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On some fractional order differential equations with weighted conditions
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Abstract. In this paper, we study some Cauchy problems with weighted conditions of a fractional order differential equation
. We study by using some fixed point Theorems the existence of at least one solution in the two spaces C1—x([) and C(I),
where I = [0, .
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1. Introduction and Background

A Cauchy problem in mathematics asks for the solution of a partial differential equation that satisfies certain
conditions that are given on a hypersurface in the domain. A Cauchy problem can be an initial value problem or a
boundary value problem. Also, Cauchy problems are very natural in physics: The typical example is the solution
of Newton’s equation in classical mechanics, which is a second-order equation for the position of a particle. We

know indeed that the motion of a particle is uniquely specified by its initial position and velocity.
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An important result about Cauchy problems for ordinary differential equations is the existence and uniqueness
theorem, which states that, under mild assumptions, a Cauchy problem always admits a unique solution in a
neighbourhood of the point zy where the initial conditions are given.

In this work, we study the two weighted Cauchy-type problems

D" u(s) = f(g,u,fg h(g,s,u(s))ds), ¢ >0, 0< k<1,
1.1)
I u(Q=o = b b € R
and
D*us) = f<§,u,f0g h(s, s, u(s)) ds), ¢>0,0< k<1,
(1.2)
u(0) = 0.
The weighted Cauchy-type problems were studied in many papers see [1]-[7].
In [8], the author studied the existence of a solution of the weighted problem
D u(t) = f(t,u(t)) + [y g(t,s,u(s))ds, t > 0,
(1.3)

1= u(t)|j=0 = b, where0) < a < 1,b € R,
in the space Cy_, (I), where the functions f and g satisfied the following conditions
(1) t1=*f(t,u) is continuous on R* x C)__ (R*) and

[f(tw)] < to@)|ul™, p =0, my > 1,

(2) s'~%g(t,s,u(s)) is continuous on Dyt x CY__ (R*) where
Dy ={(t,s) e RT xR, 0< s <t}

and
|g(t757u(s))| < (t - 5)ﬂ7150¢(5)|u|m27 0< 6 < 13 o> Oa mo > 1;

where ¢(t) and v (t) are such that
(3) (t) is continuous and t#~(1=*)™1(5(¢) is continuous in case
uw—(1—a)m; <0,
(4) 9(t) is continuous and 7~ (1=®)™24)(#) is continuous in case
oc—(1—a)mg <0.

Problem (1.3) is a special case of our problem (1.1), we will study the existence of at least one solution of problem

(1.1) in the space C_,(I) under similar conditions of paper [8].
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2. Preliminaries and Definitions

In this section, we state the definitions and theorems which will be used in our paper.
Let Ly = L; [J] be the class of Lebesgue integrable functions on the interval J, J = [0, c0), with norm
defined by

11l = /J|f<<>|d<, Je L,

then we have the following definition for the fractional (arbitrary) order integration.

Definition 2.1. The fractional (arbitrary) order integral of the function f € Li[a,b] of order 8 > 0 is defined by

(see [9]-[11]) . 51
250 = [ S s

or

When a = 0, we can write I? f(5) = Ig f(s) = f(s)* pg(s), where

and ¢ satisfies the property
¢B1 (§) * ¢52 (g) = (bﬂl + B2 (g)

Also ¢p(s) — d(s)as 8 — 0, where §(s) is the Dirac-delta function (see [5]).
For k, 8 € RT, we have
(a) [gv : L1 — L]_,
(b) I°IPf(t) = IO £(2).
Definition 2.2. The Riemann-Liouville fractional derivative of order 5 € (0,1) of a Lebesgue-measurable
function f : RT™ — R is defined by (see [9] - [11])

d

DY f(s) = ngi‘ﬂf(<) =

1 d

I T AR LT

Theorem 2.3. (Schauder fixed point Theorem)[12]
Let W be a convex subset of a Banach space X, and T : W — W is compact, continuous map. Then T has
at least one fixed point in W.

