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Abstract. This research article is about the geometry of the Kenmotsu manifold. Some important properties such as the
We - Ws =0, Wr - We=0,Wr - Wr=0,W;-Ws =0, Wr-Wy =0 and W7 - W§ = 0 curvature conditions of the
Kenmotsu manifold have been investigated.
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1. Introduction and Background

In 1963, K. Kobayashi and K. Nomizu demonstrated that Any two complete Riemannian manifolds that are
simply connected and have a constant curvature k, are isometric to one another. [7]. Following that, several
scholars, including [8—-10], explored manifolds curvature in various methods to varying degrees.

According to D. B. Abdussattar’s research, tensor C must disappear identically in order for a space time to
be conharmonic to a flat space time. If a space time is conharmonically flat, it is either empty, in which case it
is flat, or filled with a distribution defined by an energy momentum tensor 7' that has an electromagnetic field’s
algebraic structure while also conforming to a flat space time [1].

Let M be an n—dimensional differentiable manifold of differentiability class C™+! with a (1,1) tensor field
¢, the connected vector field £, a contact form 7 and the related Riemannian metric g. Kenmotsu described the
differential geometric features of class manifolds in 1972. The structure developed is known as the Kenmotsu
structure. A Sasakian structures are distinct from Kenmotsu structures. [6].

This study aims to examine a Kenmotsu metric manifold’s curvature tensor’s characteristics. In addition, we
take research Wy - W5 =0, Wy - W =0, Wy - W7y =0, W7 - Ws =0, Wy - Wy =0 and Wy - Wi = 0 where
Ws, We, Wr, Wg, Wy, and W denote the curvature tensors of Kenmotsu manifold, respectively.
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2. Preliminaries

We have collected some fundamental information regarding contact metric manifold in this part. With a
(2n + 1)-dimensional linked structure, let M be an almost contact metric manifold. (¢, &, 7, g), that is, ¢ is an
(1, 1)-tensor field, & is a vector field, ) is a 1-form and the Riemanniann metric g satisfying

©*(01) = =01 +n(01)¢, n(pbr) =0, (2.1
nE) =1, 9§ =0, np=0 2.2)
for all 61,05 € T'(T'M)[11]. Let g be Riemannian metric compatible with (¢, £, 7),
that is
g(pb1, p02) = g(01,02) — n(01)n(02), (2.3)
or equivalently,
9(01,002) = —g(pb1,02) and g(01,€) = n(01) (2.4

for all 61,0, € T'(T'M)[4]. If in addition to above relations

(v91 90)92 = _77(92)()061 - g(ela 9062)£a (2.5)

and
Vo, & =01 —n(01)E, (2.6)

where ¢ holds Riemannian connection is indicated by the symbol, the manifold (M, ¢, &, n, g) is referred to as
an almost Kenmotsu manifold. In a Kenmotsu manifold M, the following relation holds[5, 6]:

(Vo,m02 = g(61,62) — n(61)n(62), 2.7
R(01,62)€ = n(61)02 — n(62)61, 2.8)
R(&,01)02 = 1(62)01 — g(61,02)¢, 2.9)
S(6h,8) = —2nn(01), (2.10)

Q¢ = —2né, 2.11)

where 7 is scalar curvature of the connection V, As defined by S(61,02) = g(Q61, 02), where Q is the Ricci
operator, S is the Ricci tensor, and R is the Riemannian curvature tensor. It submits to

S(pb1,ph2) = S(61,62) + 2nn(01)n(62). (2.12)

Unknown Kenmotsu manifold if M’s Ricci tensor S has the following structure, M is allegedly n-Einstein
manifold.
5(61, 62) = ag(@l, 92) + bn(@l)n(02) (213)

in which @ and b are functions on (M?"*1, g) for any arbitrary vector fields 61, 2. n— Einstein manifold becomes
Einstein manifold if b = 0 [6, 14]. Let M be a Kenmotsu manifold of dimension (2n 4+ 1). According to the
relationship, the curvature tensor R of M is determined by

R(01,05)05 = Vg, V,03 — Vo, Vg, 03 — 6[01,92]93- (2.14)
Following that, in a Kenmotsu manifold, we arrive

R(01,02)05 = R(01,05)05 + g(62,05)01 — g(61,03)05, (2.15)
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where R(01,02)03 = Vg, V,03 — V,Vg,03 — Vg, 9,103, is the curvature tensor of M with respect to the
connection V [15, 16, 19]. The idea that W5-curvature tensor was explained by [13]. Wjs-curvature tensor,

