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Abstract. The purpose of this work is to present the idea of β-γ-separated sets, examine their characteristics in topological
spaces and then define the notation for β-γ-connected and β-γ-disconnectedness. In addition, the study of topological qualities
that involves for β-γ-connected spaces via β-γ-separated sets. An analysis is conducted on the properties of β-γ-connected
spaces and how they behave under β(γ,δ)-continuous functions. We also provide the ideas of β-γ-components in a space X

and β-γ-locally connected spaces.
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1. Introduction

One of the most significant, practical and basic notations in general topology and other high level mathematical
discipline now a days is connectedness. The notation of connectedness is fruitful in computing, topology,
algebraic topology and advanced calculus. Many researchers across the globe have investigated properties of
connectedness ([2], [3], [4], [5], [6]) and obtained new and interesting results.

The idea of β-open set in topological spaces was first proposed by M.E. Abd El-Monsef, S.N. El-Deeb and
R.A. Mahmoud in 1983. Their proof was that the set of all β-open sets in (X, τ) is finer topology on X then τ .
The researchers worked on two related topologies that were tested on the same underlying structure to determine
if they share the same topological properties. The basic properties of β-connectedness were obtained by Jafari
and Noiri [7] in 2003. Several other forms of connectedness can be introduced and studied using it. Tahiliani [8]
discussed and studied the characterisations of β-γ-open sets in topological spaces in 2011. This work presents
and investigates an additional kind of connectivity that is defined on β-open sets in (X, τ) via operations. Their
behavior under is β(γ,δ)-continuous,as well as their attributes are discussed in this study.

The procedures γ and δ are defined on the set of all β-open sets of topological spaces (X, τ) and (Y, σ)

correspondingly during the conversion.For any subset A of X , Cl(A) and Int(A) stands for the closure and
interior of A, respectively, for any subset A of X .
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2. Preliminaries

Here we lay down the groundwork by defining key terms and showing key findings:
The condition that A ⊆ Cl(Int(Cl(A))) merely indicates that subset A of topological space X is β-open [1].

A β-open sets counterpart is a β-closed set, and βO(X) [1] is the collection of all β-open sets. β Cl(A) [2] is
the symbol for intersection of all β-closed sets that include A, while β Int(A)) [2] is the symbol for union of all
β-open sets that contain A.

The condition V ∈ V γ satisfied for each V ∈ βO(X) in an operation γ : βO(X) → P (X).The function
V id = V for each set V ∈ βO(X) is called the identity operation on βO(X).

As γ and δ are always defined on the family of β-open sets in space, We always mean them as operations.
From [8], we retrieve the following definitions and findings:

Definition 2.1. (i): If there exists a β-open set U of X that contains x and Uγ ⊆ A, then for any point x ∈ A, a
subset A of X is termed as of β-γ-open set. The β-γ-closed is counterpart of β-γ-open set. The set symbolized
by βO(X)γ includes all β-γ-open sets of (X, τ).

(ii): βγ Cl(A) notation represents β-γ-closure of A, which is the intersection of all β-γ-closed sets set containing
A. The βγ Int(A) notation represents β-γ-interior of A, which is the union of all β-γ-open set included in A.
The β-γ-boundary of a set A is represented by βγBd(A) and is defined by (βγ Cl(A)− βγ Int(A)).

(iii): If, for every element x in X and each β-δ-open set V that contains f(x), there exists a β-γ-open set U such
that x ∈ U and f(U) ⊆ V , then we say that f : (X, τ) → (Y, σ) is β(γ,δ)-continuous.

(iv): For any β-γ-closed set A of (X, τ), the set f(A) is β-δ-closed in (Y, σ) we say that mapping f : (X, τ) →
(Y, σ) is said to be β(γ,δ)-closed.

(v): For any β-γ-open set A of (X, τ), the set f(A) is β-δ-open in (Y, σ) we say that mapping f : (X, τ) → (Y, σ)

is said to be β(γ,δ)-open.

Theorem 2.2. Suppose X be a subset of a topological space and A is a subset of it. Then

(i) x ∈ βγ Cl(A) if and only if every βγ-open set U containing x has non empty intersection with A.