3. Main Results

Define the two spaces

C(I) := {u: u(s) is continuous on I = [0, 4], ||u|| = max lu(s)[}
S

3

s
2
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and
C1_n(I) = {u: ¢'7"u(s) is continuous on I with the weighted norm ||u||;_. = ||s* ™" u]|}.
Our paper will be divided into two parts, in the first part we will study the existence of a solution for problem
(1.1) in the space Cy_,(I). And in the second part we will study the existence of a solution for problem (1.2) in
the space C'(I).
3.1. Solution in Cy_(I)

Suppose that the two functions f and h satisfy the following conditions

(1*) foreachs € I, f(s,-,-) is continuous,

for each (u,v) € ® x R, f(-,u,v) is measurable, and

(55w 0)| < Fo(o)|ul™ + v], = 0,my > 1,

(2*) foreach (¢,s) € I x I, h(s,s,-) is continuous,

for each uw € R, h(-,-,u) is measurable, and
|h(s,s,u(s))] < (s — 8)° 7 1s79(s)|ul™,0 < B < 1,0 > 0,my > 1,

where ¢(s) and (<) are continuous functions.

3.1.1. Integral representation

In ([1]-[2]) the authors proved that the Cauchy problem (1.1) is equivalent to the nonlinear integral equation of

fractional order
)nfl

u(s) =bs" ! + /g (i) i
0

T'(x) f(w(s),/os h(s,0,u(9)) d0> ds. 3.1)

Define the operator 1" by

k—1

rue) = bt s [
0

Tﬁ) f(s,u(s),/os h(s,@,u(@))d&) ds.

It is clear that the fixed point of the operator 7" is the solution of the integral equation (3.1).

3.1.2. Existence of solution

Theorem 3.1. Assume that assumptions (1*)-(2*) and (3)-(4) are satisfied, then the weighted Cauchy-type

problems (1.1) has at least one solution u € Cy_,(I).

Proof. Define the set
Sy = {u €C_w(I):|lu—bs" M1, < r}.

Now,

<1'"””I"””f<§,U(C),/Og h(s, s,u(s)) ds>

[ Tu —bs" Y|1_, = max
el

3

s
2
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< maXeer gl=rr"®

7 (soute) s sute as)|

< maxee; 1R (cw<<>|u<<>|ml TS Ihes s, u(s))] ds)

S maxeer el (g”*"@'“@l’”l TS = 8)P 18 () uls) ™ ds)

< maxeer ' fo I‘(n) 3”@(3)|u(3)|m13(17'{)m187(17“)m1d5

)nl

+maxcers' " f5 SR — [ (s — 0)5 71070 (0) u(6)|™ df ds

< maxger < lgl| [l [ fy S pal—st—(rmids

+maxger < f3 ST [5(s — 0)71073(0) [u(0) 200 m2p-(-mma dg ds

- Pp—(= +1 (-
< maxcer <t || ‘|“||71nflnr(u<_u(1£,@)f%?jr1)lg)c“ (1—r)(m1+1)+1

maxier s MYl S5 Sg— S (s = 0) 1070002 df ds

F —(1=r)mi1+1 —(1—k)m
< ol 7 e lsimssts oo

—K DB —(1—k)ma+1) o—(1—k
+maxcer < I ull2, f5 kr?L) F(é? ((1 f(e)mz)réﬂ)) (mmmats ds

I 1—k)mi+1) Wm
< gl 2, L1y 1

- LBNoe—(1 +1) _D(e—(1 +B+1 _
+maxcer |l 72, R e i, Tt e ey <~ (A mat et

r 1—r)mi+1 "
< Nl fful 1, pRemmat =1

1—-r)mo—+1 o— RV
HI I ellz= "‘F(U (1( m)(m2+)n+23+1))h (1=r)matf+t,

If u € S,, then

where

K= P(p—(A—r)mi+1)[[o[| (r+[bD™? £p—(1—r)mi+1
1T — b1 < MG P e (mmat
4 Do == r)mat DI (r+b)™2 o —(1—r)ma+8+1

I'(o—(1—r)ma+r+B+1)

< Ci(r+ o)™ B + Co (r+[b])™2 12,

D(p— (1 = r)mi + 1)|[]|
D(p—(1—kK)mi+K+1)

e

<
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LB (o — (1 = k)ma + D[¢]]
Mo—(1-r)ma+r+B8+1)’

Cy =

y=p—(1—-r)m+1 >0

and

=0—-(1—-Kk)me+B+1 > 0.
If we take r = |b| and /i very small, then
1 Tu—bs" "M <,

then 7°(S,) C S,.

Now, we prove that 7" is continuous on .S,.. Indeed: let uy, us € S,., then we get

[[Tur — Tup||1 - = max.er

k-1
< maxcer " f0< %

f(s,ul(s), IN h(s,ﬂ,ul(e))de) - f(s,u2(s), I h(s,0,us(6)) d9> ‘ ds.