We—curvature tensor, Wy—curvature tensor, Wg—curvature tensor, Wy-curvature tensor and Wy -curvature
tensor of a (2n + 1)-dimensional Riemannian manifold are, respectively, specified as

1

Ws(61,02)05 = R(01,02)05 — %[5(91, 03)02 — g(01,65)Q05], (2.16)
We(01,02)03 = R(01,02)03 — %[S(02703)01 —g(61,62)Q05], 2.17)
Wr(01,02)03 = R(01,0)03 — %[5(92,93)91 — g(602,03)Q064], (2.18)
Ws(61,02)03 = R(61,65)05 — %[5(92, 05)01 — S(61,602)03], (2.19)
Wy (61,02)03 = R(01,02)05 + %[5(91792)93 — g(602,03)Q064], (2.20)
W (01,02)05 = R(01,02)05 + %[5(927 03)01 — g(61,03)Q02], (221

for all 0, 05, 03 € T(TM)[12, 13].

3. Some curvature characterizations on Kenmotsu metric spaces

The key findings for this article are presented in this section.
When we designate the W5 curvature tensor from (2.16) and assume that M is a (2n + 1)-dimensional
Kenmotsu metric manifold, we obtain for subsequent consideration.

1
W5(91, 6‘2)5 = 277(01)92 — 77(6‘2)91 + %’0(6‘1)@92 3.1)
Adding 6; = £ to (3.1)
1
W5(&,02)€ = 202 — n(02)€ + %Q%- (3.2)

In (2.17) choosing 03 = £ and using (2.8), we obtain

W (01,02)€ = 1(01)02 — g(01,02)E. (3.3)
In (3.3), it follows
We(&,02)€ = 02 —n(62)€. 3.4
From (2.18) and (2.8), we arrive
1
W7(01, 92)5 = 77(91)92 + %77(92)@91 3.5
Setting 6; = &, in (2.18)
1
Wr(€,02)03 = 1(03)02 — 29(62,63)& — %5(92, 03)¢, (3.6)
and
W7(&,02)€ = 02 — n(62)€. 3.7
S
i
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The same applies, putting #3 = £ in (2.19) and using (2.8), we have

1
Wg(el, 92)5 = 77(91)02 + %8(91, 02)5 (38)
In (3.8), using 61 = &, we get
Wg(f,@Q)g = 02 — 7](02)5 (39)
Choosing 05 = &, in (2.20), we obtain
1
Wo(01,02)§ = 1(01)02 — n(02)01 + %(5(91’ 02)§ — 1(02)Q01). (3.10)
In (3.10) it follows
Wo(€,02)€ = 0 —n(02)¢E. (3.11)
In (2.21), choosing 3 = £ and using (2.8), we obtain
1
W5 (01,02)€ = n(61)02 — 21(02)01 — %7)(‘91)@92- (3.12)
Setting 61 = £, in (3.12)
1
W5 (€,02)& = 02 — 2n(62)€ — %@92 (3.13)

Theorem 3.1. Let M1 (¢, £, m, g) be a Kenmotsu manifold. Then M is a Wy - Wy = 0 if and only if M is an
n—Einstein manifold.

Proof. Suppose that M is a W7 - W5 = 0. This implies that

(W7 (01,00)W5)(04,05)03 = Wr(01,02)W5(04,05)05 — W5 (Wr(61,02)04,05)05
—W5(04, W7(01,02)05)05
—Ws(04,05)W7(01,02)03 = 0, (3.14)
for any 61,02, 05, 04,05 € T(TM). Taking 61 = 63 = £ in (3.14), with the usage of (3.6) and (3.7), for p; = 5,
we have
(W2(€,02)W5)(04,05)€ = Wr(E,02)(21(04)05 — 1(05)04 + p11(04)Q05)
—Wis(1(04)02) — 29(02,04)€ — p15(02,04)&,05)
—Ws5(04,1(05)02 — 29(02, 05)& — p1.S(02,05)€)E
—W5(94, 95)(92 — 77(92)5) = 0 (315)