(ii) βγ Cl(X −A) = X − βγ Int(A).

3. β-γ-connected spaces

Definition 3.1. (i): If (β Cl(A) ∩ B) ∪ (A ∩ (β Cl(B)) = ∅, then the subsets A and B of a topological space
(X, τ) are said to be β-separated.

(ii): The term “β-γ-separated” is used to describe a pair of subsets A and B of a topological space (X, τ), where

(βγ Cl(A) ∩B) ∪ (A ∩ (βγ Cl(B)) = ∅.

Remark 3.2. Each two β-γ-separated sets are always disjoint, since A∩B ⊆ A∩ βγ Cl(B) = ∅. The converse
may not hold in general.

Example 3.3. The set X = {a, b, c}, and τ = {∅, X, {a}, {b}, {a, b}} are defined as follows: Aγ = A if b ∈ A,
Aγ = Cl(A) if b /∈ A, then {a, b} and {c} are disjoint subsets of X which are not β-γ-separated.

Given that β Cl(A) ⊆ βγ Cl(A), for all subsets A of X , it follows that every β-γ-separated set is β-separated.
The preceding example, however suggests that reverse may not be true. Both {a} and {b, c} are β-separated in
this case,but they are not β-γ-separated.

Theorem 3.4. The following claims hold if A and B are two non empty subsets of space X
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(1) If A and B are β-γ-separated and A1 ⊆ A and B1 ⊆ B, then A1 and B1 are also β-γ-separated.

(2) If A and B are disjoint and are both β-γ-closed (both β-γ-open), then A and B are β-γ-separated.

(3) If A and B are both β-γ-closed (both β-γ-open) then H = A ∩ (X − B) and G = B ∩ (X − A) are
β-γ-separated.

Proof. 1. Since A1 ⊆ A implies βγ Cl(A1) ⊆ βγ Cl(A) for every pair of A and A1, βγ Cl(A) ∩ B = ∅ and
βγ Cl(B) ∩A = ∅ implies βγ Cl(A1) ∩B1 = ∅ and βγ Cl(B1) ∩A1 = ∅. Hence A1 and B1 are β-γ-separated.

2. The equations A = βγ Cl(A) and B = βγ Cl(B) hold if A and B are both β-γ-closed. Hence because
A ∩ B = ∅, it follows that βγ Cl(A) ∩ B = ∅ and βγ Cl(B) ∩ A = ∅, A and B are β-γ-separated. In other
words, the complement of disjoint β-γ-open sets A and B are also β-γ-closed sets. Specifically X-A and X-B
are β-γ-separated. If A and B are disjoint and are both, then their complements are disjoint and β-γ-closed.
Furthermore, A ⊆ βγ Cl(A) ⊆ βγ Cl(X −B) = X −B and B ⊆ βγ Cl(B) ⊆ X −A. Hence by given part (1),
A and B are β-γ-separated.

3. Since A and B are β-γ-open, it follows that X −A and X −B are β-γ-closed. Also, H ⊆ X −B means that
βγ Cl(H) ⊆ βγ Cl(X − B). Then because βγ Cl(H) ∩ B = ∅ and it follows that βγ Cl(H) ∩G = ∅. Similarly
if H ∩ βγ Cl(G) = ∅. i.e. H and G are β-γ-separated. (X −A) and (X −B) are β-γ-open if and only if A and
B are β-γ-closed. Consequently, H and G are β-γ-separated. ■

Theorem 3.5. If there is a set U and set V in βO(X)γ such that A ⊆ U , B ⊆ V and A∩V = ∅ and B∩U = ∅,
then the subsets A and B of a space X are β-γ-separated and conversely.

