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Abstract. In this paper, we establish a couple of approximation results for local existence and uniqueness of the solution
of a initial value problem of nonlinear first order ordinary hybrid integrodifferential equations by using the Dhage monotone
iteration method based on the recent hybrid fixed point theorems of Dhage (2022) and Dhage et al. (2022). An approximation
result for Ulam-Hyers stability of the local solution of the considered hybrid differential equation is also established. Finally,
our main abstract results are also illustrated with the help of a couple of numerical examples.
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1. Introduction

Given a closed and bounded interval J = [t0, t0 + a] of the real line R, for some t0, a ∈ R with a > 0, we
consider the initial value problem (IVP) of nonlinear first order ordinary hybrid integrodifferential equations (in
short HIGDEs),

x′(t) = f
(
t, x(t),

∫ t

t0

g(s, x(s)) ds
)
, t ∈ J,

x(t0) = α0 ∈ R,

 (1.1)

where the function f : J × R × R → R satisfies some hybrid, that is, mixed hypotheses from algebra, analysis
and topology to be specified later.

Definition 1.1. A function x ∈ C(J,R) is said to be a solution of the HIGDE (1.1 if it satisfies the equations in
(1.1) on J , where C(J,R) is the space of continuous real-valued functions defined on J . If a solution x lies in a
neighborhood N (x0) of some point x0 ∈ C(J,R), then we say it is a local solution or neighborhood solution (in
short nbhd solution) of the HIGDE (1.1) defined on J .
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Remark 1.2. It is well-known that an open ball B(x, r) in C(J,R) centered at a point x of radius r > 0 is a
neighborhood of the point x, so if a solution x∗ of the HIGDE (1.1) lies in a closed ball B(x, r) in C(J,R), then
it is a local solution in view of the fact that B(x, r) ⊂ B(x, r + ϵ) for every ϵ > 0.

The HIGDE (1.1) is quite familiar to the subject of nonlinear analysis. If f(t, x, y) = f(t, x), then it includes
the nonlinear IVPs of nonlinear first order hybrid differential equation (HDE)

x′(t) = f(t, x(t)), t ∈ J,

x(t0) = α0 ∈ R,

}
(1.2)

and on choosing f(t, x, y)n = f(t, y), it yields the onlinear first order hybrid integrodifferential equation
(HIGDE)

dx

dt
=

∫ t

t0

f(s, x(s)), t ∈ J,

x(t0) = α0 ∈ R,

 (1.3)

as particular cases. The HDE (1.2) and HIGDE (1.3) have been studied for approximation results in Dhage and
Dhage [11] and Dhage and Dhage [12] respectively via hybrid fixed point theory recently developed in Dhage [8]
and Dhage et al. [10]. Similarly, the HIGDE (1.1) can be studied for a variety of different aspects of the solution
by using different nonlinear operator theoretic techniques from nonlinear functional analysis. The existence result
for the local solution of the IVP (1.1) can be proved by using the Schauder fixed point principle, see for example,
Coddington [2], Lakshmikantham and Leela [17], Granas and Dugundji [14] and references therein. Similarly,
the approximation result for the uniqueness of solution can be proved by using well-known Banach fixed point
theorem under a Lipschitz condition which is considered to be very strong in the topic of nonlinear analysis. But
to the knowledge of the present authors, the approximation result for local existence and uniqueness theorems
without using the Lipschitz condition is not discussed so far in the theory of nonlinear differential and integral
equations. In this paper, we undertake the study of approximation results for local existence and uniqueness of
solution under weaker form of one sided or partial Lipschitz condition but via construction of the algorithms
based on the Dhage monotone iteration method and a hybrid fixed point theorem of Dhage et al. [10] and Dhage
[8].

The rest of the paper is organized as follows. Section 2 deals with the auxiliary results and main hybrid fixed
point theorems involved in the Dhage iteration method. The hypotheses and main approximation results for the
local existence and uniqueness of solution are given in Section 3. The approximation of the Ulam-Hyer stability
is discussed in Section 4 and a couple of illustrative examples are presented in Section 5.

