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Abstract
Let G be a finite, undirected and connected graph with minimum degree at least one. A proper coloring C of G is
said to be a total dominator color class total dominating set of G if each vertex properly dominates a color class
in C and each color class in C is properly dominated by a vertex in V(G). A total dominator color class total
dominating set D of G is a minimal total dominator color class total dominating set if no proper subset of D is a
total dominator color class total dominating set of G. The total dominator color class total domination number
is the minimum cardinality taken over all minimal total dominator color class total dominating sets in G and is
denoted by γ td

χ (G). Here we obtain γ td
χ (G) for ladder graph and mobius ladder graph.
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1. Introduction
All graphs considered in this paper are finite, undirected

graphs with minimum degree at least one and we follow
standard definitions of graph theory as found in [8]. Let
G = (V,E) be a connected graph with no isolated vertices.
The open neighborhood N(v) of a vertex v ∈ V(G) consists
of the set of all vertices adjacent to v. The closed neighbor-
hood of v is N[v] = N(v)U{v}. For a set S ⊆ V, the open
neighborhood N(S) is defined to be Uv∈SN(v), and the closed
neighborhood of S is N[S] = N(S)∪S. For any set H of ver-
tices of G, the induced subgraph ⟨H⟩ is the maximal sub graph
of G with vertex set H. A subset S of V is called a dominating
set if every vertex in V−S is adjacent to some vertex in S.

A dominating set S is called a minimal dominating set if
no proper subset of S is a dominating set of G. The domina-
tion number γ(G) is the minimum cardinality taken over all
minimal dominating sets of G. A γ-set of G is any minimal
dominating set with cardinality γ . A proper coloring of G is
an assignment of colors to the vertices of G such that adjacent
vertices have different colors. The smallest number of colors
for which there exists a proper coloring of G is called chro-
matic number of G and is denoted by χ(G). A total dominator
coloring of G is a proper coloring of G with the extra property
that every vertex in G properly dominates a color class. The
total dominator chromatic number is denoted by χtd(G). This
notion was introduced by [9]. A color class dominating set
of G is a proper coloring C of G with the extra property that
every color classes in C is dominated by a vertex in G. A
color class dominating set is said to be a minimal color class
dominating set if no proper subset of C is a color class domi-
nating set of G. The color class domination number of G is
the minimum cardinality taken over all minimal color class
dominating sets of G and is denoted by γχ(G). This notion
was introduced by [4].
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A dominator color class dominating set of G is a proper
coloring C of G with the extra property that each vertex v in
G is dominated by a color class Ci ∈ C and each color class
Ci ∈ C is dominated by a vertex in G. The dominator color
class domination number of G is the minimum cardinality
taken over all dominator color class dominating sets in G
and is denoted by γd

χ (G). This notion was introduced by
[5]. For any two graphs G and H, we define the cartesian
product, denoted by G×H, to be the graph with vertex set
V (G)×V (H) and edges between two vertices (u1,v1) and
(u2,v2) are adjacent iff either u1 = u2 and v1v2 ∈ E(H) or
u1u2 ∈ E(G) and v1 = v2. A ladder graph can be defined as
P2 ×Pn, where n ≥ 2 and is denoted by Ln. A mobius ladder
graph Mn is a graph obtained from the ladder graph P2 ×Pn
by joining the opposite end points of the two copies of Pn.

2. Main Results

Definition 2.1. Let G be a connected graph with minimum
degree at least one. A proper coloring C of G is said to be
a total dominator color class total dominating set of G if
each vertex properly dominates a color class in C and each
color class in C is properly dominated by a vertex in V(G).
A total dominator color class total dominating set D is a
minimal total dominator color class total dominating set if no
proper subset of D of G is a total dominator color class total
dominating set of G . The total dominator color class total
domination number is the minimum cardinality taken over all
minimal total dominator color class total dominating sets in
G and is denoted by γ td

χ (G).

Theorem 2.2. Let Lp be a ladder graph of order 2n. Then

γ td
χ (Lp) =

{
n+2 if n is even
n+1 if n is odd

Proof. Let Lp = L2n = P2 × Pn and
let V (Lp) = {v1,v2, . . .vn,vn+1, . . .v2n} with deg(vi) = 2 for
i= 1,n,(n+1),2n and deg(v j)= 3 for j ̸= i. We take N (vi)=
{vi−1,vi+1,vi+n} for i = 2,3, . . .(n − 1) and
N (v j) =

{
v j−1,v j+1,v j−n

}
for j = (n+2),(n+3), . . . ,(2n−

1). We consider two cases.
Case (i): When n ≡ 1(mod 2)
The vertices {v4i+1}

(
1 ≤ i ≤

⌊ n
4

⌋)
receive distinct colors, say

4i+ 2 and the vertices {vn+4i−1}
(
1 ≤ i ≤

⌊ n
4

⌋)
receive dis-

tinct colors, say 4i respectively. Assign colors, say n and
(n+1) to the vertices {vn−1,v2n}&{vn} if n ≡ 1(mod 4) and
the vertices {vn,v2n−1}&{v2n} if n ≡ 3(mod 4) respectively.
Assign distinct colors, say (4i−1)&(4i+1)