Proof. We have βγ Cl(A) ∩ B = ∅ and βγ Cl(B) ∩ A = ∅ as A and B are β-γ-separated sets. Therefore the
sets V = X − βγ Cl(A) and U = X − βγ Cl(B) are β-γ-open, such that A ⊆ U , B ⊆ V with A ∩ V = ∅ and
B∩U = ∅. On the other hand, if U and V exists in βO(X)γ such that A ⊆ U , B ⊆ V , A∩V = ∅ and B∩U = ∅,
then X − V and X − U are β-γ-closed and βγ Cl(A) ⊆ X − V ⊆ X − B and βγ Cl(B) ⊆ X − U ⊆ X − A

respectively. Hence βγ Cl(A) ∩B = ∅ and βγ Cl(B) ∩A = ∅ were determined. ■

Theorem 3.6. In any topological space (X, τ), the following statements are equivalent:

(1) ∅ and X are the only sets which are both β-γ-open and β-γ-closed in X .

(2) X is not the union of two disjoint non empty β-γ-open sets.

(3) X is not the union of two disjoint non empty β-γ-closed sets.

(4) X is not the union of non empty β-γ-separated sets.

Proof. (1)⇒(2): It is assumed that (2) is not true. Given that A and B are disjoint, non empty and are β-γ-open
so let X = A ∪ B. So X − A = B is a nonempty set which is proper β-γ-open. It follows that (1) is not true,
since A is non empty proper β-γ-open and β-γ-closed in X .

(2)⇒(3): Clear.

(3)⇒(4): If (4) is false, then X = A∪B, where A and B are nonempty and β-γ-separated sets. Then βγ Cl(B)∩
A = ∅ implies βγ Cl(B) ⊆ B and hence B is β-γ-closed. Similarly A is also β-γ-closed. i.e. (3) is false.

(4)⇒(1). Assuming that (1) is not true, assume that there is a non empty proper subset A of X , that is both
β-γ-open and β-γ-closed. If A and B are β-γ-separated and X = A ∪B, then (4) is not true since. B = X −A

is non empty, β-γ-open and β-γ-closed. ■
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Definition 3.7. The condition that a subset C of a space X is β-γ-disconnected is that C = A ∪ B, where A

and B are non empty β-γ-separated or that C is β-γ-connected if there exists no non empty β-γ-separated sets
A and B of X such that C = A ∪B.
A pair of sets A and B is referred to as a β-γ-disconnection of C if C is β-γ-disconnected.

In Example 3.3, X is β-γ-disconnected, since {c} and {a, b} are β-γ-separated sets and hence there union
is X .

Example 3.8. (i) Assume X is a set comprising {a, b, c} and τ = {θ,X, {a}, {b}, {a, b}, {a, c}}. Let γ be an
operation on βO(X) such that Aγ = A if c ∈ A and Aγ = Cl(A) if c /∈ A. Then X is β-γ-disconnected.

(ii) Assume X is a set comprising {a, b, c} and τ = {θ,X, {a}, {c}, {a, c}}. Let γ be an operation on βO(X)

such that Aγ = A if b ∈ A, Aγ = X , if b /∈ A. So X is β-γ-connected, because there is no non empty pair
A, B of non empty β-γ-separated subsets of X such that X = A ∪B.

Remark 3.9. (1) Every indiscrete space is β-γ-connected.

(2) Every discrete space with more than one point is βid-disconnected.

(3) A space X is β-γ-connected if any of the conditions (1) to (4) in Theorem 3.6 holds.

(4) A space X is β-γ-disconnected if X = A ∪B, satisfies any one of the following statements:

(i) A and B are disjoint, non-empty and β-γ-open sets.

(ii) A and B are disjoint, non-empty and β-γ-closed sets.

(iii) A and B are disjoint, non-empty and β-γ-separated sets.

Theorem 3.10. If there is non empty proper subset A of X which is both β-γ-open and β-γ-closed in X , then
we say that space X is β-γ-disconnected.

Proof. Follows from above remarks. ■

Theorem 3.11. Every non empty proper subset of X must have a non-empty β-γ-boundary for a space X to be
β-γ-connected.

