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Abstract. This article established sufficient conditions for the existence and trajectory controllability for the conformable
fractional evolution equation with non-local and classical conditions. These conditions are established through the concept
of the operator semi-group, nonlinear functional analysis, Banach fixed point principle and Gronwall’s inequality. At last,
examples in finite and infinite dimensional Banach spaces were given to validate the obtained results.
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1. Introduction and Background

Fractional order semilinear evolution equations are abstract representations for many engineering and
scientific problems, see [8]. Further, the researchers discovered that the non-local condition performs better than
the classical condition while dealing with physical situations. Hence, the fractional evolution system with
non-local conditions is considered by many researchers, see [5], [17], [4] and [23].

A control system consists of interconnected components arranged in a way that ensures the system produces
the desired response.Controllability is one of the essential qualitative properties of dynamical systems in which
one has to find a suitable controller for the system that steers the system’s state from an arbitrary initial state to
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the desired final state [24]. Kalman introduced a new approach named state-space analysis to find the suitable
controller for the linear dynamical system on the finite-dimensional space. The various types of controllability of
finite and infinite dimensional systems for the functions (linear, non-linear and semi-linear) through the concepts
of operator theory can be seen in the monographs [18], [22] and articles [13], [15], [9], [25], [3], [21], [6], [2]
and references therein.

To analyze the exact or complete controllability of a system, it is necessary to identify a controller capable of
transitioning the system from its initial state to a specified final state. However, this type of controller might not
always be economical. Hence, [10] introduced the Trajectory Controllability (TC) problems.Rather than moving
the system directly from an initial state to a desired final state, the focus shifts to identifying a control that
guides the system along a predefined trajectory toward the final state. For example, launching a rocket into space
requires both a specific path and a target destination to ensure cost efficiency. Hence, TC is investigated by many
authors, see [16], [12], [1] and [11]. Sandilya et al.investigated the TC of a semilinear parabolic system[19] . The
approximate and TC of the fractional neutral system is studied using the resolvent family and Krasnoselskii’s
fixed point theorem by [7]. Recently, the TC of Hilfer fractional system is investigated through operator semi-
group and Gronwall’s inequality by [20]. However, the TC of conformable fractional systems is an untreated
topic in the literature.

This article is devoted to study the existence and trajectory controllabiliy for the conformable fractional
evolution equation

dαx

dtα
= Ax(t) + f(t, x(t)) + w(t)

of order 0 < α < 1 over the finite interval I := [0, T0] in the Banach space X with classical condition x(0) = x0

and non-local condition x(0) = h(x). Fractional differential operators like defined in the form of integral are not
satisfies the properties of multiplication and division like integer order derivatives but, this conformable fractional
differential operator satisfies these properties. This gives the motivation to established existence, uniqueness and
TC for the system governed by Conformable fractional evolution system.

2. Preliminaries

This section introduces the necessary definitions and properties of conformable fractional differential and
fractional integral operator, definitions and necessary properties of Laplace transform of order 0 < α ≤ 1 and
and various forms of controllability which will be used throughout the article.

[14] generalized the definition of the classical definition of derivative of integer order to fractional order.
They named this derivative as conformable fractional derivative. Unlike R-L and Caputo fractional differential
operators, the conformable fractional differential operator satisfies properties for multiplications and divisions.

The definition of conformable fractional derivative of order α is defined as:

Definition 2.1. [14] [Conformable fractional derivative] The conformable fractional derivative of the order
α ∈ (0, 1] on the function f : [0,∞) → R is defined as:

dαf

dtα
= lim

h→0

f(t+ ht1−α)− f(t)

h

provided the limit on the right exist.

The conformable fractional differential operator have following properties:

Theorem 2.2. [14] Let,

Cα([0,∞),R) =
{
f : [0,∞) → R;

dαf(t)

dtα
exits and continuous

}
.

For all f, g ∈ Cα and scalars a, b then,
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(1) dα

dtα

(
af(t) + bg(t)

)
= adαf(t)

dtα + bd
αg(t)
dtα .