While considering (3.1), (3.2), (3.6) in (3.15), we obtain

—W5(04,05)02 — 41(04)g(05, 02)€ — 2n(04)5(65,02)¢
+1(05)5 (02, 04)§ — 2np1n(04)n(05)02 — p11(04) S (02, Q65)€
+2p19(02,04)Q05 + 2p1.S(02,04)05 — p11(05)S(02,04)€
—p11(04)1(05)Q02 — 49(02,05)04 + 21(04)g(62,05)&
—2p19(02,05)Q04 — 2p1.S(02,05)04 — p7S(02,05)Q04 = 0.
+49(02,04)05 + p7S(02,04)Q05 = 0. (3.16)
Using the formulas (2.16), (2.4), (2.11), choosing the value 65 = £ for the product that is contained on both sides
of (3.16) by £ € x(M), we arrive
[1+ p1 — 2np3]S(02,04) = [1 — 4 4 4np1]g(02, 04)
+[(2np1)? + 4n’py — 4np;y — 8n + 5]n(04)n(62) = 0. (3.17)
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and from (3.17) and using (2.10), we conclude
S(02,04) = —g(02,04) + (8 — 61)n(02)1(04).

M is a -Einstein manifold as a result. On the other hand, consider M2"*1 (¢, £, 7, g) as n—Einstein manifold, i.e.
S(02,04) = —g(02,04) + (8 — 6n)n(02)n(04), then from equations (3.17), (3.16), (3.15) and (3.14), we obtain
W+ - Wy = 0. Which verifies our assertion. |

Theorem 3.2. Let M*"*1(¢, &, n, g) be a Kenmotsu manifold. Then M is a Wy - W = 0 if and only if M is an
n—Einstein manifold.

Proof. Letussay M isa Wy - Wg = 0. This gives way to

(Wr(61,02)We)(04,05)05 = Wr(61,02)We(04,05)05 — We(Wr(61,02)04,05)03
—We (04, Wr(01,02)05)05
—We(04,05)Wr(61,02)05 = 0, (3.18)

for any 61, 05, 03,04,05 € T'(T'M). Taking 6 = 03 = £ in (3.18) and using (3.3), (3.6), (3.7), for p; =
obtain

o we

(W7(&,02)We)(0a,05)& = W7(&,02)(n(04)05 — g(04,05)¢)
—We(n(04)02 — 29(64,02)€ + p1g(02, 04)¢, 05)§
—We(04,1(05)02 — 25(05,02)§ + p1g(62,05)€)E
—We(04,05)(02 — n(62)€) = 0. (3.19)

and we arrive

n(02)Wr (&, 02)05 — g(04,05)W7(€, 02)€ — 1(02) W5 (62,05)¢

+29(02,04)We (€, 05)€ — p1S(0a, 02)Ws(, 05)§

—n(05)We (04, 02)& + 29(02, 05)We (04, £)§

—p1S(05,02)We(04,8)E — We(04,05)02 + n(02)We(04,05)¢ = 0. (3.20)

Taking into account that (3.6), (3.4) and (3.3) in (3.20), we get

—We(0y4,05)02 — S(05,04)05 + 1(04)g(05,02)€

+2pag(04, 02)05 — 2n(05)g(02, 04)€ — p1.5(02,04)05

+p11(05)S (02, 04)€ +1(05)g(02, 04)¢

—9(02,05)04 + p15(05,02)04 = 0. (3.21)

Putting 05 = &, using (2.17) and using the inner product on both sides of (3.21) by 63 € x (M), and lastly 4 = &,
we draw a conclusion

5(92,65) = QTLQ(@Q, 95) — 47177(92)77(95).

M is therefore n—Einstein manifold. Let M?" (¢, &, 7, g) instead be n—Einstein manifold, i.e. S(6a,05) =
2ng (02, 05) — 4nn(62)n(ds), then from equations (3.21), (3.20), (3.19) and (3.18), we obtain W, - W = 0. This
completes of the proof. |

Theorem 3.3. Let M?" (¢, €, 7, g) be a Kenmotsu manifold. Then M is a Wy - Wy = 0 if and only if M is an
n—Einstein manifold.

e
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Proof. Assume that M is a Wy - W7 = 0. This conforms to

(W7 (01,02)W7)(04,05)03 = Wr (61, 02)Wr (04, 05)03 — Wr(We(01,02)04,05)05
—W7 (04, W7(01,02)05)05
—We(04,05)W7(01,02)03 = 0, (3.22)

for any 61,05, 05,04,05,05 € T'(TM). Taking 61 = 03 = & in (3.22) and using (3.5), (3.7), (3.6), for p; = i,
we obtain