Proof. Let A be nonempty proper subset of X with βγ Bd(A) = ∅. Then βγ Cl(A) = βγ Int(A) ∪ βγ Bd(A)

implies βγ Cl(A) = βγ Int(A). Because A is both β-γ-open and β-γ-closed and βγ Int(A) ⊆ A is nonempty
proper subset of X , by Theorem 3.10, X is β-γ-disconnected, which is a contradictory. Due to this, A has a
non-empty β-γ-boundary. On the other hand, let X be β-γ-disconnected. Next, by Theorem 3.10, X contain
a valid subset A that is non empty proper subset and is both β-γ-open and β-γ-closed. i.e. βγ Cl(A) = A,
βγ Cl(X − A) = X − A and βγ Cl(A) ∩ βγ Cl(X − A) = ∅. So A has empty β-γ-boundary, which is again a
contradiction. Hence X is β-γ-connected. ■

Lemma 3.12. Suppose M and N are β-γ-separated subsets of X . If C ⊆ M ∪N and C is β-γ-connected, then
C ⊆ M or C ⊆ N .

Proof. Since C ∩ M ⊆ M and C ∩ N ⊆ N then C ∩ M and C ∩ N are β-γ-separated sets. Also C =

C ∩ (M ∪ N) = (C ∩ M) ∪ (C ∩ N). Since C is β-γ-connected, so (C ∩ M) and (C ∩ N) cannot form a
β-γ-disconnection of C. Therefore, either C ∩M = ∅, so C ⊆ N or C ∩M = ∅ so C ⊆ M . ■

Theorem 3.13. Suppose C and Ci (i ∈ I) are β-γ-connected but not β-γ-separated subsets of X , then S =

C ∪ Ci is β-γ-connected for each i.
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Proof. Where M and N are β-γ-separated, then C ∪Ci is equal to S = M ∪N if S is β-γ-disconnected. Either
C ⊆ M or C ⊆ N and Ci ⊆ M or Ci ⊆ N are required by Lemma 3.12. Assume C ⊆ M without sacrificing
generality. A contradiction would occur if for some i, Ci ⊆ N , and C and Ci would be β-γ-separated. Therefore
every Ci ⊆ M . Therefore N = ∅. i.e. M and N are not β-γ-disconnected in S. ■

Corollary 3.14. Assume that, Ci is β-γ-connected subset of X for every i ∈ I , and if Ci, share a point, then
Ci ∪ {Ci : i ∈ I} is β-γ-connected.

Proof. With I = ∅, the set ∪Ci = ∅ is obviously β-γ-connected for all i in I . In Theorem 3.13, choose i0 ∈ I

and Ci0 be the central set C. If I is not equal to ∅. It is not true that Ci ∩ Ci0 equal to ∅ for every i ∈ I . So Ci

and Ci0 are not β-γ-separated. The β-γ-connectedness of ∪{Ci : i ∈ I} is shown by Theorem 3.13. ■

Corollary 3.15. Suppose that for all x, y ∈ X , there exists a β-γ-connected set Cxy ⊆ X with x, y ∈ Cxy . Then
X is β-γ-connected.

Proof. Obviously X = ∅ is β-γ-connected. By hypothesis, there exists a β-γ-connected set Cay that contains
both a and y for any y ∈ X where X ̸= ∅, and let a ∈ X be a fixed element. The β-γ-connection of X =

∪{Cay : y ∈ X} is established by Corollary 3.14. ■

Corollary 3.16. Let C be a β-γ-connected subset of X and A ⊆ X . If C ⊆ A ⊆ βγ Cl(C), then A is also
β-γ-connected.

Proof. If a ∈ βγ Cl(C) is true for all a ∈ A, then {a} ∩ βγ Cl(C) is not equal to ∅. C and {a} are not β-γ-
separated. Thus, A = C ∪ ∪{{a} : a ∈ A} is β-γ-connected by Theorem 3.13. ■

Remark 3.17. In particular, the β-γ-closure of a β-γ-connected set is β-γ-connected.

Corollary 3.18. If for every β-δ-open set V of Y , f−1(V ) is β-γ-open in X , then function f : X → Y is
β(γ,δ)-continuous.

Proof. Assume that V be β-δ-open in Y . Then Y − V is a set in Y that is β-δ-closed. Following the reasoning
in ([8, Theorem 16(ii)]), the set f−1(Y − V ) is β-γ-closed set in X . The reason for this is because f−1(V ) is
β-γ-open set in X , since f−1(Y − V ) = X − f−1(V ).