(2) dα

dtα

(
f(t)g(t)

)
= g(t)d

αf(t)
dtα + f(t)d

αg(t)
dtα .

(3) dα

dtαλ = 0, for all constants λ.

(4) If f ∈ Cα then f is continuous.

(5) f is differentiable then dαf(t)
dtα = t1−α df(t)

dt

Definition 2.3. [14][Conformable fractional integral operator] The conformable fractional integral of order α
for a given function is expressed as follows:

Iαf(t) =

∫ t

0

sα−1f(s)ds.

The fractional integral operator possesses the following properties:

(1) If f is continuous then, dα(Iαf(t))
dtα = f(t).

(2) If f ∈ Cα([0,∞),R) then, Iα dαf(t)
dtα = f(t)− f(0).

The Laplace transform is not directly compatible with the conformable fractional derivative. Therefore, to solve
the fractional differential equations we used modified Laplace transform.

Definition 2.4. [6][Laplace transform of order 0 < α ≤ 1] Let f(t) be the function defined on the interval
[0,∞) then, Laplace transform of order α is expressed as:

Lα(f(t))(s) =

∫ ∞

0

tα−1exp

(
−stα

α

)
f(t)dt,

This definition holds true if the improper integral on the right converges.

Remark 2.5. The Laplace transform of order 0 < α ≤ 1 satisfies the following properties:

(1) Lα(af(t) + bg(t)) = aLα(f(t)) + bLα(g(t)), where a and b are scalars, and the functions f(t) and g(t)

have Laplace transforms of order α.

(2) Lα (f (tα/α)) = L(f(t)), where L denotes the classical Laplace transform.

(3) If f ∈ Cα, then Lα

(
dαf(t)
dtα

)
= sLα(f(t))− f(0).

Definition 2.6. [20][Complete Controllability] The system is considered fully controllable over the interval I if,
for any x0, x1 ∈ X , there exists a control function w(t) in the control space U such that the system’s state can be
driven from the initial state x0 at t = 0 to the desired final state x1 at t = T0.

Definition 2.7. The system is said to be fully controllable over the interval I if it is controllable over all of its
sub-intervals [tk, tk+1].

Let CT be the set of all functions y(·) defined on the interval I that satisfy the initial condition y(0) = x0

and the final condition y(T0) = x1. This set CT is called set of all feasible trajectories. Controller obtained from
the concept of complete and total controllability for the linear system will be optimal but for the semilinear or
nonlinear system may not be optimal. To overcome this situation one has to design a trajectory having optimum
energy or cost and define a controller in such a way that state of the system steers along this trajectory. Finding
the controller which steers the system on the prescribed optimal trajectory from initial state to desire final state is
called TC.
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Definition 2.8 (TC). The evolution system is callede trajectory controllable (T- Controllable) if for any trajectory
y ∈ CT , there exist L2 control function w ∈ U such that the state of the system x(t) satisfy x(t) = y(t) almost
everywhere over the interval I.

In total controllability (TC), the goal is to determine the controller that guides the system from an arbitrary
initial state to the desired final state along a specified trajectory. Therefore, TC is strongest amongst all the form
of controllability.

3. Existence and TC with classical conditions

This section is devoted to existence and TC of the system governed by the conformable fractional evolution
system

dαx

dtα
= Ax(t) + f(t, x(t)) + w(t)

x(0) = x0

(3.1)

of order 0 < α ≤ 1 over the interval I. For each t, the system’s state x(t) resides in the Banach space X , where
A is the linear operator acting on X . The function f : I × X → X satisfies the given hypotheses, and w(·)
is the trajectory controller for the system described by equation (3.1). Let C(I,X) denote the Banach space of
continuous functions from I to X , equipped with the norm ∥x∥ = sup

t∈I
∥x(t)∥.

Definition 3.1. The function x(t) is called the mild solution of the evolution system (3.1) over the interval I if it
satisfies the following integral equation:

x(t) = T

(
tα

α

)
x0 +

∫ t

0

sα−1T

(
tα

α
− sα

α

)
[f(s, x(s)) + w(s)]ds (3.2)

where T (·) is the infinitesimal operator semi-group generated by the linear part A. The following assumptions
are considered to examine the existence and uniqueness of the mild solution, as well as the total controllability
(TC) of the evolution equation (3.1).

