MALAYA JOURNAL OF MATEMATIK

Malaya J. Mat. **10(02)**(2022), 128–138. http://doi.org/10.26637/mjm1002/003

Some results on compact fuzzy strong *b*-metric spaces

ARUNIMA MAJUMDER¹ AND T. BAG *1

¹ Department of Mathematics, Visva-Bharati, Santiniketan-731235, India.

Received 14 December 2021; Accepted 21 March 2022

Abstract. In this paper, the concept of compactness on fuzzy strong b-metric space is introduced. On the other hand some basic results are developed on compactness, completeness and totally boundedness.

AMS Subject Classifications: 54A40, 03E72.

Keywords: Compact fuzzy strong b-metric space, $\alpha - \epsilon$ -net, α -totally bounded set.

Contents

1	Introduction	128
2	Preliminaries	129
3	Compact fuzzy strong b-metric space	129
4	Totally bounded set in fuzzy strong b-metric space	132
5	Conclusion	137
6	Acknowledgement	137

1. Introduction

Several authors generalized metric spaces and fuzzy metric spaces (for reference please see [1,3,4,5,7,9]) in different ways and studied various topological properties on such spaces (please see [2,6,8,10]).

In this paper, we have considered fuzzy strong b-metric space introduced by T. Oner[7] and explore some new concepts such as compactness, totally boundedness to develop some basic results on such spaces.

The organization of the paper is as follows:

In Section 2, some preliminary results are given to be used in this paper. In Section 3, an idea of compact fuzzy strong b-metric space is introduced. Definitions of closed and bounded sets are given and some basic results are studied. The concept of $\alpha - \epsilon$ -net and α -totally bounded set is introduced and some fundamental results are developed in Section 4.

^{*}Corresponding author. Email address: tarapadavb@gmail.com (T. Bag)

2. Preliminaries

In this section, some preliminary results are given which are used in this paper.

Definition 2.1. ([3]) A binary operation $* : [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t-norm if * satisfies the following conditions;

1) * is associative and commutative, 2) * is continuous, 3) $a * 1 = a \quad \forall a \in [0, 1],$ 4) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, $a, b, c, d \in [0, 1]$.

Definition 2.2. ([9]) An ordered triple (X, D, K) is called strong b-metric space, D is called strong b-metric on X if X is a nonempty set, $K \ge 1$ is a given real number and $D: X \times X \to [0, \infty)$ satisfies the following conditions $\forall x, y, z \in X$ 1) D(x, y) = 0 iff x = y, 2) D(x, y) = D(y, x), 3) $D(x, z) \le D(x, y) + KD(y, z)$.

Definition 2.3 (7). Let X be a nonempty set, K > 1, * is a continuous t-norm and M be a fuzzy set on $X \times X \times (0, \infty)$ such that $\forall x, y, z \in X$ and t, s > 0, 1) M(x, y, t) > 0,

1) M(x, y, t) > 0, 2) M(x, y, t) = 1 iff x = y, 3) M(x, y, t) = M(y, x, t), 4) $M(x, y, t) * M(y, z, s) \le M(x, z, t + Ks)$, 5) $M(x, y, \cdot) : (0, \infty) \to [0, 1]$ is continuous. Then M is called a fuzzy strong b-metric on X and (X, M, *, K) is called fuzzy strong b-metric space.

3. Compact fuzzy strong b-metric space

In this section some definitions are given and basic results are studied.

Definition 3.1. Let (X, M, *, K) be a fuzzy strong b-metric space and $A \subset X$. A is said to be compact if every sequence in A has a convergent subsequence which converges to some point in A.

Theorem 3.2. Every compact fuzzy strong b-metric space is complete if 1 < K < 2.

Proof. Let (X, M, *, K) be a compact fuzzy strong b-metric space.

Let $\{x_n\}$ be a Cauchy sequence in X.

Let r and t be arbitrary real numbers such that $r \in (0, 1)$ and t > 0. Then $\exists r_0 \in (0, 1)$ such that $(1 - r_0) * (1 - r_0) * (1 - r_0) > 1 - r$. (Since * is a continuous t-norm)

Since $\{x_n\}$ is a Cauchy sequence, thus for $r_0 \in (0, 1)$ and t > 0, there exists a natural number n_0 such that

$$M(x_n, x_{n_0}, \frac{t}{3}) > 1 - r_0 \quad \forall n \ge n_0.$$
(3.1)

Since X is compact, \exists a subsequence $\{x_{k_n}\}$ of $\{x_n\}$ which converges to some $x \in X$. Thus, for $\frac{2t}{3K^2} - \frac{t}{3K} (> 0)$ and $r_0 \in (0, 1)$, $\exists m \in N$ such that

$$M(x_{k_m}, x, \frac{2t}{3K^2} - \frac{t}{3K}) > 1 - r_0 \quad \forall m \ge n_0.$$
(3.2)

Since $k_m \ge m \ge n_0$, we have from (3.1), we have

$$M(x_{k_m}, x_{n_0}, \frac{t}{3}) > 1 - r_0.$$
(3.3)

Now for $n \ge n_0$, from (3.1), (3.2) and (3.3), we get

$$\begin{split} M(x_n, x, t) &= M(x_n, x, \frac{t}{3} + K.\frac{2t}{3K}) \\ &\geq M(x_n, x_{n_0}, \frac{t}{3}) * M(x_{n_0}, x, \frac{2t}{3K}) \\ &= M(x_n, x_{n_0}, \frac{t}{3}) * M(x_{n_0}, x, \frac{t}{3} + K(\frac{2t}{3K^2} - \frac{t}{3K})) \\ &\geq M(x_n, x_{n_0}, \frac{t}{3}) * M(x_{n_0}, x_{K_m}, \frac{t}{3}) * M(x_{K_m}, x, \frac{2t}{3K^2} - \frac{t}{3K}) \\ &> (1 - r_0) * (1 - r_0) * (1 - r_0). \end{split}$$

Thus for t > 0 and $r \in (0, 1)$ we have $M(x_n, x, t) > 1 - r \quad \forall n \ge n_0$ $\Rightarrow \lim_{n \to \infty} x_n = x.$ $\Rightarrow X$ is complete.

