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Abstract. In this paper, the concept of compactness on fuzzy strong b-metric space is introduced. On the other hand some
basic results are developed on compactness, completeness and totally boundedness.
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1. Introduction

Several authors generalized metric spaces and fuzzy metric spaces (for reference please see [1,3,4,5,7,9]) in
different ways and studied various topological properties on such spaces (please see [2,6,8,10]).
In this paper, we have considered fuzzy strong b-metric space introduced by T. Oner[7] and explore some new
concepts such as compactness, totally boundedness to develop some basic results on such spaces.
The organization of the paper is as follows:
In Section 2, some preliminary results are given to be used in this paper. In Section 3, an idea of compact fuzzy
strong b-metric space is introduced. Definitions of closed and bounded sets are given and some basic results are
studied. The concept of α − ε−net and α−totally bounded set is introduced and some fundamental results are
developed in Section 4.
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2. Preliminaries

In this section, some preliminary results are given which are used in this paper.

Definition 2.1. ([3]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if ∗ satisfies the
following conditions;
1) ∗ is associative and commutative,
2) ∗ is continuous,
3) a ∗ 1 = a ∀a ∈ [0, 1],
4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, a, b, c, d ∈ [0, 1].

Definition 2.2. ([9]) An ordered triple (X,D,K) is called strong b-metric space, D is called strong b-metric on
X if X is a nonempty set, K ≥ 1 is a given real number and
D : X ×X → [0,∞) satisfies the following conditions ∀x, y, z ∈ X
1) D(x, y) = 0 iff x = y,
2) D(x, y) = D(y, x),
3) D(x, z) ≤ D(x, y) +KD(y, z).

Definition 2.3 (7). Let X be a nonempty set, K > 1, ∗ is a continuous t-norm and M be a fuzzy set on X ×X ×
(0,∞) such that ∀x, y, z ∈ X and t, s > 0,
1) M(x, y, t) > 0,
2) M(x, y, t) = 1 iff x = y,
3) M(x, y, t) = M(y, x, t),
4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+Ks),
5) M(x, y, ·) : (0,∞)→ [0, 1] is continuous.

Then M is called a fuzzy strong b-metric on X and (X,M, ∗,K) is called fuzzy strong b-metric space.

3. Compact fuzzy strong b-metric space

In this section some definitions are given and basic results are studied.

Definition 3.1. Let (X,M, ∗,K) be a fuzzy strong b-metric space and A ⊂ X . A is said to be compact if every
sequence in A has a convergent subsequence which converges to some point in A.

Theorem 3.2. Every compact fuzzy strong b-metric space is complete if 1 < K < 2.

Proof. Let (X,M, ∗,K) be a compact fuzzy strong b-metric space.
Let {xn} be a Cauchy sequence in X.
Let r and t be arbitrary real numbers such that r ∈ (0, 1) and t > 0. Then ∃r0 ∈ (0, 1) such that (1− r0) ∗ (1−
r0) ∗ (1− r0) > 1− r. (Since ∗ is a continuous t-norm)
Since {xn} is a Cauchy sequence, thus for r0 ∈ (0, 1) and t > 0, there exists a natural number n0 such that

M(xn, xn0 ,
t

3
) > 1− r0 ∀n ≥ n0. (3.1)

Since X is compact, ∃ a subsequence {xkn} of {xn} which converges to some x ∈ X .
Thus, for 2t

3K2 − t
3K (> 0) and r0 ∈ (0, 1), ∃m ∈ N such that

M(xkm , x,
2t

3K2
− t

3K
) > 1− r0 ∀m ≥ n0. (3.2)

Since km ≥ m ≥ n0, we have from (3.1), we have

M(xkm , xn0
,
t

3
) > 1− r0. (3.3)
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Now for n ≥ n0, from (3.1), (3.2) and (3.3), we get

M(xn, x, t) = M(xn, x,
t

3
+K.