On the other side, consider x ∈ X and V as a β-δ-open subset of Y that contains f(x). Then x ∈ f−1(V ).
Given x and f(f−1(V )) ⊆ V . It may be inferred that f−1(V ) is β-γ-open in X . Hence f is β(γ,δ)-continuous.

■

Theorem 3.19. If f : (X, τ) → (Y, σ) is onto β(γ,δ)-continuous function and X is β-γ-connected, then Y is
β-δ-connected.

Proof. Y is β-δ-disconnected if and only if A and B give a β-δ-disconnection of Y . A and B are both β-δ-
open sets according to Remark 3.9. Both f−1(A) and f−1(B) are both non empty β-γ-open set in X because
f is β(γ,δ)-continuous, according to Corollary 3.18. Now, for function f , f−1(A) ∩ f−1(B) = f−1(A ∩ B) =

f−1(∅) = ∅ and f−1(A)∪f−1(B) = f−1(A∪B) = f−1(Y ) = X . Remark 3.9 states that f−1(A) and f−1(B)

are two β-γ-disconnections of X . Then Y is β-δ-disconnected is contradicted by this. ■

Theorem 3.20. Let f : (X, τ) → (Y, σ) be an injective function. Then the following are equivalent:

(i) f is β(γ,δ)-continuous.

(ii) f−1(V ) ⊆ βγ Int(f
−1(V )) for every subset β-γ-open set V of Y .

(iii) f(βγ Cl(A)) ⊆ βδ Cl(f(A)) for every subset A of X .

(iv) βγ Cl(f
−1(B)) ⊆ f−1(βδ Cl(B)) for every subset B of Y .
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(v) f−1(βδ Int(B)) ⊆ βγ Int(f
−1(B)) for every subset B of Y .

Proof. (i)⇒(ii): Let x ∈ f−1(V ), where V is a β-δ-open subset of Y . Then f(x) ∈ V . Since f is β(γ,δ)-
continuous, there exists β-γ-open set U of X containing x such that f(U) ⊆ V and so U ⊆ f−1(V ), this implies
that x ∈ βγ Int(f

−1(V )). Thus f−1(V ) ⊆ βγ Int(f
−1(V )) for every β-δ-open subset V of Y .

(ii)⇒(iii): Let A be any subset of X and f(x) /∈ βδ Cl(f(A)), then by Theorem 2.2(i), there exists a β-γ-
open set V of Y containing f(x) such that V ∩ f(A) = ∅ and hence f−1(V ) ∩ A = ∅. Also f(x) ∈ V

implies x ∈ f−1(V ), which implies x ∈ βγ Int(f
−1(V )). Hence, there exists a β-γ-open set U of X containing

x such that U ⊆ f−1(V ). Then U ∩ A = ∅ and so x /∈ βγ Cl(A) and hence f(x) /∈ (βγ Cl(A)). Thus
f(βγ Cl(A)) ⊆ βδ Cl(f(A)).

(iii)⇒(iv): Let B be any subset of Y . Since f(f−1(B)) ⊆ B, so we have βδ Cl(f(f
−1(B)) ⊆ βδ Cl(B). Also

f−1(B) ⊆ X . Then by (iii), we have f(βγ Cl(f
−1(B)) ⊆ (βδ Cl f(f

−1(B)) ⊆ βδ Cl(B). Thus
βγ Cl(f

−1(B)) ⊆ f−1(βδ Cl(B)).

(iv)⇒(v): Let B be any subset of Y and x ∈ f−1(βδ Int(B)). Then by Theorem 2.2(ii),
x /∈ X − f−1(βγ Int(B)) = f−1(βγ Cl(Y − B). By (iv), x /∈ (βγ Cl(f

−1(Y − B)) = X − (βγ Int(f
−1(B))

and hence x ∈ βγ Int f
−1(B). Thus f−1(βδ Int(B)) ⊆ βγ Int(f

−1(B)).