Note 3.1. Converse of the result may not be true. We justify it by the following example.

Example 3.1. Let X = R. Define $M_b(x, y, t) = \frac{t}{t+D(x,y)}$ for t > 0and $x, y \in X$ where $D(x, y) = |x - y| \quad \forall x, y \in X$.

By using Example 2.2[7] it is enough to prove that (X, D, K) is a strong b-metric space to show that $(X, M_D, *, K)$ is a fuzzy strong b-metric space induced by D where *= product t-norm.

Solution. First we show that (X, D, K) is a strong b-metric space. 1. D(x,y) = |x - y| = 0 iff x = y2. D(x,y) = |x - y| = |y - x| = D(y,x)3. $D(x,z) = |x-z| = |x-y+y-z| \le |x-y| + |y-z| \le |x-y| + K|y-z|, K > 1$ $\therefore D(x,z) \le D(x,y) + KD(y,z) \quad \forall x, y, z \in X.$ Thus (X, D, K) is a strong b-metric space. So, $(X, M_D, *, K)$ is a fuzzy strong b-metric space. Next we show that $(X, M_D, *, K)$ is complete. Suppose $\{x_n\}$ is a Cauchy sequence in X. We choose $\epsilon = \frac{tr}{1-r} (> 0)$ arbitrarily where $t > 0, r \in (0, 1)$. Now for t > 0 and $r \in (0, 1)$, there exists n_0 , such that $M_D(x_n, x_m, t) = \frac{t}{t + |x_n - x_m|} > 1 - r, \quad \forall n, m \ge n_0.$ $\Rightarrow |x_n - x_m| < t(\frac{1}{1 - r} - 1) = \frac{tr}{1 - r} = \epsilon \quad \forall n, m \ge n_0.$ $\Rightarrow |x_n - x_m| < \epsilon \quad \forall n, m \ge n_0.$ $\begin{array}{l} \neg |x_n - x_m| < \mathfrak{t} \quad \forall n, m \ge n_0. \\ \text{So} \{x_n\} \text{ is a Cauchy sequence in R. Since R is complete, there exists } x \in R \text{ such that } x_n \to x. \\ \text{Now, } M_D(x_n, x, t) = \frac{t}{t + |x_n - x|} \quad \forall t > 0. \\ \Rightarrow \lim_{n \to \infty} M_D(x_n, x, t) = \frac{t}{t + \lim_{n \to \infty} |x_n - x|} \quad \forall t > 0. \\ \Rightarrow \lim_{n \to \infty} M_D(x_n, x, t) = \frac{t}{t + 0} = 1 \quad \forall t > 0. \\ \Rightarrow \lim_{n \to \infty} M_D(x_n, x, t) = 1 \quad \forall t > 0. \\ \Rightarrow \lim_{n \to \infty} M_D(x_n, x, t) = 1 \quad \forall t > 0. \end{array}$ Thus $x_n \to x$, for some $x \in X$. So, $(X, M_D, *, K)$ is complete. If possible suppose that $(X, M_D, *, K)$ is compact. Let $\{x_n\}$ be a sequence in X such that $x_n = n \quad \forall n$. Since X is compact, there exists a subsequence $\{y_n\}$ of $\{x_n\}$ such that $y_n \to y$, for some $y \in X$. Now, $M_D(y_n, y, t) = \frac{t}{t + |y_n - y|}$ $\forall t > 0.$

$$\lim_{n \to \infty} M_D(y_n, y, t) = \frac{t}{t + \lim_{n \to \infty} |y_n - y|} \quad \forall t > 0.$$

$$\Rightarrow 1 = \frac{t}{t + \lim_{n \to \infty} |y_n - y|}$$

$$\Rightarrow \lim_{n \to \infty} |y_n - y| + t = t$$

$$\Rightarrow \lim_{n \to \infty} |y_n - y| = 0$$

$$\Rightarrow y_n \to y, \text{ for some } y \in R.$$

Which is a contradiction since the sequence of all natural numbers has no convergent sequence in R. w.r.t. usual metric.

Thus $(X, M_D, *, K)$ is not compact.

Definition 3.3. Let (X, M, *, K) be a fuzzy strong b-metric space. A subset A of X is said to be bounded if $\exists t > 0, r \in (0, 1)$ such that $M(x, y, t) > 1 - r \quad \forall x, y \in A$.

Definition 3.4. Let (X, M, *, K) be a fuzzy strong b-metric space. A subset F of X is said to be closed if for any sequence $\{x_n\}$ in F such that $x_n \to x$ implies $x \in F$. i.e. $\lim_{n \to \infty} M(x_n, x, t) = 1 \quad \forall t > 0$ implies $x \in F$.

Proposition 3.5. Every compact subset of a fuzzy strong b-metric space is closed and bounded.