2t

3K
)

≥M(xn, xn0
,
t

3
) ∗M(xn0

, x,
2t

3K
)

= M(xn, xn0 ,
t

3
) ∗M(xn0 , x,

t

3
+K(

2t

3K2
− t

3K
))

≥M(xn, xn0 ,
t

3
) ∗M(xn0 , xKm ,

t

3
) ∗M(xKm , x,

2t

3K2
− t

3K
)

> (1− r0) ∗ (1− r0) ∗ (1− r0).

Thus for t > 0 and r ∈ (0, 1) we have
M(xn, x, t) > 1− r ∀n ≥ n0
⇒ lim

n→∞
xn = x.

⇒ X is complete. �

Note 3.1. Converse of the result may not be true. We justify it by the following example.
Example 3.1. Let X = R. Define Mb(x, y, t) = t

t+D(x,y) for t > 0

and x, y ∈ X where D(x, y) = |x− y| ∀x, y ∈ X .
By using Example 2.2[7] it is enough to prove that (X,D,K) is a strong b-metric space to show that
(X,MD, ∗,K) is a fuzzy strong b-metric space induced by D where ∗= product t-norm.
Solution . First we show that (X,D,K) is a strong b-metric space.
1. D(x, y) = |x− y| = 0 iff x = y

2. D(x, y) = |x− y| = |y − x| = D(y, x)

3. D(x, z) = |x− z| = |x− y + y − z| ≤ |x− y|+ |y − z| ≤ |x− y|+K|y − z|,K > 1

∴ D(x, z) ≤ D(x, y) +KD(y, z) ∀x, y, z ∈ X .
Thus (X,D,K) is a strong b-metric space.
So, (X,MD, ∗,K) is a fuzzy strong b-metric space.
Next we show that (X,MD, ∗,K) is complete.
Suppose {xn} is a Cauchy sequence in X.
We choose ε = tr

1−r (> 0) arbitrarily where t > 0, r ∈ (0, 1).
Now for t > 0 and r ∈ (0, 1), there exists n0,
such that MD(xn, xm, t) = t

t+|xn−xm| > 1− r, ∀n,m ≥ n0.
⇒ |xn − xm| < t( 1

1−r − 1) = tr
1−r = ε ∀n,m ≥ n0.

⇒ |xn − xm| < ε ∀n,m ≥ n0.
So {xn} is a Cauchy sequence in R. Since R is complete, there exists x ∈ R such that xn → x.
Now, MD(xn, x, t) = t

t+|xn−x| ∀t > 0.

⇒ lim
n→∞

MD(xn, x, t) =
t

t+ lim
n→∞

|xn − x|
∀t > 0.

⇒ lim
n→∞

MD(xn, x, t) =
t

t+ 0
= 1 ∀t > 0.

⇒ lim
n→∞

MD(xn, x, t) = 1 ∀t > 0.

Thus xn → x, for some x ∈ X.
So, (X,MD, ∗,K) is complete.
If possible suppose that (X,MD, ∗,K) is compact.
Let {xn} be a sequence in X such that xn = n ∀n.
Since X is compact, there exists a subsequence {yn} of {xn} such that yn → y, for some y ∈ X.
Now, MD(yn, y, t) = t

t+|yn−y| ∀t > 0.
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lim
n→∞

MD(yn, y, t) =
t

t+ lim
n→∞

|yn − y|
∀t > 0.

⇒ 1 = t

t+ lim
n→∞

|yn − y|
⇒ lim

n→∞
|yn − y|+ t = t

⇒ lim
n→∞

|yn − y| = 0

⇒ yn → y, for some y ∈ R.
Which is a contradiction since the sequence of all natural numbers has no convergent sequence in R. w.r.t. usual
metric.
Thus (X,MD, ∗,K) is not compact.

Definition 3.3. Let (X,M, ∗,K) be a fuzzy strong b-metric space. A subset A of X is said to be bounded if
∃t > 0, r ∈ (0, 1)

such that M(x, y, t) > 1− r ∀x, y ∈ A.