(
1 ≤ i ≤

⌊ n
4

⌋)
to the vertices {v4i−1,vn+4i−2,vn+4i} and {v4i,v4i+2,vn+4i+1}
respectively, we attain a γ td

χ − coloring of Lp,so γ td
χ (Lp) =

n+1. Case (ii): When n ≡ 0(mod 2)
When n−1 ≡ 1(mod 2)& by case (i),γ td

χ (Ln−1) = n. Assign
two new colors, say n+1&n+2 to the vertices {vn}&{v2n}
respectively, we obtain a γ td

χ - coloring of Lp. Thus γ td
χ (Lp) =

n+2.

Figure 1. ·γ td
χ (L15) = 16

Figure 2. γ td
x (L12) = 14

Theorem 2.3. Let Mn be a mobius ladder graph with n ≥ 5.
Then

γ
td
χ (Mn) =

 n+2 if n ≡ 0(mod 4)
n+1 if n ≡ 1,3(mod 4)

n if n ≡ 2(mod 4)

Proof. Let Mn be a mobius ladder graph with
V (Mn) = {ui,vi/i = 1,2, . . .n}. We take
N(ui) = {ui−1,ui+1,vi/i = 2,3 . . .(n−1)}
N(vi) = {vi−1,vi+1,ui/i = 2,3 . . .(n−1)}
N(u1) = {u2,v1,vn}
N(un) = {un−1,v1,vn}
N(v1) = {v2,u1,un}
N(vn) = {un,u1,vn−1}
We consider 3 cases.
Case (i): When n ≡ 0(mod 4)
Assign colors, say 1&2 to the vertices {un}&{v1,un−1,vn}
respectively. Also assign colors say (n−1),n,(n+1)&(n+2)
to the vertices {un−3} ,{un−2} ,{vn−2}&{vn−1} respectively.
Assign colors, say 2i−1&2i

(
i = 2,4,6 . . . n

2 −2
)

to the ver-
tices {u2i−3,v2i−2,u2i−1}&{u2i−2} respectively. Again re-
ceive colors, say 2i−1&2i

(
i = 3,5 . . . n

2 −1
)

to the vertices
{v2i−3,u2i−2,v2i−1}&{v2i−2} respectively, we obtain a γ td

χ -
coloring of Mn. So γ td

χ (Mn) = n+2.
Case (ii): When n ≡ 1,3(mod 4)
Assign colors 1&2 to the same vertices as in case (i). We
consider 2 subcases.
Subcase 2.1. When n ≡ 1(mod 4):
Assign colors, say 2i−1&2i

(
i = 2,4,6 . . .

⌊ n
2

⌋)
to the ver-

tices {u2i−3,v2i−2,u2i−1}&{u2i−2} respectively. Also as-
sign colors, say 2i− 1&2i

(
i = 3,5 . . . n

2 +1
)

to the vertices
{v2i−3,u2i−2,v2i−1}&{v2i−2} respectively. In addition, that
assign two distinct colors say n and n + 1 to the vertices
{vn−2}&{vn−1}, we get a γ td

χ - coloring of Mn. Thus γ td
χ (Mn)=

n+1.
Subcase 2.2. When n ≡ 3(mod 4):
Assign colors, say 2i−1&2i

(
i = 2,4,6 . . .

⌊ n
2

⌋
−1

)
to the

vertices {u2i−3,v2i−2,u2i−1}&{u2i−2} respectively. Also
assign colors, say 2i− 1&2i

(
i = 3,5 . . .

⌊ n
2

⌋
−2

)
to the ver-

1234
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Figure 3. γ td
x (L12) = 14

Figure 4. γ td
χ (L17) = 18

tices {v2i−3,u2i−2,v2i−1}&{v2i−2} respectively. In addition
that assign 4 distinct colors say n−2,n−1,n and n+1 to the
vertices {vn−4,un−3} ,{vn−3} ,{un−2,vn−1}&{vn−2} respec-
tively, we attain a γ td

χ - coloring of Mn. Hence γ td
χ (Mn) = n+1

Case (iii): When n ≡ 2(mod 4):
Assign colors 1&2 to the same vertices as in case (i). We as-
sign colors, say 2i−1&2i

(
i = 2,4,6 . . . n

2 −1
)

to the same
vertices as in case (i) & assign colors,
say 2i−1&2i

(
i = 3,5 . . . n

2

)
to the same vertices as in case

(i). We get the required result hence γ td
χ (Mn) = n
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