k) (t)| ≤

 N∑
j=1

∣∣∣(EZi,k)
(j)

(t)
∣∣∣T j

nj(1−α)j!

+ (63)

ω1

(
(EZi,k)

(N)
,

T

n1−α

)
· TN

N !nN(1−α)
.

Notice that as n → ∞ we have that R.H.S.(63)→ 0, therefore L.H.S.(63)→ 0, i.e., (63) gives us with rates the
pointwise convergence of (Hn (EZi,k)) (t) → (EZi,k) (t), as n → +∞, x ∈ R.
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Proof. From Proposition 5.2. ■

We continue with,

Corollary 6.3. Let b (x) be a centered bell-shaped continuous function on R of compact support [−T, T ]. Let

t ∈ [−T ∗, T ∗], T ∗ > 0, and n ∈ N be such that n ≥ max
(
T + T ∗, T− 1

α

)
, 0 < α < 1. Consider p ≥ 1. Then

for i = 1, 2, 3, 4 and k = 1, 2, 3

∥Hn (EZi,k)− (EZi,k)∥p,[−T∗,T∗] ≤ ω1

(
(EZi,k)

T

n1−α

)
· 2

1
p · T ∗ 1

p . (64)

From (64) we get the Lp convergence of Hn ((EZi)) to (EZi,k) with rates.

Corollary 6.4. Let b (x) be a centered bell-shaped continuous function on R of compact support [−T, T ]. Let

t ∈ [−T ∗, T ∗], T ∗ > 0, and n ∈ N be such that n ≥ max
(
T + T ∗, T− 1

α

)
, 0 < α < 1. Consider p ≥ 1. Then

for i = 1, 2, 3, 4 and k = 1, 2, 3

∥Hn ((EZi,k))− (EZi,k)∥p,[−T∗,T∗] ≤ (65)

 N∑
j=1

T j ·
∥∥∥(EZi,k)

(j)
∥∥∥
p,[−T∗,T∗]

nj(1−α)j!

+ ω1

(
(EZi,k)

(N)
,

T

n1−α

)
2

1
pTNT ∗ 1

p

N !nN(1−α)
,

where N ≥ 1.

Proposition 6.5. Under the terms and assumptions of Definition 2.9 and the ”normalized squashing type
operator” as defined in (10), for i = 1, 2, 3, 4 and k = 1, 2, 3 we obtain

|Kn (EZi,k) (t)− (EZi,k) (t)| ≤ ω1

(
(EZi,k) ,

T

n1−α

)
. (66)

Proof. From Proposition 5.5. ■

We also give

Proposition 6.6. Let t ∈ R, T > 0 and n ∈ N such that n ≥ max
(
T + |x| , T− 1

α

)
. Then for i = 1, 2, 3, 4 and

k = 1, 2, 3

|(Kn (EZi,k)) (t)− (EZi,k) (t)| ≤

 N∑
j=1

∣∣∣(EZi,k)
(j)

(t)
∣∣∣T j

j!nj(1−α)

+ (67)

ω1

(
(EZi,k)

(N)
,

T

n1−α

)
· TN

N !nN(1−α)
.

So we obtain the pointwise convergence of Kn (EZi,k) to (EZi,k) with rates.

Proof. From Proposition 5.6. ■
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