Proof. Let (X, M, *, K) be a fuzzy strong b-metric space and A be a subset of X. If possible suppose that A is not closed. So \exists a sequence $\{x_n\}$ in A such that $x_n \to x$ but $x \notin A$. Since A is compact, so \exists a subsequence $\{x_{n_K}\}$ of $\{x_n\}$ which converges to some point in A. Since $x_n \to x$ thus $\{x_{n_K}\} \to x$ and hence $x \in A$. Which is a contradiction. Thus A is closed. Now we show that A is bounded. If possible suppose that A is unbounded. Fix $x_0 \in A$. Choose a sequence $\{\alpha_n\} \in (0,1)$ $\forall n \text{ such that } \alpha_n \to 1 \text{ as } n \to \infty$. Thus for a given t > 0, for each n, $\exists x_n \in A$ such that $M(x_0, x_n, t) \le 1 - \alpha_n.$ Now we obtain a sequence $\{x_n\}$ in A. Since A is compact, \exists a subsequence $\{x_n\}$ of $\{x_n\}$ which converges to some point $x \in A$. Now we have $M(x_0, x_{n_l}, t) \leq 1 - \alpha_{n_l}$ We have, $1 - \alpha_{n_l} \ge M(x_0, x_{n_l}, t)$ $= M(x_0, x_{n_l}, \frac{t}{2} + \frac{Kt}{2K}) \\ \ge M(x_0, x, \frac{t}{2}) * M(x, x_{n_l}, \frac{t}{2K})$ $\Rightarrow \lim_{n \to \infty} (1 - \alpha_{n_l}) \ge \lim_{n \to \infty} M(x_0, x, \frac{t}{2}) * \lim_{n \to \infty} M(x, x_{n_l}, \frac{t}{2K})$ $\Rightarrow 0 \ge M(x_0, x, \frac{t}{2}) * 1 = M(x_0, x, \frac{t}{2})$ $\Rightarrow M(x_0, x, \frac{t}{2}) = 0$ which contradict the condition (3.1).

Note 3.2. Converse of the above result may not be true. We justify it by the following example. Example 3.2. Let $X = l_2$.

Define
$$D(x, y) = (\sum_{i=1}^{\infty} |x_i - y_i|^2)^{\frac{1}{2}}$$
 where $x = (x_1, x_2, x_3,)$ and $y = (y_1, y_2, y_3,)$
Then it is easy to verify that (X, D) is a strong b-metric space for $K \ge 1$
Again define $M_b(x, y, t) = \frac{t}{t + D(x, y)} \quad \forall t \in (0, \infty)$.
Then by using Example 2.2[7], it follows that $(X, M_b, *, K)$ is a fuzzy strong b-metric space w.r.t. the $*=$ product.

t-norm

Choose $A = \{(1, 0, 0, ...), (0, 1, 0, ...), (0, 0, 1, 0, ...),\}$ subset of l_2 . For $x, y \in A$ with $x \neq y$ we get $M_b(x, y, t) = \frac{t}{t+\sqrt{2}}$. Take $t = \sqrt{2} + 1$ and $\alpha = \frac{1}{2}$. Then $\forall x, y(x \neq y) \in A$ we get, $M_b(x, y, \sqrt{2} + 1) = \frac{\sqrt{2}+1}{\sqrt{2}+1+\sqrt{2}}$ Now, $\frac{\sqrt{2}+1}{\sqrt{2}+1+\sqrt{2}} - \frac{1}{2} = \frac{2\sqrt{2}+2-2\sqrt{2}-1}{2(2\sqrt{2}+1)}$ $= \frac{1}{2(2\sqrt{2}+1)} > 0$ Thus $M_b(x, y, \sqrt{2} + 1) > 1 - \alpha = 1 - \frac{1}{2} \quad \forall x, y(x \neq y) \in A$ Also for $x = y, M_b(x, y, \sqrt{2} + 1) = 1 > 1 - \frac{1}{2}$. Thus A is bounded.

On the other hand if we consider the sequence $\{x_n\}$ in A where $x_n = (0, 0, 0, ..., 1(n^{th}place), 0, ...)$. Clearly A is closed and since neither the sequence $\{x_n\}$ nor its any subsequence converges to some element in A, so A is not compact.

Proposition 3.6. Every finite subset in a fuzzy strong b-metric space is bounded.

Proof. Let (X, M, *, K) be a fuzzy strong b-metric space and A be a finite subset of X containing n elements $x_1, x_2, ..., x_n$. Choose $t_0 > 0$ fixed. Let $\min_{i,j} M(x_i, x_j, t_0) = \beta$ i, j = 1, 2, ..., n. Clearly $\beta \in (0, 1)$. Choose $\alpha \in (0, 1)$ such that $\min_{i,j} M(x_i, x_j, t_0) > 1 - \alpha$ $\Rightarrow M(x_i, x_j, t_0) > 1 - \alpha$ $\forall x_i, x_j \in A$. $\Rightarrow A$ is bounded.

4. Totally bounded set in fuzzy strong b-metric space

In this section the concept of α -totally bounded set is introduced and some fundamental results on α - totally bounded sets are developed.

Definition 4.1. Let (X, M, *, K) be a fuzzy strong b-metric space and $A \subset X$ and $\alpha \in (0, 1)$ be given. Let $\epsilon > 0$ be a positive number. A set $B \subset X$ is said to be an $\alpha - \epsilon$ -net for the set A if for any $x \in A$, $\exists y \in B$ such that $M(x, y, \frac{\epsilon}{K}) > 1 - \alpha$. B may be finite or infinite.