(A1) Linear operator A : X → X in the system (3.1) generates C0 semi-group T (·) therefore there exist a
constant M > 0 which satisfies ∥T (t)∥ ≤ M , ∀ t ∈ I.

(A2) The nonlinear function f : I × X → X is measurable with respect to first argument and continuous with
respect to second argument. Moreover, there exist a function lf : R+ → R+ which is non-decreasing and
positive real number r0 such that

∥f(t, x1)− f(t, x2)∥ ≤ t1−αlf (r)∥x1 − x2∥

for all x1, x2 ∈ Br(X ), r < r0 and t ∈ I.

Following theorem discusses the sufficient conditions for the existence and uniqueness of mild solution for
the conformable fractional evolution system (3.1) over the interval I.

Theorem 3.2. If the conditions (A1) and (A2) are satisfied, then the system (3.1) has a unique mild solution for
any measurable function w(t) defined over the interval I.

Proof. Let w(t) be a measurable function defined on I. Then, we define an operator F acting on the Banach
space X as follows:

Fv = T

(
tα

α

)
x0 +

∫ t

0

sα−1T

(
tα

α
− sα

α

)
[f(s, v(s)) + w(s)]ds
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The equation (3.1) has unique mild solution (3.2) if F has unique fixed point. To show the operator F has unique
fixed point it is enough to display F (n) is contraction for at least one n > 1.
Let, t ∈ I and x, y ∈ Br(X ) then for n = 1,

∥Fx−Fy∥ ≤
∫ t

0

sα−1∥T
(
tα

α
− sα

α

)
∥∥f(s, x(s))− f(s, y(s))∥ds

Applying the assumptions (A1)-(A2)

∥Fx−Fy∥ ≤ Mlf (r)

∫ T

0

sα−1s1−α∥x− y∥ds ≤ Mlf (r)T∥x− y∥

For n = 2

∥F (2)x−F (2)y∥ ≤
∫ t

0

sα−1∥T
(
tα

α
− sα

α

)
∥∥f(s,Fx(s))− f(s,Fy(s))∥ds

Applying assumptions (A1)-(A2)

∥F (2)x−F (2)y∥ ≤ Mlf (r)

∫ t

0

sα−1∥Fx−Fy∥ds

≤ M2[lf (r)]
2

∫ t

0

∫ τ

0

∥x− y∥dsdτ

≤ M2[lf (r)]
2

∫ T

0

∫ T

0

∥x− y∥dsdτ ≤ M2[lf (r)]
2T 2

2!
∥x− y∥

Continuing this process for n = 3, 4, · · ·m and applying assumptions (A1)-(A2) to get:

∥F (m)x−F (m)y∥ ≤ Mn

∫ t

0

∫ τ1

0

· · ·
∫ τm−1

0

(lf (t))
m∥x− y∥dsdτm−1 · · · dτ1

≤
∫ T

0

∫ T

0

· · ·
∫ T

0

(lf (t))
m∥x− y∥dsdτm−1 · · · dτ1

≤ Mm[lf (r)]
mTm

m!
∥x− y∥ = ρ∥x− y∥

Taking maximum over interval I, the quantity ρ tends to zero as m → ∞ for fixed T . Hence, there exist m with
Fm is contraction on Br(X ). Therefore, the evolution system (3.1) has unique mild solution for any measurable
function w(t) over the interval I by general Banach contraction theorem . ■

Remark 3.3. To established the conditions for the existence and uniqueness the generalized Banach fixed point
theorem is used. This is because this fixed point theorem gives the guarantee about uniqueness of the solution.

Theorem 3.4. If the conditions (A1) and (A2) hold, then the system (3.1) is trajectory controllable over the
interval I.