Definition 3.4. Let (X,M, ∗,K) be a fuzzy strong b-metric space. A subset F of X is said to be closed if for any
sequence {xn} in F such that xn → x implies x ∈ F.
i.e. lim

n→∞
M(xn, x, t) = 1 ∀t > 0 implies x ∈ F.

Proposition 3.5. Every compact subset of a fuzzy strong b-metric space is closed and bounded.

Proof. Let (X,M, ∗,K) be a fuzzy strong b-metric space and A be a subset of X.
If possible suppose that A is not closed. So ∃ a sequence {xn} in A such that xn → x but x /∈ A.
Since A is compact, so ∃ a subsequence {xnK

} of {xn} which converges to some point in A.
Since xn → x thus {xnK

} → x and hence x ∈ A.
Which is a contradiction. Thus A is closed.
Now we show that A is bounded.
If possible suppose that A is unbounded. Fix x0 ∈ A.
Choose a sequence {αn} ∈ (0, 1) ∀n such that αn → 1 as n→∞.
Thus for a given t > 0, for each n, ∃xn ∈ A such that
M(x0, xn, t) ≤ 1− αn.
Now we obtain a sequence {xn} in A. Since A is compact, ∃ a subsequence {xnl

} of {xn} which converges to
some point x ∈ A.
Now we have M(x0, xnl

, t) ≤ 1− αnl

We have, 1− αnl
≥M(x0, xnl

, t)

= M(x0, xnl
, t2 + Kt

2K )

≥M(x0, x,
t
2 ) ∗M(x, xnl

, t
2K )

⇒ lim
n→∞

(1− αnl
) ≥ lim

n→∞
M(x0, x,

t

2
) ∗ lim

n→∞
M(x, xnl

,
t

2K
)

⇒ 0 ≥M(x0, x,
t
2 ) ∗ 1 = M(x0, x,

t
2 )

⇒M(x0, x,
t
2 ) = 0 which contradict the condition (3.1). �

Note 3.2. Converse of the above result may not be true. We justify it by the following example.
Example 3.2. Let X = l2.

Define D(x, y) = (

∞∑
i=1

|xi − yi|2)
1
2 where x = (x1, x2, x3, .....) and y = (y1, y2, y3, .....)

Then it is easy to verify that (X,D) is a strong b-metric space for K ≥ 1

Again define Mb(x, y, t) = t
t+D(x,y) ∀t ∈ (0,∞).

Then by using Example 2.2[7], it follows that (X,Mb, ∗,K) is a fuzzy strong b-metric space w.r.t. the t-norm
∗=product.
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Choose A = {(1, 0, 0, ....), (0, 1, 0, ...), (0, 0, 1, 0, ...), ....} subset of l2.
For x, y ∈ A with x 6= y we get Mb(x, y, t) = t

t+
√
2

.

Take t =
√

2 + 1 and α = 1
2 .

Then ∀x, y(x 6= y) ∈ A we get,
Mb(x, y,

√
2 + 1) =

√
2+1√

2+1+
√
2

Now,
√
2+1√

2+1+
√
2
− 1

2 = 2
√
2+2−2

√
2−1

2(2
√
2+1)

= 1
2(2
√
2+1)

> 0

Thus Mb(x, y,
√

2 + 1) > 1− α = 1− 1
2 ∀x, y(x 6= y) ∈ A

Also for x = y, Mb(x, y,
√

2 + 1) = 1 > 1− 1
2 .

Thus A is bounded.
On the other hand if we consider the sequence {xn} in A where xn = (0, 0, 0, ..., 1(nthplace), 0, ...).
Clearly A is closed and since neither the sequence {xn} nor its any subsequence converges to some element in
A, so A is not compact.

Proposition 3.6. Every finite subset in a fuzzy strong b-metric space is bounded.