Definition 4.2. A set A in a fuzzy strong b-metric space (X, M, *, K) is said to be α -totally bounded for a given

 $\alpha \in (0,1)$, if for any $\epsilon > 0$, there exists a finite $\alpha - \epsilon$ -net for the set A.

Theorem 4.3. Let (X, M, *, K) be a fuzzy strong b-metric space and $A \subset X$ be α -totally bounded for some $\alpha \in (0, 1)$. Then A is bounded.

Proof. Since A is α -totally bounded, so for each $\epsilon > 0$, there exists a finite $\alpha - \epsilon$ -net B for the set A. Choose $\epsilon_0 > 0$. Then for each $x \in A$, there exists $y \in B$ such that $M(x, y, \frac{\epsilon_0}{K}) > 1 - \alpha$. Since B is finite thus B is bounded. (by Proposition 3.6). So $\exists \epsilon_1 > 0$ and $\alpha_0 \in (0, 1)$ such that $M(y_1, y_2, \epsilon_1) > 1 - \alpha_0 \quad \forall y_1, y_2 \in B$.

Now, for arbitrary $x_1, x_2 \in A$ we have,

$$M(x_1, x_2, \epsilon_1 + 2\epsilon_0) = M(x_1, x_2, \epsilon_1 + K \cdot \frac{\epsilon_0}{K} + K \cdot \frac{\epsilon_0}{K})$$

$$\geq M(x_1, y_2, \epsilon_1 + K \frac{\epsilon_0}{K}) * M(y_2, x_2, \frac{\epsilon_0}{K})$$

$$\geq M(x_1, y_1, \frac{\epsilon_0}{K}) * M(y_1, y_2, \epsilon_1) * M(x_2, y_2, \epsilon_0).$$
(4.1)

Now $M(x_1, y_1, \frac{\epsilon_0}{K}) > 1 - \alpha$, $M(y_1, y_2, \epsilon_1) > 1 - \alpha_0$ and $M(x_2, y_2, \frac{\epsilon_0}{K}) > 1 - \alpha$. Choose $\beta \in (0, 1)$ such that (since * is continuous).

 $(1 - \alpha) * (1 - \alpha_0) * (1 - \alpha) > 1 - \beta.$ From (4.1), we get $M(x_1, x_2, \epsilon_1 + 2\epsilon_0) \ge (1 - \alpha) * (1 - \alpha_0) * (1 - \alpha) > 1 - \beta.$ $\Rightarrow M(x_1, x_2, \epsilon_1 + 2\epsilon_0) > 1 - \beta. \quad \forall x_1, x_2 \in A.$ \Rightarrow A is bounded.

_	

Note 4.1. The converse of the theorem is not true. We can prove it by the following example.

Example 4.2. Let $X = l_2$. Define $D(x, y) = (\sum_{i=1}^{\infty} |x_i - y_i|^2)^{\frac{1}{2}}$ where $x = (x_1, x_2, x_3,)$ and $y = (x_1, x_2, x_3,)$

 $(y_1, y_2, y_3, \ldots).$

Then it is easy to verify that (X, D) is a strong b-metric space for $K \ge 1$ Again define $M_b(x, y, t) = \frac{t}{t + D(x, y)} \quad \forall t > 0, \forall x, y \in X.$

Then by using Example 2.2[7], it follows that $(X, M_b, *, K)$ is a fuzzy strong b-metric space w.r.t. the t-norm *=product.

Consider $A = \{(1, 0, 0, ...), (0, 1, 0, ...), (0, 0, 1, 0, ...), ...\}$. Then $A \subset X$. It is proved that A is bounded (by previous Example 3.2).

Now, we show that there is no $\alpha - \epsilon$ -net for A. Choose $\epsilon = \frac{\sqrt{2}}{(1+K)}$, $\alpha = 1 - \frac{1}{\sqrt{2}}$ and if possible suppose that N is a finite $\alpha - \epsilon$ -net for A. Then for $x_i, x_j, (i \neq j) \epsilon A$, there exist y_i, y_j from N such that $M_b(x_i, y_i, \epsilon) > 1 - \alpha$ and $M_b(x_i, y_i, \epsilon) > 1 - \alpha$. Now, $M_b(x_i, x_j, \epsilon + K\epsilon) \ge M_b(x_i, y_i, \epsilon) M_b(x_j, y_j, \epsilon)$

 $(1 - \alpha).($ $= (1 - \alpha)^{2}$ $\Rightarrow \frac{(1+K)\epsilon}{(1+K)\epsilon+\sqrt{2}} > (1 - \alpha)^{2}$ $\Rightarrow \frac{\sqrt{2}}{2\sqrt{2}} > (1 - \alpha)^{2}$ $\Rightarrow \frac{1}{2} > 1$ $> (1 - \alpha).(1 - \alpha)$ $\Rightarrow \frac{1}{2} > \frac{1}{2}.$

Which is a contradiction. So, A is not $\alpha - \epsilon$ -bounded.

Definition 4.4. Let (X, M, *, K) be a fuzzy strong b-metric space and $\alpha \in (0, 1)$. (i) A sequence $\{x_n\}$ is said to be α -convergent and converges to x if $\lim_{n \to \infty} M(x_n, x, t) > 1 - \alpha \quad \forall t > 0.$ (ii) A sequence $\{x_n\}$ in X is said to be α -Cauchy sequence if $\lim_{m,n\to\infty} M(x_n,x_m,t) > 1 - \alpha \quad \forall t > 0.$ (iii) A subset A of X is said to be α -compact if every sequence in A has an α -convergent subsequence converges to some element in A.

If the converging point belongs to X not to A then we say that A is α -compact in X.