Proof. Let u(t) be any trajectory from CT and define feed-back control of the system as:

w(t) =
dαu(t)

dtα
−Au(t)− f(t, u(t)) (3.3)

Putting feedback control w(t) from equation (3.3) in equation (3.1) and simplifying we have,

dα

dtα
[x(t)− u(t)] = A[x(t)− u(t)] + f(t, x(t))− f(t, u(t)) (3.4)

67



V. Shah, K. Anukiruthika, P. Muthukumar, J. Sharma, G.Trivedi

Choosing z(t) = x(t)− u(t), equation (3.4) yields:

dαz(t)

dtα
= Az(t) + [f(t, x(t))− f(t, u(t))]

z(0) = 0.

(3.5)

The solution of the system (3.5) is

z(t) =

∫ t

0

sα−1T

(
tα

α
− sα

α

)
[f(s, x(s))− f(s, u(s))]ds

Therefore,

∥z(t)∥ ≤
∫ t

0

sα−1∥T
(
tα

α
− sα

α

)
∥∥f(s, x(s))− f(s, u(s)∥ds

Assuming (A1)-(A2),

∥z(t)∥ ≤ M

∫ t

0

sα−1s1−αlf (r)∥x(s)− u(s)∥ds ≤ Mlf (r)

∫ t

0

∥z(s)∥ds

Using Gronwall’s inequality z(t) = 0 a.e.. Therefore, x(t) = u(t)a.e. over the interval I. Therefore, the system
(3.1) is trajectory controllable over the interval I.

■

Example 3.5. Consider the evolution system

dαx1(t)

dtα
= −2x1(t) + w1(t)

dαx2(t)

dtα
= −3x2(t) +

1

2
t1−αe−x2(t) + w2(t)

(3.6)

Consider the interval [0, 1] with initial conditions x1(0) = 1, x2(0) = 0, and α = 0.75. Let

x(t) = [x1(t), x2(t)]
T , w(t) = [w1(t), w2(t)]

T , and f(t, x) =
[
0, 1

2 t
1−αe−x2(t)

]T
.and A =

[− 2 0

0 − 3

]
the

system (3.6) represented as:
dαx(t)

dtα
= Ax(t) + f(t, x(t)) + w(t) (3.7)

with initial condition x(0) = x0 = [1, 0]′. Clearly the linear operator A in the system (3.7) generates C0

semigroup T (t) =

[
e−2t 0

0 e−3t

]
. Also, f(t, x) = [0, t1−α 1

2e
−x2(t)]′is measurable with respect to t and Lipschitz

continuous in x. Consequently, by Theorem 3.2, the equation (3.7) admits a unique mild solution for any
measurable function w(t) on the interval [0, 1]. Furthermore, by Theorem 3.4, the system (3.7) is trajectory
controllable on the interval [0, 1].

The system’s state over the interval [0, 1] without trajectory controller is shown in the Figure-1. Let, u(t) =
[(t2 + 1), 2t]′ be the trajectory along which the state of the system has to steer from initial state x0 = [1, 0]′ at
time t = 0 to desired final state x1 = [2, 2]′. Figure-2 shows the trajectory along which the state of the system
has to steer from initial state to desired final state. Plugging the trajectory controller w(t) = [w1(t), w2(t)]

′

w1(t) = 2t2−α + 2t2 + 2

w2(t) = 2t1−α + 6t− 1

2
t1−αe−2t

(3.8)
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Figure 1: System (3.6) without control
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Figure 2: Trajectory u(t) of the system (3.6)

in the system (3.6), the system

dαx1(t)

dtα
= −2x1(t) + 2t2−α + 2t2 + 2

dαx2(t)

dtα
= −3x2(t) +

1

2
t1−αe−x2(t) + 2t1−α + 6t− 1

2
t1−αe−2t

(3.9)

steers from the state x0 = [1, 0]′ at t = 0 to state x1 = [2, 2]′ at t = 1 along trajectory u(t) = [t2 + 1, 2t].
Figure-3 and Figure-4 show the controlled state of the system x(t) on desired trajectory u(t) and behavior of the
controller w(t) over the interval [0, 1].