(v)⇒(i): Let x ∈ X and V be any β-δ-open set of Y containing f(x). Since V ∩ (Y − V ) = ∅, we have
f(x) /∈ βγ Cl(Y − V ) = Y − βγ Int(V )) and hence f(x) /∈ βγ Cl(Y − B) = Y − βγ Int(V ) and so f(x) ∈
βγ Int(f

−1(V )), which implies that x ∈ f−1(βδ Int(v)). By (v), we obtain that x ∈ βγ(Int f
−1(V )). This

means that there exists a β-γ-open set U of X containing x such that U ⊆ f−1(V ) and so f(U) ⊆ V . This
shows that f is β(γ,δ)-continuous. ■

Corollary 3.21. Let f : X → Y be a β(γ,δ)-continuous and injective function. If K is β-γ-connected in X , then
f(K) is β-δ-connected in Y .

Proof. Suppose that f(K) is β-δ-disconnected in Y . Then there exists two β-δ-separated sets P and Q of Y
such that f(K) = P ∪ Q. Let A = K ∩ f−1(P ) and B = K ∩ f−1(Q). Since f(K) ∩ P is not empty, so
is K ∩ f−1(P ). Hence A and B are non empty. Now A ∪ B = (K ∩ f−1(P )) ∪ (K ∩ f−1(Q)) = K ∩
(f−1(P ) ∪ f−1(Q)) = K ∩ (f−1(P ∪ Q)) = K ∩ (f−1(f(K)) = K. Since f is β(γ,δ)-continuous, then
by Theorem 3.20, βγ Cl(f

−1(Q)) ⊆ f−1(βδ Cl(Q)) and this together with B ⊆ f−1(Q), implies βδ Cl(B) ⊆
f−1(βγ Cl(Q)). Since P∩βγ Cl(Q) = ∅, A∩βγ Cl(B) ⊆ A∩f−1(βγ Cl(Q)) ⊆ f−1(P )∩f−1(βγ Cl(Q)) = ∅.
i.e. A ∩ βγ Cl(B) = ∅. Similarly B ∩ βγ Cl(A) = ∅. Thus A and B are β-γ-separated, therefore K is a β-γ-
disconnected, a contradiction. Hence f(K) is β-δ-connected. ■

Theorem 3.22. A space X is β-γ-disconnected if and only if there exists an β(γ,id)-continuous function from X
onto discrete space {0, 1}.

Proof. Suppose that X is β-γ-disconnected. Then, there exists disjoint β-γ-open sets G1 and G2 of X such that
X = G1 ∪G2. Define a function f : X → {0, 1} as follows:

f(x) =

{
0 if x ∈ G1,

1 if x ∈ G2.

Now,the only βid-open sets in {0, 1} are ∅, {0}, {1}, {0, 1}. So, f−1(∅) = ∅, f−1({0}) = G1, f−1({1}) =
G2 and f−1({0, 1}) = X , which are β-γ-open sets in X . Thus by Corollary 3.18, f is β(γ,id)-continuous function
from X onto discrete space {0, 1}. Conversely, let the hypothesis holds and if possible suppose that X is β-γ-
connected. Therefore by Theorem 3.19, {0, 1} is βid-connected which is a contradiction by Remark 3.9. So X

must be β-γ-disconnected. ■
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Theorem 3.23. A space X is β-γ-connected if and only if every β(γ,id)-continuous function from space X to the
discrete space {0, 1} is constant.

Proof. Consider X be β-γ-connected and consider any β(γ,id)-continuous function f : X → {0, 1}. Since
the space {0, 1} is discrete, we may say that {y} is both βid-open and βid-closed in space {0, 1}. If we let
y ∈ f(X) ⊆ {0, 1}, then {y} ⊆ {0, 1}. For any y in Y , f−1({y}) is both β-γ-open and β-γ-closed in X

according to Corollary 3.18 and ([8, Theorem 16(ii)]) since f is β(γ,id)-continuous function. We may deduce
that f(x) = y for every x ∈ X because y ∈ f(X), so x is a function of f−1({y}). Therefore f−1({y}) does
not include empty set. If f−1({y}) is not equal to X , then f−1({y}) is a non empty subset of X which is both
β-γ-open and β-γ-closed in X . So there is a contradiction as, X is β-γ-connected. By Theorem 3.10. Therefore
if f−1({y}) = X , then f(X) = {y}. This indicates that f is constant since for each x ∈ X , f(x) = y. ■

Definition 3.24. A set C is called maximal β-γ-connected set if it is β-γ-connected and if D is β-γ-connected
such that C ⊆ D ⊆ X , then C = D. A maximal β-γ-connected subset C of a space X is called a β-γ-component
of X , if X itself β-γ-connected, then X is only β-γ-component of X .