Definition 4.5. Let (X, M, *, K) be a fuzzy strong b-metric space and $A(\subset X)$ be a nonempty subset of X. Then α -diameter of A is defined as

$$\alpha - \delta(A) = \bigvee_{x,y \in A} \bigwedge \{t > 0 : M(x,y,t) > 1 - \alpha\}, \quad 0 < \alpha < 1.$$

Theorem 4.6. Let (X, M, *, K) be a fuzzy strong b-metric space and $A \subset X$.

(1) if A is compact then A is α -totally bounded $\forall \alpha \in (0, 1)$.

(2) If X is α -complete and A is α -totally bounded $\forall \alpha \in (0, 1)$ then A is α -compact in X $\forall \alpha \in (0, 1)$ w.r.t. the *t*-norm $* = \min$.

Proof. (1) We assume that A is compact. Choose $\alpha \in (0,1)$ and $\epsilon > 0$ be arbitrary. Let x_1 be an arbitrary element of X.

If $M(x, x_1, \frac{\epsilon}{K}) > 1 - \alpha$ $\forall x \in A$, then a finite $\alpha - \epsilon$ -net B exists for A. i.e. $B = \{x_1\}$. If not, \exists a point $x_2 \in A$ such that $M(x_1, x_2, \frac{\epsilon}{K}) \le 1 - \alpha$. If for every point $x \in A$ either $M(x, x_1, \frac{\epsilon}{K}) > 1 - \alpha$ or $M(x, x_2, \frac{\epsilon}{K}) > 1 - \alpha$ then a finite ϵ -net B exists for A.

i.e. $B = \{x_1, x_2\}.$

If, however, this is not true, then there exists $x_3 \in A$ such that $M(x_3, x_1, \frac{\epsilon}{K}) \leq 1 - \alpha$ and $M(x_3, x_2, \frac{\epsilon}{K}) \leq 1 - \alpha$. Then a finite $\alpha - \epsilon$ -net $B = \{x_1, x_2, x_3\}$ exists for A.

Continuing in this way, we obtain points x_1, x_2, \dots, x_n ; $x_1 \in X$ and $x_i \in A, 2 \leq i \leq n$ for which

 $M(x_i, x_j, \frac{\epsilon}{K}) \le 1 - \alpha \quad \text{for } i \ne j.$

There are two cases may arise.

Case I. The procedure stops after k th step.

Then we obtain points x_1, x_2, \dots, x_k such that for every $x \in A$ at least one of the inequalities

 $M(x_i, x, \frac{\epsilon}{K}) > 1 - \alpha$, i = 1, 2, ..., k holds and then $B = \{x_1, x_2, ..., x_k\}$ is a finite $\alpha - \epsilon$ -net for A and here A is α -totally bounded.

Case II. The procedure continues indefinitely.

Then we obtain an infinite sequence $\{x_n\}$, $x_1 \in X$ and $x_i \in A$ for i > 1 such that

 $M(x_i, x_j, \frac{\epsilon}{K}) \le 1 - \alpha \quad \text{for } i \ne j.$

If possible suppose there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ which converges to x.

Now $M(x_{n_k}, x, \frac{\epsilon}{2K}) * M(x, x_{n_{k+1}}, \frac{\epsilon}{2K^2}) \le M(x_{n_k}, x_{n_{k+1}}, \frac{\epsilon}{K}) \le 1 - \alpha$ $\Rightarrow \lim_{k \to \infty} M(x_{n_k}, x, \frac{\epsilon}{2K}) * \lim_{k \to \infty} M(x, x_{n_{k+1}}, \frac{\epsilon}{2K^2}) \le 1 - \alpha$

$$\Rightarrow 1 * 1 < 1 - \alpha$$

 $\Rightarrow 1 \leq 1 - \alpha$ which is a contradiction.

Thus Case II does not arise.

Hence A is α -totally bounded. Since $\alpha \in (0, 1)$ is arbitrary thus A is α -totally bounded $\forall \alpha \in (0, 1)$.

2. We assume that X is α -complete and α -totally bounded for each $\alpha \in (0, 1)$.

So for every $\epsilon > 0$ and each $\alpha \in (0, 1)$, there exists a finite $\alpha - \epsilon$ -net for A. Let $\alpha \in (0, 1)$ be given. We choose a sequence $\{\epsilon_n\}$ such that $\epsilon_n \to 0$ and $\epsilon_n > 0 \forall n$ and $\epsilon_{n+1} < \epsilon_n$ and construct for each n = 1, 2, ... a finite $\alpha - \epsilon_n - \text{net}$

 $\alpha - \epsilon_n - \text{net}$ $[x_1^{(n)}, x_2^{(n)}, \dots, x_{k_n}^{(n)}]$ for the set A. Let $T = \{x_n\}$ be an arbitrary sequence of elements from A. Without loss of generality we may assume that $x_i \neq x_j$ if $i \neq j$ and T is the infinite set with elements x_n .

Around every point of the $\alpha - \epsilon_1$ -net $[x_1^{(1)}, x_2^{(1)}, \dots, x_{k_1}^{(1)}]$, we construct closed balls with radius ϵ_1 . It is clear that each element of $\{x_n\}$ belongs to one or more of these balls.

Since the number of balls is finite, there exists at least one ball containing an infinite subset $T_1 \subset T$ (say $B[x_1^{(1)}, \alpha, \epsilon_1]$).

Now we show that $\alpha - \delta(T_1) \leq 2\frac{\epsilon_1}{K}$.