(W7 (&, 02)W7)(04,05)§ = Wr(&,02)(1(02)05 + p11(05)Q04)
=Wz (n(64)02 — 29(02, 04)€ — p1.S(62,04)€, 05)§
~Wr(04,m(05)02 — 29(02,05)§ — p1.S(02,05)6)E
—Wr(04,05)(02 — n(02)€) = 0. (3.23)

and we have

n(04)W7(&, 02)05 + pin(05) W7 (€, 02)Q04 — 1(02)Wr(02,05)¢

+29(02,04)W7(€,05)€ + p1.S(02, 01) W7 (€, 05)§ — Wr(04,05)62

—1(05)W7(04,02)§ + g(02,05)Wr(04,£)€ + p1.S(02, 05) W7 (04, §)E

+n(02)Wr (04, 65)¢ = 0. (3.24)

Taking into account that (3.5) and (3.6) in (3.24), we get
—W(04,05)02 — 2np1n(05)n(04)02 — pin(65)S(Q04,02)¢
—2p11(05)S(04,02)§ — p11(05)n(04) Q02 4 29(04, 02)05

+29(02,04)n(05)& + p1.5(04,02)05 — p1n(05)S(62,04)€
—29(02,05)04 — p1.5(02,05)04 = 0. (3.25)

Choosing 64 = £, making use of (3.5) and inner product both sides of (3.25) by 63 € x(M) and using 05 = &
,we get

p1S(02,03) = —2np1g(02,03) + [2np1 — 4n’p? — 1]n(62)n(hs) = 0. (3.26)
From (3.26) and by using (2.10), we set
S(02,03) = —2n (g(02,03) +n(62)n(03)) -

Thus, M is an n—Einstein manifold. Conversely, let M?"*1(¢4,&,n,g) be an n—Einstein manifold, i.e.
S(02,05) = —2n(g(02,03) +n(02)n(03)), then from equations (3.26), (3.25), (3.24), (3.23) and (3.22) we
obtain W, - W~ = 0. Which verifies our assertion. [ |

Theorem 3.4. Let M?"1(¢,€, 1, g) be a Kenmotsu manifold. Then M is a Wy - Wg = 0 if and only if M is an
n—Einstein manifold..

Proof. If M isa W, - Wg = 0, that is. As a result,
(Wr(01,02)Wg)(04,05)05 = Wr(61,02)Wg(04,05)05 — We(Wr(61,62)04,05)05

—Wg (04, Wr(01,02)05)03
~Ws(04,05)W7(61,02)03 = 0, (3.27)
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for any 61, 65,03,04,05 € T'(T'M). Setting §; = 03 = £ in (3.27) and making use of (3.8), (2.8), (2.9), for

p1 = 5, we obtain

(W7 (&, 02)Ws)(04,05)§ = Wr(&,02)(1(02)05 + p1.S(04,05)§)
—Ws(1(04)02 — 29(04, 02)§ — p1.5(02,04)€, 05)
~Ws(04,n(05)02 — 29(05,02)€ — p1.5(02,05)€)E
—Ws(04,05)(02 —n(02)§) = 0. (3.28)

Using of (3.8), (3.9), (3.6)and (3.28), we get

—Ws(04,05)02 + p1S(05,04)02 — p11(04)S(65,62)¢
+29(02,04)05 — 21(05)S (02, 04)& + p1S(62,04)05
—2p11(05)S (02, 04)€ — 29(05,02)04 — p1.S(02,05)04 = 0. (3.29)

Inner product both sides of (3.29) by £ € x(M), using 6, = £ and putting (2.11), we have
3p15(95, 92) = —9(95, 92) + [—1 — pl}n(Gg)n(Hg,) =0. (3.30)

From (3.30) and by using (2.10), we set

2n 2n+1
S(05,02) = —39(95792) - ( ) 1n(05)n(62).
M is an n—Einstein manifold, hence. Let M?"*!(p,£,1n,9) be an n-Einstein manifold in contrast, i.e.
S(05,02) = —Zg(65,02) — (25L) n(B5)n(62), then from equations (3.30), (3.29), (3.28) and (3.27), we
obtain Wy, - Wg = 0. This completes of the proof. |

Theorem 3.5. Let M?" (¢, €, 1, g) be a Kenmotsu manifold. Then M is a Wy - Wy = 0 if and only if M is an
n—Einstein manifold.