Proof. Let (X,M, ∗,K) be a fuzzy strong b-metric space and A be a finite subset of X containing n elements
x1, x2, ...xn.
Choose t0 > 0 fixed. Let min

i,j
M(xi, xj , t0) = β i, j = 1, 2, ....n.

Clearly β ∈ (0, 1).
Choose α ∈ (0, 1) such that min

i,j
M(xi, xj , t0) > 1− α

⇒M(xi, xj , t0) > 1− α ∀xi, xj ∈ A.
⇒ A is bounded. �

4. Totally bounded set in fuzzy strong b-metric space

In this section the concept of α−totally bounded set is introduced and some fundamental results on α− totally
bounded sets are developed.

Definition 4.1. Let (X,M, ∗,K) be a fuzzy strong b-metric space and A ⊂ X and α ∈ (0, 1) be given. Let
ε > 0 be a positive number. A set B ⊂ X is said to be an α − ε-net for the set A if for any x ∈ A, ∃y ∈ B such
that
M(x, y, εK ) > 1− α.
B may be finite or infinite.

Definition 4.2. A set A in a fuzzy strong b-metric space (X,M, ∗,K) is said to be α-totally bounded for a given
α ∈ (0, 1), if for any ε > 0, there exists a finite α− ε-net for the set A.

Theorem 4.3. Let (X,M, ∗,K) be a fuzzy strong b-metric space and A ⊂ X be α-totally bounded for some
α ∈ (0, 1). Then A is bounded.

Proof. Since A is α-totally bounded, so for each ε > 0, there exists a finite α− ε-net B for the set A.
Choose ε0 > 0. Then for each x ∈ A, there exists y ∈ B such that M(x, y, ε0K ) > 1− α.
Since B is finite thus B is bounded. (by Proposition 3.6).
So ∃ε1 > 0 and α0 ∈ (0, 1) such that
M(y1, y2, ε1) > 1− α0 ∀y1, y2 ∈ B.
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Now, for arbitrary x1, x2 ∈ A we have,

M(x1, x2, ε1 + 2ε0) = M(x1, x2, ε1 +K.
ε0
K

+K.
ε0
K

)

≥M(x1, y2, ε1 +K
ε0
K

) ∗M(y2, x2,
ε0
K

)

≥M(x1, y1,
ε0
K

) ∗M(y1, y2, ε1) ∗M(x2, y2, ε0). (4.1)

Now M(x1, y1,
ε0
K ) > 1− α, M(y1, y2, ε1) > 1− α0 and M(x2, y2,

ε0
K ) > 1− α.

Choose β ∈ (0, 1) such that (since ∗ is continuous ).
(1− α) ∗ (1− α0) ∗ (1− α) > 1− β.
From (4.1), we get

M(x1, x2, ε1 + 2ε0) ≥ (1− α) ∗ (1− α0) ∗ (1− α) > 1− β.
⇒M(x1, x2, ε1 + 2ε0) > 1− β. ∀x1, x2 ∈ A.
⇒ A is bounded.

�

Note 4.1. The converse of the theorem is not true. We can prove it by the following example.

Example 4.2. Let X = l2. Define D(x, y) = (

∞∑
i=1

|xi − yi|2)
1
2 where x = (x1, x2, x3, .....) and y =

(y1, y2, y3, .....).
Then it is easy to verify that (X,D) is a strong b-metric space for K ≥ 1

Again define Mb(x, y, t) = t
t+D(x,y) ∀t > 0,∀x, y ∈ X .

Then by using Example 2.2[7], it follows that (X,Mb, ∗,K) is a fuzzy strong b-metric space w.r.t. the
t-norm ∗=product.
Consider A = {(1, 0, 0, ...), (0, 1, 0...), (0, 0, 1, 0, ...), ..}. Then A ⊂ X . It is proved that A is bounded (by
previous Example 3.2).
Now, we show that there is no α− ε−net for A. Choose ε =

√
2

(1+K) , α = 1− 1√
2

and if possible suppose that N
is a finite α − ε-net for A. Then for xi, xj , (i 6= j)εA, there exist yi, yj from N such that Mb(xi, yi, ε) > 1 − α
and Mb(xj , yj , ε) > 1− α.
Now, Mb(xi, xj , ε+Kε) ≥Mb(xi, yi, ε).Mb(xj , yj , ε)

> (1− α).(1− α)

= (1− α)2

⇒ (1+K)ε

(1+K)ε+
√
2
> (1− α)2

⇒
√
2

2
√
2
> (1− α)2

⇒ 1
2 >

1
2 .