Let $x, y \in T_1$. Then $M(x, x_i^{(1)}, \frac{\epsilon_1}{K}) > 1 - \alpha$ and $M(y, x_i^{(1)}, \frac{\epsilon_1}{K}) > 1 - \alpha$ $(1 \le i \le k_1)$. Now $M(x, y, 2\epsilon_1) = M(x, y, \epsilon_1 + K \cdot \frac{\epsilon_1}{K}) \ge M(x, x_i^{(1)}, \epsilon_1) * M(y, x_i^{(1)}, \frac{\epsilon_1}{K}) \ge M(x, x_i^{(1)}, \frac{\epsilon_1}{K}) * M(y, x_i^{(1)}, \frac{\epsilon_1}{K})$

$$> (1 - \alpha) * (1 - \alpha) = 1 - \alpha.$$

$$\Rightarrow \bigwedge\{t > 0: M(x, y, t) > 1 - \alpha\} \le 2\epsilon_1$$

$$\Rightarrow \bigvee_{x,y \in T_1} \bigwedge\{t > 0: M(x, y, t) > 1 - \alpha\} \le 2\epsilon_1$$

$$\Rightarrow \alpha - \delta(T_1) \le 2\epsilon_1.$$
Next, around every point of the $\alpha - \epsilon_2$ -net $[x_1^{(2)}, x_2^{(2)}, \dots, x_{k_2}^{(2)}]$
we construct closed sphere with radius $\epsilon_2.$
By the same argument as above, there exists an infinite subset $T_2 \subset T_1$ and $\alpha - \delta(T_2) \le 2\epsilon_2.$
Continuing in this process, we obtain a sequence of infinite subsets $T \supset T_1 \supset T_2 \supset \dots \supset T_n \supset \dots$ where $\alpha - \delta(T_n) \le 2\epsilon_n$ $\forall n.$
We now choose a point $x_{p_1} \in T_1$, a point $x_{p_2} \in T_2$ different from x_{p_1} , a point $x_{p_3} \in T_3$ different from x_{p_1} and x_{p_2} and so on. We have $x_{p_n} \in T_n, x_{p_m} \in T_m$ and for $n > m, T_n \subset T_m.$
Thus for $n > m, x_{p_n}, x_{p_m} \in T_m.$
So $\land \{t > 0: M(x_{p_n}, x_{p_m}, t) > 1 - \alpha\} \le \alpha - \delta(T_m) \le 2\epsilon_m.$

$$\Rightarrow \lim_{n,m \to \infty} \bigwedge\{t > 0: M(x_{p_n}, x_{p_m}, t) > 1 - \alpha\} < \epsilon \quad \forall m, n \ge n_0.$$

$$\Rightarrow M(x_{p_n}, x_{p_m}, \epsilon) \ge 1 - \alpha \quad \forall m, n \ge n_0.$$

$$\Rightarrow \min_{m,n \to \infty} M(x_{p_n}, x_{p_m}, t) \ge 1 - \alpha$$
Since $\epsilon > 0$ is arbitrary, thus $\Rightarrow \lim_{m,n \to \infty} M(x_{p_n}, x_{p_m}, t) \ge 1 - \alpha$
Thus $\{x_{p_n}\}$ is a β -Cauchy sequence in A and hence in X. Since X is β -complete, thus there exists $x \in X$ such

that

 $\lim_{n \to \infty} M(x_{p_n}, x_{p_m}, t) > 1 - \beta \quad \forall t > 0.$

 $\stackrel{n\to\infty}{\text{Hence A is }\beta\text{-compact in X.}}$

Since $\alpha \in (0,1)$ is arbitrary, thus $\beta \in (0,1)$ is also arbitrary and hence the proof is complete.

Definition 4.7. Let (X, M, *, K) be a fuzzy strong b-metric space and $A \subset X$. The closure of A is denoted by \overline{A} and is defined by $\overline{A} = A \cup A'$ where A' denotes the derived set of A.

Proposition 4.8. Let (X, M, *, K) be a fuzzy strong b-metric space and $A \subset X$. For $x \in \overline{A}$, for each $\epsilon > 0$ and $\alpha \in (0, 1)$, there exists $y \in A$ such that $M(x, y, \epsilon) > 1 - \alpha$.

Proof. Let $x \in \overline{A}$. So $x \in A \cup A'$. **Case I**. $x \in A$. Then we choose y = x and we have $M(x, y, \epsilon) = M(x, x, \epsilon) = 1 > 1 - \alpha$ for each $\epsilon > 0$ and $\alpha \in (0, 1)$. **Case II**. x notin A and $x \in A'$. Thus for each $\epsilon > 0$ and $\alpha \in (0, 1)$, there exists $y \in A$ such that $y \in B(x, \epsilon, \alpha)$. i.e. $M(x, y, \epsilon) > 1 - \alpha$.

Proposition 4.9. Let (X, M, *, K) be a fuzzy strong b-metric space and $A \subset X$. If A is compact then \overline{A} is compact.