Example 3.6. Let X = L2([0, 1],R) and consider the partial differential equation

∂αy(t, x)

∂tα
= yxx(t, x) + t1−αe−y(t,x) + w(t) (3.10)

with the initial condition u(0, x) = u0(x) and the boundary conditions y(t, 0) = y(t, 1) = 0.
Define an operator A as Ay = yxx over the domain D(A) = H2(0, 1)∩H1(0, 1) in X satisfies conditions of

Hile-Yosida theorem. Therefore, by the Hille-Yosida theorem, the operator A serves as the infinitesimal generator
of the strongly continuous semigroup of operators T (t), which is defined by
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Figure 3: System (3.6) with control w(t)
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Figure 4: Trajectory controller w(t) of the system (3.6)

T (t)z =

∞∑
n=1

exp(−n2π2t) < z, ϕn > ϕn

where, ϕn are orthonormal Fourier basis for X .
The equation (3.10) can be expressed in an abstract form in the Hilbert space X = L2([0, 1],R) as:

dαz

dtα
= Az(t) + f(t, z(t)) + w(t)

z(0) = y0

(3.11)

Clearly, f(t, z) = t1−αe−z is continuous function and there exist lf (r) = 1 on Br(X ) satisfying ∥f(t, z1) −
f(t, z2)∥ ≤ ∥z1 − z2∥. Therefore, by Theorem-3.2, the system (3.1) possesses a unique mild solution for
any measurable function w(t) over the interval I, and according to Theorem-3.4, the system (3.1) is trajectory
controllable over the interval I.
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4. Existence and Controllability with Nonlocal Condition

There are many mathematical models having nonlocal initial conditions give more fruit full information than
models having classical initial conditions. This motivates to study existence and TC of the system governed by
the conformable fractional evolution system

dαx

dtα
= Ax(t) + f(t, x(t)) + w(t)

x(0) = h(x)
(4.1)

over the interval I. In this context, the state of the system, x(t), is an element of the Banach space X for each
value of t. A is the linear operator defined on the Banach space X , f : I × X → X and h : X → X satisfy the
conditions of the hypothesis and w(·) is trajectory controller for the system (4.1).

Definition 4.1. The function x(t) is considered a mild solution of the evolution system (4.1) on the interval I if it
satisfies the following integral equation:

x(t) = T

(
tα

α

)
h(x) +

∫ t

0

sα−1T

(
tα

α
− sα

α

)
[f(s, x(s)) + w(s)]ds (4.2)

where T (·) is the infinitesimal generator of the linear operator A.

The following assumptions are made in order to analyze the existence and uniqueness of the mild solution, as
well as the trajectory controllability (TC) of the evolution equation (4.1).

(B1) Linear operator A : X → X in the system (4.1) generates C0 semi-group T (·) therefore there exist a
constant M > 0 which satisfies ∥T (t)∥ ≤ M for all t ∈ I.

(B2) The nonlinear function f : I × X → X is measurable with respect to first argument and continuous with
respect to second argument. Moreover, there exist a constant 0 < lf < 1 such that

∥f(t, x1)− f(t, x2)∥ ≤ t1−αlf∥x1 − x2∥

for all x1, x2 ∈ Br(X ), r < r0 and t ∈ I.

(B3) The function h : X → X is continuous with respect to x and a constant 0 < lh < 1 exists which satisfies

∥h(x1)− h(x2)∥ ≤ lh∥x1 − x2∥

for all x1, x2 ∈ Br(X ), r < r0.

Theorem 4.2. Let the assumptions (B1)-(B3) holds, then the system (4.1) has a unique mild solution for any
measurable function w(t) over I.

Proof. Let w(t) be any measurable function over I then define an operator F on the Banach space X by

Fv = T

(
tα

α

)
h(v) +

∫ t

0

sα−1T

(
tα

α
− sα

α

)
[f(s, v(s)) + w(s)]ds

The equation (4.1) has unique mild solution (4.2) if F has unique fixed point. To show the operator F has unique
fixed point it is sufficient to show F is contraction. Let, t ∈ I and x, y ∈ Br(X ) then

∥Fx−Fy∥ ≤ ∥T (tα/α)∥∥h(x)− h(y)∥+
∫ t

0

sα−1∥T
(
tα

α
− sα

α

)
∥∥f(s, x(s))− f(s, y(s))∥ds
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Applying the assumptions (B1)-(B3)