Which is a contradiction. So, A is not α− ε−bounded.

Definition 4.4. Let (X,M, ∗,K) be a fuzzy strong b-metric space and α ∈ (0, 1).
(i) A sequence {xn} is said to be α-convergent and converges to x if
lim
n→∞

M(xn, x, t) > 1− α ∀t > 0.

(ii) A sequence {xn} in X is said to be α-Cauchy sequence if
lim

m,n→∞
M(xn, xm, t) > 1− α ∀t > 0.

(iii) A subset A of X is said to be α-compact if every sequence in A has an α-convergent subsequence converges
to some element in A.
If the converging point belongs to X not to A then we say that A is α-compact in X.
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Definition 4.5. Let (X,M, ∗,K) be a fuzzy strong b-metric space and A(⊂ X) be a nonempty subset of X. Then
α− diameter of A is defined as
α− δ(A) =

∨
x,y∈A

∧
{t > 0 : M(x, y, t) > 1− α}, 0 < α < 1.

Theorem 4.6. Let (X,M, ∗,K) be a fuzzy strong b-metric space and A ⊂ X .
(1) if A is compact then A is α-totally bounded ∀α ∈ (0, 1).
(2) If X is α-complete and A is α-totally bounded ∀α ∈ (0, 1) then A is α-compact in X ∀α ∈ (0, 1) w.r.t. the
t-norm ∗ = min.

Proof. (1) We assume that A is compact. Choose α ∈ (0, 1) and ε > 0 be arbitrary. Let x1 be an arbitrary
element of X.
If M(x, x1,

ε
K ) > 1− α ∀x ∈ A, then a finite α− ε−net B exists for A. i.e. B = {x1}.

If not, ∃ a point x2 ∈ A such that M(x1, x2,
ε
K ) ≤ 1− α. If for every point x ∈ A either M(x, x1,

ε
K ) > 1− α

or M(x, x2,
ε
K ) > 1− α then a finite ε-net B exists for A.

i.e. B = {x1, x2}.
If, however, this is not true, then there exists x3 ∈ A such thatM(x3, x1,

ε
K ) ≤ 1−α andM(x3, x2,

ε
K ) ≤ 1−α.

Then a finite α− ε−net B = {x1, x2, x3} exists for A.
Continuing in this way, we obtain points x1, x2, ......, xn; x1 ∈ X and xi ∈ A, 2 ≤ i ≤ n for which
M(xi, xj ,

ε
K ) ≤ 1− α for i 6= j.

There are two cases may arise.
Case I. The procedure stops after k th step.
Then we obtain points x1, x2, ......, xk such that for every x ∈ A at least one of the inequalities
M(xi, x,

ε
K ) > 1− α, i = 1, 2, ....., k holds and then B = {x1, x2, .....xk} is a finite α− ε−net for A and here

A is α-totally bounded.
Case II. The procedure continues indefinitely.
Then we obtain an infinite sequence {xn}, x1 ∈ X and xi ∈ A for i > 1 such that
M(xi, xj ,

ε
K ) ≤ 1− α for i 6= j.

If possible suppose there exists a subsequence {xnk
} of {xn} which converges to x.