Proof. Let $\{y_n\}$ be a sequence in A. Choose $\epsilon > 0$ be arbitrary and $\{\alpha_n\}$ be a sequence in (0, 1) such that $\alpha_n \to 0$ as $n \to \infty$. Now by Proposition 4.8, for each y_n , there exists $x_n \in A$ such that $M(x_n, y_n, \frac{\epsilon}{2}) > 1 - \alpha_n$(i) Thus we obtain a sequence $\{x_n\}$ in A. Since A is compact, thus there exists a subsequence $\{x_{n_r}\}$ of $\{x_n\}$ which converges to some point $x \in A$. So $\lim_{r \to \infty} M(x_{n_r}, x, t) = 1 \quad \forall t > 0$ i.e. $\lim_{r \to \infty} M(x_{n_r}, x, \frac{\epsilon}{2K}) = 1$(ii) Now $M(y_{n_r}, x, \epsilon) = M(y_{n_r}, x, \frac{\epsilon}{2} + K, \frac{\epsilon}{2K})$ $\geq M(y_{n_r}, x_{n_r}, \frac{\epsilon}{2}) * M(x_{n_r}, x, \frac{\epsilon}{2K})$ $\Rightarrow \lim_{r \to \infty} M(y_{n_r}, x, \epsilon) \geq \lim_{r \to \infty} M(y_{n_r}, x_{n_r}, \frac{\epsilon}{2}) * \lim_{r \to \infty} M(x_{n_r}, x, \frac{\epsilon}{2K}) = 1$(iii) From (i) we get $M(x_{n_r}, y_{n_r}, \frac{\epsilon}{2}) > 1 - \alpha_{n_r}$ $\Rightarrow \lim_{r \to \infty} M(x_{n_r}, y_{n_r}, \frac{\epsilon}{2}) \geq 1 - \lim_{r \to \infty} \alpha_{n_r} = 1$ $\Rightarrow \lim_{r \to \infty} M(x_{n_r}, y_{n_r}, \frac{\epsilon}{2}) = 1$(iv) Using (i) and (iv), from (ii) we have $\lim_{r \to \infty} M(y_{n_r}, x, \epsilon) \geq 1 * 1 = 1$ $\Rightarrow \lim_{r \to \infty} M(y_{n_r}, x, \epsilon) = 1$ Since $\epsilon > 0$ is arbitrary, thus $\lim_{r \to \infty} M(y_{n_r}, x, t) = 1 \quad \forall t > 0$.

Thus the subsequence $\{y_{n_r}\}$ of $\{y_n\}$ converges to x. Hence \overline{A} is compact.

Note 4.1. Converse of the result is not true. We justify it by the following example.

Example 4.1. Let X = R. Define $M(x, y, t) = e^{-\frac{D(x, y)}{t}}$ $\forall t > 0; \forall x, y \in X$. We write $D(x, y) = |x - y| \quad \forall x, y \in X$. Then it is verified that (X, D, K) is a strong b-metric space (by previous Example 3.2).

Now, we shall prove that (X, M, *, K) is a fuzzy strong b-metric space. Where * is the product t-norm and K > 1.

 $\begin{array}{l} 1. \ M(x,y,t) = e^{-\frac{D(x,y)}{t}} > 0 \ \forall x, y \in X \text{ and } \forall t > 0. \\ 2. \ M(x,y,t) = 1 \ \forall x, y \in X \text{ and } \forall t > 0. \\ \Leftrightarrow \ e^{-\frac{D(x,y)}{t}} = 1 = e^{0} \\ \Leftrightarrow \ -\frac{D(x,y)}{t} = 0 \ \forall t > 0. \\ \Leftrightarrow \ D(x,y) = 0 \\ \Leftrightarrow \ x = y. \\ 3. \ M(x,y,t) = e^{-\frac{D(x,y)}{t}} = e^{-\frac{D(y,x)}{t}} \ \forall t > 0. \\ \qquad = M(y,x,t) \ \forall x, y \in X \\ 4. \ \text{Now}, \forall x, y, z \in X, \\ D(x,z) \leq D(x,y) + KD(y,z) \ K > 1. \\ \frac{D(x,z)}{t+KS} \leq \frac{D(x,y) + KD(y,z)}{t+KS}; \ t, s > 0. \\ e^{\frac{D(x,z)}{t+KS}} \leq e^{\frac{D(x,y) + KD(y,z)}{t+KS}; t, s > 0. \\ e^{\frac{D(x,z)}{t+KS}} \leq e^{\frac{D(x,y) + KD(y,z)}{t+KS}; t, s > 0. \\ e^{\frac{D(x,z)}{t+KS}} \leq e^{\frac{D(x,y) + KD(y,z)}{t+KS}; t, s > 0. \\ e^{\frac{D(x,z)}{t+KS}} \leq e^{\frac{D(x,y) + KD(y,z)}{t+KS}; t, s > 0. \\ e^{\frac{D(x,z)}{t+KS}} \leq e^{\frac{D(x,y) + KD(y,z)}{t+KS}; t, s > 0. \\ e^{\frac{D(x,z)}{t+KS}} \leq e^{\frac{D(x,y) + KD(y,z)}{t+KS}; t, s > 0. \\ e^{\frac{D(x,z)}{t+KS}} \leq e^{\frac{D(x,y) + KD(y,z)}{t+KS}; t, s > 0. \\ e^{\frac{D(x,z)}{t+KS}} \leq e^{\frac{D(x,y) + KD(y,z)}{t+KS}; t, s > 0. \\ e^{\frac{D(x,z)}{t+KS}} \leq e^{\frac{D(x,y)}{t+K}; t, s > 0} \\ e^{\frac{D(x,z)}{t+KS}} \leq e^{\frac{D(x,y)}{t}; t, s > 0} \\ e^{\frac{D(x,z)}{t+KS}} \leq e^{\frac{D(x,y)}{t}; t, s > 0} \\ e^{\frac{D(x,z)}{t+KS}} \leq e^{-\frac{D(x,y)}{t}; t, s > 0} \\ e^{\frac{D(x,z)}{t+KS}} \geq e^{-\frac{D(x,y)}{t}; t, s > 0} \\ M(x,z,t+Ks) \geq M(x,y,t) \cdot M(y,z,s) \\ 5. \text{ This is clear that } M(x,y,\cdot) : (0,\infty) \rightarrow [0,1] \text{ is continuous. Thus } (X,M,\cdot,K) \text{ is a fuzzy strong b-metric} \\ e^{\frac{D(x,z)}{t}; t, s > 0} \\ e^{\frac{D(x,z)}{t}; t, s > 0$

space.