Proof. Letussay M isa Wz - Wy = 0. It follows that

(We (61, 02)Wy)(04,05,03) = Wr(01,02)Wo(bs,05)05 — Wo(Wr (61, 02)04,05)05
—Wy (s, W7(01,02)05)05
—Wo(04,05)Wr(01,602)03 = 0, (3.31)

for any 61, 02,03,0,,605 € T(TM). Setting 6; = 03 = £ in (3.31) and making use of (3.10), (3.6), for p; = %,
we obtain

(W2(€,02)Wy)(04,05)& = Wr(&,02)(n(04)05 — 1(05)04 + p1.S(04,05)§
—p11(05)Q04) — Wo(n(04)02 — 29(04,02)§
—p1S(02,04)€,05)6 — Wo(04,1(05)02 — 29(05, 02)&
—p19(02,05)£)§ — Wo(04,05)(02 — n(62)§) = 0. (3.32)
Using (3.6) and (3.11) in (3.32), we get

—Wo(04,05)02 + 2n(05)g(04, 02)& + p1S(04, 05)02 + 2np1n(05)1(04) Q05
+pin(05)S (02, Q04)E + 29(02, 04)05 — 29(04, 02)1(05)&

+p15(04,02)05 + p11(65)S(02, 04)€ — 29(02, 05)04

—p1S(02,05)801 — p11(04)S(62,05)¢ + p1n(6s)n(04)Q02 = 0. (3.33)
D
S
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Utilizing (2.20), picking 6, = £ and the inner product on both sides of (3.33) by £ € x(M), we have
2p18(02,05) = —29(02,05) + [4n’pT — 4n’py — 8npy + 2]n(05)1(62) (3.34)

from which, we conclude
S(02,05) = —2ng(02,05) — (1 + 2n)n(02)n(05)-

As a result, M is an 7n-Einstein manifold. On the other hand, consider M?"*1(p, & 7, g) as an 7-Einstein
manifold, i.e. S(f2,05) = —2ng(02,05) — (1 + 2n)n(02)n(0s), then from equations (3.34), (3.33), (3.32)
and (3.31), we obtain W7 - W9 = 0. Which verifies our assertion. [ |

Theorem 3.6. Let M?" (¢, &, 1, g) be a Kenmotsu manifold. Then M is a Wy - W = 0 if and only if M is an
n—Einstein manifold.

Proof. Consider M to be a W7 - W = 0. This means that

(W7 (01,02)W§)(04,05,05) = Wr(01,02) W5 (04, 05)05 — W5 (Wr(01,02)04,05)03
—W5 (04, Wr(01,62)05)03
—W§ (04, 05)Wr(01,02)03 = 0, (3.35)

for any 601,0s,03,04,05 € T'(TM). Setting 6; = 03 = £ in (3.35) and making use of (3.12), (3.6), (3.7), for

p1 = i, we obtain

(W7 (&, 02)W5) (64, 05)6 = Wr (&, 02)(1(04)05 — 2n(05)04 — p11(64)Q05)
—W5(n(04)02 — 2g(02,04)& — p1S(02,04),05)€
—W5(04,1(05)02 — 29(02,05)& — p1.S(02,05)€)E
—W3(04,05)(02 —n(02)§) = 0. (3.36)

Using (3.12) and (3.13) in (3.36), we get

—W§ (04,05)02 — 2n(04)g(02, 05)& + 21(05)g(62,04)& + 2np1m(04)n(65)62

~pn(02)S (02, Q05) — p1(04)1(62)Q05 + 29(02, 04)05 — 4g(02, 04)1(05)

+p15(02,04)05 — p1S(02,04)Q05 + p1(04)n(05) Q62 — 29(62,05)04

+41(04)g(02,05)& + 2p19(02,05)Q04 — p1.S(02,05)04 + 2p11(04) S (02, 05)€
+p15(02,05)Q04 — p1(02)1(02)Q05 — 2p1g(H2, 04)Q05 = 0. (3.37)

Making use of (2.21), using 63 = 6, = £ and inner product both sides of (3.37) by 85 € x (M), we have
2np2S(03,05) = —g(03,05) + [5 — 4n’p? + 2n — 4np1|n(03)n(0s). (3.38)
Finally, from (2.10) and (3.38), we arrive
S(03,05) = —2ng (03, 05) + 8nn(63)n(0s).

This indicates that M is an n—Einstein manifold. Let M instead be an 7-Einstein manifold, i.e. S(f3,05) =
—2ng(03,05) + 8nn(03)n(ds), then from (3.38), (3.37), (3.36) and (3.35), we have W7 - W = 0. This completes
of the proof. |

e
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Conclusion 3.7. Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem 3.4, Theorem 3.5 and Theorem 3.6 than we
have. Assume that M2"+1(<p, &,m, g) is a Kenmotsu manifold. M is thus W7 W5 = 0, W7- W = 0, W7-W7 = 0,
Wy -Wg =0, Wy - Wy = 0and Wy - Wi = 0if and only if M is an n—Einstein manifold.
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