Now M(xnk
, x, ε

2K ) ∗M(x, xnk+1
, ε
2K2 ) ≤M(xnk

, xnk+1
, εK ) ≤ 1− α

⇒ lim
k→∞

M(xnk
, x,

ε

2K
) ∗ lim

k→∞
M(x, xnk+1

,
ε

2K2
) ≤ 1− α

⇒ 1 ∗ 1 ≤ 1− α
⇒ 1 ≤ 1− α which is a contradiction.
Thus Case II does not arise.
Hence A is α-totally bounded. Since α ∈ (0, 1) is arbitrary thus A is α-totally bounded ∀α ∈ (0, 1).
2. We assume that X is α-complete and α-totally bounded for each α ∈ (0, 1).
So for every ε > 0 and each α ∈ (0, 1), there exists a finite α− ε−net for A. Let α ∈ (0, 1) be given. We choose
a sequence {εn} such that εn → 0 and εn > 0 ∀n and εn+1 < εn and construct for each n = 1, 2, .... a finite
α− εn− net
[x

(n)
1 , x

(n)
2 , ......, x

(n)
kn

] for the set A. Let T = {xn} be an arbitrary sequence of elements from A. Without loss of
generality we may assume that xi 6= xj if i 6= j and T is the infinite set with elements xn.
Around every point of the α − ε1-net [x

(1)
1 , x

(1)
2 , ......, x

(1)
k1

], we construct closed balls with radius ε1. It is clear
that each element of {xn} belongs to one or more of these balls.
Since the number of balls is finite, there exists at least one ball containing an infinite subset T1 ⊂ T (say
B[x

(1)
1 , α, ε1]).

Now we show that α− δ(T1) ≤ 2 ε1K .
Let x, y ∈ T1. Then M(x, x

(1)
i , ε1K ) > 1− α and M(y, x

(1)
i , ε1K ) > 1− α (1 ≤ i ≤ k1).

Now M(x, y, 2ε1) = M(x, y, ε1 +K · ε1K ) ≥M(x, x
(1)
i , ε1) ∗M(y, x

(1)
i , ε1K )

≥M(x, x
(1)
i , ε1K ) ∗M(y, x

(1)
i , ε1K )
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> (1− α) ∗ (1− α) = 1− α.
⇒

∧
{t > 0 : M(x, y, t) > 1− α} ≤ 2ε1

⇒
∨

x,y∈T1

∧
{t > 0 : M(x, y, t) > 1− α} ≤ 2ε1

⇒ α− δ(T1) ≤ 2ε1.
Next, around every point of the α− ε2-net [x

(2)
1 , x

(2)
2 , ......, x

(2)
k2

]

we construct closed sphere with radius ε2.
By the same argument as above, there exists an infinite subset T2 ⊂ T1 and
α− δ(T2) ≤ 2ε2.
Continuing in this process, we obtain a sequence of infinite subsets T ⊃ T1 ⊃ T2 ⊃ ... ⊃ Tn ⊃ ... where
α− δ(Tn) ≤ 2εn ∀n.
We now choose a point xp1 ∈ T1, a point xp2 ∈ T2 different from xp1 , a point xp3 ∈ T3 different from xp1 and
xp2 and so on.
We have xpn ∈ Tn, xpm ∈ Tm and for n > m, Tn ⊂ Tm.
Thus for n > m, xpn , xpm ∈ Tm.
So

∧
{t > 0 : M(xpn , xpm , t) > 1− α} ≤ α− δ(Tm) ≤ 2εm.

⇒ lim
n,m→∞

∧
{t > 0 : M(xpn , xpm , t) > 1− α} = 0

Thus for a given ε > 0, there exists a natural number say n0 such that∧
{t > 0 : M(xpn , xpm , t) > 1− α} < ε ∀m,n ≥ n0.
⇒M(xpn , xpm , ε) > 1− α ∀m,n ≥ n0.
⇒ lim

m,n→∞
M(xpn , xpm , ε) ≥ 1− α

Since ε > 0 is arbitrary, thus
⇒ lim

m,n→∞
M(xpn , xpm , t) ≥ 1− α ∀t > 0

Choose β ∈ (0, 1) such that 1− α > 1− β.
So lim

m,n→∞
M(xpn , xpm , t) > 1− β.