Let A = (0, 1). Then $\overline{A} = [0, 1]$. Firstly, we will show that A is not compact in X. If possible suppose that A is compact. Let $\{x_n\}$ be a sequence in A where $x_n = \frac{1}{n+1} \quad \forall n \ge 1$. Let $\{x_{k_n}\}$ be a sequence in A such that $x_{k_n} \to y$ for some $y \in A$. $M(x_{k_n}, y, t) = e^{-\frac{D(x_{k_n}, y)}{t}} \quad \forall t > 0.$ $\lim_{n \to \infty} M(x_{k_n}, y, t) = \lim_{\substack{n \to \infty \\ t \to \infty}} e^{-\frac{D(x_{k_n}, y)}{t}} = e^{-\lim_{n \to \infty}} e^{\frac{D(x_{k_n}, y)}{t}}$ $\Rightarrow e^0 = 1 = e^{-\lim_{n \to \infty}} e^{\frac{D(x_{k_n}, y)}{t}} \quad \forall t > 0.$ $\Rightarrow \lim_{n \to \infty} \frac{D(x_{k_n}, y)}{t} = 0 \quad \forall t > 0.$ $\Rightarrow \lim_{n \to \infty} D(x_{k_n}, y) = 0$ $\Rightarrow \lim_{\substack{n \to \infty \\ n \to \infty}} |x_{k_n} - y| = 0$ $\Rightarrow y = 0.$ $\Rightarrow y \notin A.$ Which is a contradiction. So, A is not complete. Now we prove that $\overline{A} = [0, 1]$ is compact. By Hine-Borel theorem, $\overline{A} = [0, 1]$ is compact in R w.r.t. usual norm given by $||x|| = |x| \quad \forall x \in R$. Let $\{x_n\}$ be a sequence in \overline{A} . So, there exists a subsequence $\{x_{n_r}\}$ of $\{x_n\}$ which converges in some point $x \in \overline{A}$. i.e. $|x_{n_r} - x| \to 0$ as $r \to \infty$ and $x \in \overline{A}$. i.e. $D(x_{n_r}, x) \to 0$ as $r \to \infty$ and $x \in \overline{A}$. Now $M(x_{n_r}, x, t) = e^{-\frac{D(x_{n_r}, x)}{t}}$ $\Rightarrow \lim_{r \to \infty} M(x_{n_r}, x, t) = \lim_{r \to \infty} e^{-\frac{D(x_{n_r}, x)}{t}} = e^{-\lim_{r \to \infty} e^{\frac{D(x_{n_r}, x)}{t}}}.$ Since $D(x_{n_r}, x) \to 0$ as $r \to \infty$, from above we have, $\Rightarrow \lim_{r \to \infty} M(x_{n_r}, x, t) = 1 \quad \forall t > 0.$ $\Rightarrow x_{n_r} \rightarrow x \text{ in } (X, M, *, K).$ Since $\{x_n\}$ is an arbitrary sequence in \overline{A} , thus \overline{A} is a compact subset in (X, M, *, K).

5. Conclusion

The concept of fuzzy strong b-metric space is relatively a new idea by modifying the triangle inequality in fuzzy setting. In this paper, we explore an idea of compactness and totally boundedness on fuzzy strong b-metric spaces and establish some basic results. We think that the researchers will be enriched with serendipitous findings by this research work.

6. Acknowledgement

The present work is partially supported by Special Assistance Programme (SAP) of UGC, New Delhi, India [Grant No. F. 510/4/DRS/2009 (SAP-I)].

References

- [1] A. GEORGE AND P. VEERAMANI, On Some results in fuzzy metric spaces, *Fuzzy Sets and Systems*, **64**(1994), 395–399.
- [2] A. MAJUMDER AND T. BAG, Some Basic Properties of *D**-fuzzy metric spaces and Cantor's Intersection Theorem, *Advances in Fuzzy Mathematics*, **1**(2018), 49–58.
- [3] B. SCHWEIZER AND A. SKLAR, Statistical metric spaces, Pacific J. Maths., 10(1960), 313–334.
- [4] O. KRAMOSIL AND J. MICHALEK, FUZZY metric and statistical metric spaces, *Kybernetica*, 11(1975), 326–334.
- [5] S. NADABAN, Fuzzy b-metric spaces, International Journal of Computers Communications and Control, 11(2)(2016), 273–281.
- [6] T. BAG, Some fixed point theorems in fuzzy cone b-metric spaces, *International Journal Fuzzy Mathematics and Systems*, **2**(2014), 255–267.
- [7] T. ONER, On Topology of Fuzzy Strong b-metric spaces, J. New Theory, 21(2018), 59-67.
- [8] T. ONER, Some Topological properties of fuzzy strong b-metric spaces, *Linear and Topological Algebra*, 2(2019), 123–131.
- [9] W. KIRK AND N. SHAHZAD, Fixed point theory in distance spaces, Springer, 2014.
- [10] Z. HASSANZADEH AND S. SEDGHI, Relation between b-metric and fuzzy metric spaces, *Mathematica Moravica*, 1(2018), 55–63.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