∥Fx−Fy∥ ≤ Mlh∥x− y∥+Mlf

∫ T

0

sα−1s1−α∥x− y∥ds ≤ M(lh + lfT )∥x− y∥

Therefore, the operator F is contraction if M(lh + lfT ) < 1. Hence equation (4.1) has unique mild solution for
any measurable function w(t) over interval I if M(lh + lfT ) < 1. ■

Theorem 4.3. If assumptions (B1)-(B3) are satisfied then the system (4.1) is trajectory controllable over the
interval I provided L < 1.

Proof. Let u(t) be any trajectory from CT and define feed-back control of the system as:

w(t) =
dαu(t)

dtα
−Au(t)− f(t, u(t)) (4.3)

Putting feedback control w(t) from equation (4.3) in equation (4.1) and simplifying we have,

dα

dtα
[x(t)− u(t)] = A[x(t)− u(t)] + f(t, x(t))− f(t, u(t)) (4.4)

Choosing z(t) = x(t)− u(t), equation (3.4) yields:

dαz(t)

dtα
= Az(t) + [f(t, x(t))− f(t, u(t))]

z(0) = h(x)− h(u).

(4.5)

The solution of the system (4.5) is represented as follows:

z(t) = T

(
tα

α

)
[h(x)− h(u)] +

∫ t

0

sα−1T

(
tα

α
− sα

α

)
[f(s, x(s))− f(s, u(s))]ds

Clearly, ∥z(t)∥ ≥ 0 for all t ∈ I therefore to show z is identically equal to 0 over the interval I, it is sufficient to
show ∥z(t)∥ ≤ 0. Consider,

∥z(t)∥ ≤ ∥T
(
tα

α

)
∥∥h(x(t))− h(u(t))∥+

∫ t

0

sα−1∥T
(
tα

α
− sα

α

)
∥∥f(s, x(s))− f(s, u(s)∥ds

Assuming (B1)-(B3),

∥z(t)∥ ≤ M∥h(x(s))− h(u(s))∥+M

∫ t

0

sα−1s1−αlf∥x(s)− u(s)∥ds

≤ M [lh + lfT ]∥z(s)∥

Define L = M [lh + lfT ] then, ∥z(t)∥ ≤ 0 provided L < 1. Thus, z(t) = 0 a.e. over the interval I provided
L < 1. Hence, system (4.1) is trajectory controllable over the interval I provided L < 1. ■

Example 4.4. Let X = L2([0, 1],R) and consider the partial differential equation

∂αy(t, x)

∂tα
= yxx(t, x) +

1

10
t1−αcos(y(t, x)) + w(t) (4.6)

with initial condition y(0, x) = h(y),h(y(x)) =
∑2

i=1
1
3i y(1/i, x) and boundary conditions y(t, 0) = y(t, 1) =

0. Proceeding in the same manner as in example-3.6, the equation (4.6) converted into abstract equation in
X = L2([0, 1],R) as:

dαz

dtα
= Az(t) + f(t, z(t)) + w(t)

z(0) = h(z)
(4.7)
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Clearly, f(t, z) = t1−αe−z is smooth function therefore there exist lf (r) = 1/20 on Br(X ) for all r < r0
satisfying ∥f(t, z1) − f(t, z2)∥ ≤ 1

20∥z1 − z2∥. Moreover, there exist a constant lh = 3/4r such that ∥h(z1) −
h(z2)∥ ≤ 3/4 on Br(X ) for all r < r0. Hence, the system (4.1) has unique mild solution for all measurable
function w(t) by Theorem-4.2, and the system (4.1) is trajectory controllable over the interval I by Theorem-4.3 .

5. Conclusion

This article considered the system governed by conformable fractional evolution systems with classical and
non-local conditions respectively and established the existence of mild solution and TC of the systems. These
conditions for the establishing the results gives guaranteed about the existence and uniqueness and TC for the
evolution systems. Application in terms of illustrations were included to demonstrate the obtained results.
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