Thus {xpn} is a β-Cauchy sequence in A and hence in X. Since X is β-complete, thus there exists x ∈ X such
that
lim
n→∞

M(xpn , xpm , t) > 1− β ∀t > 0.
Hence A is β-compact in X.
Since α ∈ (0, 1) is arbitrary, thus β ∈ (0, 1) is also arbitrary and hence the proof is complete. �

Definition 4.7. Let (X,M, ∗,K) be a fuzzy strong b-metric space and A ⊂ X .
The closure of A is denoted by Ā and is defined by Ā = A ∪A′

where A
′

denotes the derived set of A.

Proposition 4.8. Let (X,M, ∗,K) be a fuzzy strong b-metric space and A ⊂ X . For x ∈ Ā, for each ε > 0 and
α ∈ (0, 1), there exists y ∈ A such that
M(x, y, ε) > 1− α.

Proof. Let x ∈ Ā. So x ∈ A ∪A′
.

Case I . x ∈ A. Then we choose y = x and we have
M(x, y, ε) = M(x, x, ε) = 1 > 1− α for each ε > 0 and α ∈ (0, 1).
Case II . x notin A and x ∈ A′

.
Thus for each ε > 0 and α ∈ (0, 1), there exists y ∈ A such that
y ∈ B(x, ε, α).
i.e. M(x, y, ε) > 1− α. �

Proposition 4.9. Let (X,M, ∗,K) be a fuzzy strong b-metric space and A ⊂ X . If A is compact then Ā is
compact.
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Proof. Let {yn} be a sequence in Ā.
Choose ε > 0 be arbitrary and {αn} be a sequence in (0, 1) such that αn → 0 as n→∞.
Now by Proposition 4.8, for each yn, there exists xn ∈ A such that
M(xn, yn,

ε
2 ) > 1− αn......(i)

Thus we obtain a sequence {xn} in A. Since A is compact, thus there exists a subsequence {xnr
} of {xn} which

converges to some point x ∈ A.
So lim

r→∞
M(xnr

, x, t) = 1 ∀t > 0

i.e. lim
r→∞

M(xnr
, x,

ε

2K
) = 1.........(ii)

Now M(ynr , x, ε) = M(ynr , x,
ε
2 +K. ε2K )

≥M(ynr , xnr ,
ε
2 ) ∗M(xnr , x,

ε
2K )

⇒ lim
r→∞

M(ynr , x, ε) ≥ lim
r→∞

M(ynr , xnr ,
ε

2
) ∗ lim

r→∞
M(xnr , x,

ε

2K
) = 1........(iii)

From (i) we get M(xnr , ynr ,
ε
2 ) > 1− αnr

⇒ lim
r→∞

M(xnr , ynr ,
ε

2
) ≥ 1− lim

r→∞
αnr = 1

⇒ lim
r→∞

M(xnr
, ynr

,
ε

2
) = 1...........(iv)

Using (ii) and (iv), from (iii) we have
lim
r→∞

M(ynr , x, ε) ≥ 1 ∗ 1 = 1

⇒ lim
r→∞

M(ynr , x, ε) = 1

Since ε > 0 is arbitrary, thus lim
r→∞

M(ynr , x, t) = 1 ∀t > 0.

Thus the subsequence {ynr} of {yn} converges to x. Hence Ā is compact. �

Note 4.1. Converse of the result is not true. We justify it by the following example.
Example 4.1. Let X = R. Define M(x, y, t) = e−

D(x,y)
t ∀t > 0; ∀x, y ∈ X .

We writeD(x, y) = |x−y| ∀x, y ∈ X . Then it is verified that (X,D,K) is a strong b-metric space (by previous
Example 3.2).
Now, we shall prove that (X,M, ∗,K) is a fuzzy strong b-metric space. Where ∗ is the product t-norm and
K > 1.
1. M(x, y, t) = e−

D(x,y)
t > 0 ∀x, y ∈ X and ∀t > 0.