From the continuity of f and h, we can deduce that for a given € > 0 there exists a §; > 0 such that for all

(S,Ul,’Ul)7 (5,u2,v2) el x Ol_,@([) X Cl_ﬁ(l), we have

Slfn

f(s,ul(s),/os h(s,&,ul(e))cw) - f(s,uQ(s), /0S h(s,0,uz2(0)) de)‘ <e

provieded that ||u; — ua||1—x < 1.

e
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To prove that T'(S,.) is equicontinuous, let 71,72 € 1,71 < T2, |72 — 71| < d, then

3 "Tu(re) — 1 "Tu(ry) = n' =" [ % < s), Jy h(s,0,u( d0> ds

nloe fr Gl f(s,u<s>,fih<s,e,u(e>>d9) ds
=yl [ f<s, u(s), [ (s, 0, u(e))de)
gl [T el f(s,u(s),fosh(s,ﬁ,u(ﬁ))d0> ds
-t % f(s,u(s),f;h(s,e,u(e))w) ds

< (7_21—/@ - 7_11 ~) fOTl (711:(5’2) fo (s,0,u(0))d6)ds

R [T % f(s,u(s),f(f h(s,&u((?))d@)ds

‘TQ]‘_HTU(TQ) _ 7—1 NT’lu(7'1)| < ( 7'11 M) fOTl %If(g’u(s),fos h(S,G,U(G))dG)‘dS
+rplTr ;;2 % f(s,u(s),fos h(s,@,u(@))d@) ds

< (7'21 — 7'11_”) o % (s“gp(s)|u|m1 + s |h(s,9,u(0))|d0> ds

rtor [ (”;(fz;l(sﬂw(s)lu(s)lml +J5 |h(s79,u(9))d9) ds

< <T%‘“ - T%‘“’) [ IS %5“7(17”)7”1@(5)5(1*”)”“ lu(s)|™ ds
T(x)

—|—le (7—1 s)"~ 1 fo s—0 B 190—(1—5)7)@2,(/}(9)9(1—5)7712|u(9)‘MQd9 d8:|

7! [f:f (el (s o (5) s1=ma y (s) 1 dis

_|_sz (TQF(S)) fo s — ﬁ 190—(1—n)m2¢(0)9(1—n)m2|u(9)‘m2d9 d8:|

< (=) el s, 7 om0 as

Rl lul 72, 7 Cml = f2 (s — 0)5- 167165 "‘)m2d0ds}

T (19—s)" 1 l‘iml
=l [, 72 @l a0 g

Jie

<
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—K I'(p—(1—r)mi+1 1—r)mi+k
< ( - )Mnuu R

k—1

“r‘H(/)H H ||m2 L(B)r(c—(A—r)mo+1) fn (T1—5)

o—(1—rk)m
1=k T(o—(1—r)ma+B+1) T(r) (1=r) 2+5d5}

Ir 1—k)mi+1 (1K)
s {||<P||||u|1 "‘F(u(ﬂ(l( n)vqulr;r)l)(TZ—Tl)“ (1=r)ma+

mqo I'(B)'(c—(1—k +1 s (T K— 1 —)m
LI w12, p(ﬁa) ((1 £m2%§rl)) I (21“(3;«3 ~(1-k) 2+5ds}

—K T 1—k)mi+1 1—k)mi+
< (=) ol a2 gty = omee

ma DB (6—(1—k)ma+1) T(o—(1—r)ma+B+1) _ o—(l—k)m .
Hlepl] (a7, R =Uondmatl) Lo (omima b ) 7y o —(1-r) 2+B+}

I'(p—(1—k)mi1+1)

a1 ol R = 1

T'(B)(oc—(1—k)mso+1
) |2, g2 ommat ) (7, — )

J(ln)m2+ﬁ+n:|

1- r 1 +1 1— +
R L e
T'(B)r 1 +1 —(1—
1l a2, SR matt) o n>mz+ﬂ+~}

F(;L (1—k)m1+1)

gl 2 R = ot

I I'(c—(1—k)mo+1
HII |72 F 2 n ey (12 = 1

)U—(l—n)m2+5+m:|

i [01 ullT™, (7 — 7)1 4 Cy [[ul[T (7 — n>5+5-1]

Therefore T'S, is equi-continuous, by Arzela-Ascoli Theorem then 7'S, is relatively compact. Therefore the
conditions of Schauder fixed point Theorem are hold, which implies that 7" has a fixed point in S,. Then the
nonlinear integral equation (3.1) has at least one solution v € C1_,(I) and consequently the weighted Cauchy-

type problem (1.1) has at least one solution v € Cy_(I).