Theorem 3.25. For β-γ-component of X containing x, for each x ∈ X , there is exactly one β-γ-component of
X containing x.

Proof. For any x ∈ X , let Cx = ∪{A : x ∈ A ⊆ X and A is β-γ-connected}. Then {x} ∈ Cx, since Cx

is union of β-γ-connected sets each containing x, is β-γ-connected by Corollary 3.14. If Cx ⊆ D and D is
β-γ-connected, then D was one of the sets A in the collection whose union defined Cx. So D ⊆ Cx and therefore
Cx = D. Therefore Cx is a β-γ-component of X containing x. ■

Corollary 3.26. Two β-γ-components either are disjoint or coincide.

Proof. Let Cx and Cy be two β-γ-components and Cx not equal to Cy . If they are not disjoint, let p ∈ Cx ∩Cy .
Then by Corollary 3.14, Cx∪Cy would be a β-γ-connected set strictly larger then Cx. Therefore Cx∩Cy = ∅. ■

Theorem 3.27. Each β-γ-connected subset of X is contained in exactly one β-γ-component of X .

Proof. Let A be a β-γ-connected subset of X which is not in exactly one β-γ-component of X . Suppose that
C1 and C2 are β-γ-component of X such that, A ⊆ C1 and A ⊆ C2. Since C1 and C2 are not disjoint and by
Corollary 3.14, C1 ∪ C2 is another β-γ-connected subset which contain C1 and C2, a contradiction to the fact
that C1 and C2, are β-γ-components. This proves that A is contained in exactly one β-γ-component of X . ■

Theorem 3.28. A β-γ-component is a non empty β-γ-connected subset of X that is both β-γ-open and β-γ-
closed.

Proof. Assume that A be a β-γ-connected subset of X which is both β-γ-open and β-γ-closed. A is included
in precisely one β-γ-component C of X , according to Theorem 3.27. It is contradictory because if A is proper
subset of C, then equation C = (C∩A)∪ (C∩ (X−A)) results in a β-γ-disconnection of C. Thus, A = C. ■

Theorem 3.29. Every β-γ-component of X is β-γ-closed.

Proof. Assume that C be a β-γ-component of X . according to Remark 3.17, βγ Cl(C) is a β-γ-connected which
appropriately includes the β-γ-component C of X . C is therefore β-γ-closed as C = βγ Cl(C). ■

Definition 3.30. For every point x ∈ X and every β-γ-open set U containing x, there exists a β-γ-open β-γ-
connected set V such that x ∈ V ⊆ U , we say that X is said to be β-γ-locally connected at x.

Theorem 3.31. Let f : X → Y be a β(γ,δ)-continuous, β(γ,δ)-open and bijective. If X is β-γ-locally connected,
then Y is β-δ-locally connected.
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Proof. By y ∈ Y , find an element x ∈ X such that y is equal to f(x). Let U be a β-δ-open set of Y that contains
y. According to Corollary 3.18, f−1(U) is β-γ-open in X containing x, because f is β(γ,δ)-continuous. There is
a β-γ-open β-γ-connected set V that contains x such that x ∈ V ⊆ f−1(U) because X is β-γ-locally connected.
This means that f(x) ∈ f(V ) ⊆ f(f−1(U)) = U or y ∈ f(V ) ⊆ U . The reason for f(V ) is also β-δ-open
because f is β(γ,δ)-open. In addition according to Corollary 3.21, f(V ) is β-δ-connected. This establishes that
Y is β-δ-locally connected. ■

4. Concluding Remarks and Acknowledgements
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of open sets. The authors would like to express their profound gratitude to the referees who helped us to enhance
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