2. M(x, y, t) = 1 ∀x, y ∈ X and ∀t > 0.
⇔ e−

D(x,y)
t = 1 = e0

⇔ −D(x,y)
t = 0 ∀t > 0.

⇔ D(x, y) = 0

⇔ x = y.

3. M(x, y, t) = e−
D(x,y)

t = e−
D(y,x)

t ∀t > 0.

= M(y, x, t) ∀x, y ∈ X
4. Now, ∀x, y, z ∈ X,
D(x, z) ≤ D(x, y) +KD(y, z) K > 1.
D(x,z)
t+KS ≤

D(x,y)+KD(y,z)
t+KS ; t, s > 0.

e
D(x,z)
t+KS ≤ e

D(x,y)+KD(y,z)
t+KS

e
D(x,z)
t+KS ≤ e

D(x,y)
t+KS · e

D(y,z)
t
K

+s

≤ e
D(x,y)

t · e
D(y,z)

s

e
D(x,z)
t+KS ≤ e(

D(x,y)
t +

D(y,z)
t )

e−
D(x,z)
t+KS ≥ e−(

D(x,y)
t +

D(y,z)
t )

e−
D(x,z)
t+KS ≥ e−

D(x,y)
t · e−

D(y,z)
s

∴M(x, z, t+Ks) ≥M(x, y, t) ·M(y, z, s)

5. This is clear that M(x, y, ·) : (0,∞) → [0, 1] is continuous. Thus (X,M, ·,K) is a fuzzy strong b-metric
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space.
Let A = (0, 1). Then Ā = [0, 1].

Firstly, we will show that A is not compact in X . If possible suppose that A is compact. Let {xn} be a sequence
in A where xn = 1

n+1 ∀n ≥ 1.

Let {xkn} be a sequence in A such that xkn → y for some y ∈ A.

M(xkn , y, t) = e−
D(xkn

,y)

t ∀t > 0.

lim
n→∞

M(xkn , y, t) = lim
n→∞

e−
D(xkn

,y)

t = e
− lim
n→∞

e
D(xkn

,y)

t

⇒ e0 = 1 = e
− lim
n→∞

e
D(xkn

,y)

t

∀t > 0.

⇒ lim
n→∞

D(xkn , y)

t
= 0 ∀t > 0.

⇒ lim
n→∞

D(xkn , y) = 0

⇒ lim
n→∞

|xkn − y| = 0

⇒ y = 0.

⇒ y /∈ A.
Which is a contradiction.
So, A is not complete.
Now we prove that Ā = [0, 1] is compact.
By Hine-Borel theorem, Ā = [0, 1] is compact in R w.r.t. usual norm given by ‖x‖ = |x| ∀x ∈ R.
Let {xn} be a sequence in Ā. So,there exists a subsequence {xnr

} of {xn} which converges in some point
x ∈ Ā.
i.e. |xnr

− x| → 0 as r →∞ and x ∈ Ā.
i.e. D(xnr

, x)→ 0 as r →∞ and x ∈ Ā.

Now M(xnr
, x, t) = e−

D(xnr ,x)

t

⇒ lim
r→∞

M(xnr , x, t) = lim
r→∞

e−
D(xnr ,x)

t = e
− lim
r→∞

e
D(xnr ,x)

t

.

Since D(xnr , x)→ 0 as r →∞, from above we have,
⇒ lim

r→∞
M(xnr , x, t) = 1 ∀t > 0.

⇒ xnr
→ x in (X,M, ∗,K).

Since {xn} is an arbitrary sequence in Ā, thus Ā is a compact subset in (X,M, ∗,K).

5. Conclusion

The concept of fuzzy strong b-metric space is relatively a new idea by modifying the triangle inequality in
fuzzy setting. In this paper, we explore an idea of compactness and totally boundedness on fuzzy strong b-metric
spaces and establish some basic results. We think that the researchers will be enriched with serendipitous findings
by this research work.
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