E =

[V =)
MIM
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3.2. Solution in C(I)
3.2.1. Integral representation

Lemma 3.2. The Cauchy problem (1.2) is equivalent to the nonlinear integral equation of fractional order

u(s) = /(: (g;(;z))’ﬁl f<s,u(s),/os h(s,0,u(h)) d@) ds. (3.2)

Proof: Let u(s) be a solution of

(@) = £(suls) [ hiss () ds).

integrate both sides, we get

Il%@)ﬂ“m¢poIme@y{h@aM$mQ,

operating by /" on both sides of the last equation, we get

S
ru(©) = 10 = 1 1 (o). [ hte,souls) ds)
0
differentiate both sides, we get

mo—CNWI:ﬁf@mql%mawmm)

from the initial condition, we find that C; = 0, then we get (3.2)
Define the operator F' by

Fu(c) = /O ) (gr(z))l f(s,u(s), /O ) h(s,a,u(a))do) ds.

It is clear that the fixed point of the operator F' is the solution of the integral equation (3.2).

3.2.2. Existence of solution

Theorem 3.3. Assume that the assumptions (1% )-(2*) are satisfied. Then the weighted Cauchy-type problem (1.2)

has at least one solution u € C(I).

Proof. Define the set

B, = {u e o) ||ul| < rl}.

Now,

; I"”"f(g,u(c),/og h(s,s,u(s)) ds>‘

[|Ful| = max
<€

3

s
2
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< maxcer 1| (s ule)  Rlsos () s )|
< maxser I (S4pOIul6)™ + 1,5, ) ds

< max.e; I* (cﬂso(c)u(c)ml (s — 8P Lsmp(s)u(s)| ™ ds)

< maxer "o () [u(©)|™ +maxcer fy ST Ji (s = 0)7~1073(6) [u(0) "2 dods

—_g)s—1 m
< maxces [y (s F(L) sto(s)lu(s)|™ ds

my (BT (o+1 s o
t+mager ||| [Jul|2 LD [+ o e g

I'(p+1
< maxcer |[@l] [[ul|™ gt ortn

B)I'(o+1 +o+1
+max§€[ H’IZJH Hu”Wl2 I‘([;+§70+1)) F(Ii(f-ﬁ—oi-v-‘r)l) §n+ﬁ+a

m T'(p+1 5 mo I I'(o+1 K o
< [lepl| faall ™ PRt pts (3] [ |2 D et

If u € B,, then

Ful| <
[1Full < IM'k+p+1) F'k+pB+0+1)

If we take h very small, then

[[Full < 71,

then F(B,.) C B,.

From the continuity of f and &, we obtain that the operator F is continuous.
To prove that F'(B,.) is equicontinuous

Let 71,72 € [0,h], 71 < T2, |2 — 71| < §, then

Fu(ry) — Fu(n) = [ % < ) Jo 15, 0,u(®
P 0,u(0))d6 ) d

—Jo T IS u( (s,0,u(9)) s

= o e <s u(s 5,0 u(e))do) ds

168
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N ( (5,0 u(0))d6) ds
- Tl S f( (s 0,u(9))d9) ds
S Tl (Tlr(s»z)ﬁ lf(s u(s s,&,u(@))d@) ds

T1 7'1 5
1“(fﬂ)

o e lf( (s 9,u(9))d9)ds,
= gt )

‘Fu(rg) Fu(m) ds

< fT2 (TZF(SH) ’f(s u(s fos h(S,eyu(Q))dQ)

< 7 R (st 0,0 a0 ) s

< [ oo g () u(s)| ™ ds
—Jr T'(k) ¥

+sz2 TQF(SH) fo 5 —0)P=107(0)|u(0)|™2dOds

_g)r—1
< lll flulm™ [T 2l s ds

H[l] [l [ Cori— S)K Jo (s —6)°~16°do ds

I 1
< Nl [l RSt (7, — s

I'(B)I'(oc+1 T2 (ro—s)""! &
]| ]2 BT 72 (et 57 P s

—+1
e e N e

mes T(B)T(c+1
] llull™= s B2y (s

Therefore F'B, is equi-continuous, by Arzela-Ascoli Theorem then F'B,. is relatively compact. Therefore the
conditions of Schauder fixed point Theorem are hold, which implies that F" has a fixed point in B,.. Then the
nonlinear integral equation (3.2) has a solution © € C(I) and consequently from Lemma 3.2, we get that the

weighted Cauchy-type problem (1.2) has a solution u € C([).

e
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