2. Auxiliary Results

We place the problem of HIGDE (1.1) in the function space C(J,R) of continuous, real-valued functions defined
on J . We introduce a supremum norm ∥ · ∥ in C(J,R) defined by

∥x∥ = sup
t∈J

|x(t)|, (2.1)

and an order relation ⪯ in C(J,R) by the cone K given by

K = {x ∈ C(J,R) | x(t) ≥ 0 ∀ t ∈ J}. (2.2)

Thus,
x ⪯ y ⇐⇒ y − x ∈ K, (2.3)

or equivalently,
x ⪯ y ⇐⇒ x(t) ≤ y(t), ∀ t ∈ J.
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It is known that the Banach space C(J,R) together with the order relations ⪯ becomes a partially ordered
Banach space which we denote for convenience, by

(
C(J,R),K

)
. We denote the open and closed spheres

centered at x0 ∈ C(J,R) of radius r, for some r > 0, by

Br(x0) = {x ∈ C(J,R) | ∥x− x0∥ < r} = B(x, r)

and
Br[x0] = {x ∈ C(J,R) | ∥x− x0∥ ≤ r} = B(x, r)

receptively. It is clear that Br[x0] = Br(x0) and Br(x0) ⊂ Br[x0] ⊂ Br+ϵ(x0) for every ϵ > 0. Let M > 0 be
a given real number. Denote

BM
r [x0] =

{
x ∈ Br[x0]

∣∣ |x(t1)− x(t2)| ≤ M |t1 − t2| for t1, t2 ∈ J
}
. (2.4)

Then, we have the following result.

Lemma 2.1. The set BM
r [x0] is compact in C(J,R).

Proof. By definition Br[x0] is a closed and bounded subset of the Banach space C(J,R). Moreover, BM
r [x0]

is an equicontinuous subset of C(J,R) in view of the condition (2.1). Now by an application of Arzelá-Ascoli
theorem, BM

r [x0] is compact set in C(J,R) and the proof of the lemma is complete. □

It is well-known that the fixed point theoretic technique is very much useful in the subject of nonlinear analysis
for dealing with the nonlinear equations. See Granas and Dugundji [14] and the references therein. Here, we
employ the Dhage monotone iteration method or simply Dhage iteration method based on the following two
hybrid fixed point theorems of Dhage [8] and Dhage et al. [10].

Theorem 2.2 (Dhage [8]). Let S be a non-empty partially compact subset of a regular partially ordered Banach
space

(
E, || · ∥,⪯,

)
with every chain C in S is Janhavi set and let T : S → S be a monotone nondecreasing,

partially continuous mapping. If there exists an element x0 ∈ S such that x0 ⪯ T x0 or x0 ⪰ T x0, then the
hybrid mapping equation T x = x has a solution ξ∗ in S and the sequence {T nx0}∞0 of successive iterations
converges monotonically to ξ∗.

Theorem 2.3 (Dhage [8]). Let Br[x] denote the partial closed ball centered at x of radius r for some real
number r > 0, in a regular partially ordered Banach space

(
E, || · ∥,⪯,

)
and let T : E → E be a monotone

nondecreasing and partial contraction operator with contraction constant q. If there exists an element x0 ∈ X

such that x0 ⪯ T x0 or x0 ⪰ T x0 satisfying

∥x0 − T x0∥ ≤ (1− q)r (2.5)

for some real number r > 0, then T has a unique comparable fixed point ξ∗ in Br[x0] and the sequence
{T nx0}∞0 of successive iterations converges monotonically to x∗. Furthermore, if every pair of elements in
X has a lower or upper bound, then ξ∗ is unique.

Remark 2.4. We note that every pair of elements in a partially ordered set (poset) (E,⪯) has a lower or upper
bound if (E,⪯) is a lattice, that is, ⪯ is a lattice order in E. In this case the poset (E, ∥ · ∥,⪯) is called a
partially lattice ordered Banach space. There do exist several lattice partially ordered Banach spaces which
are useful for applications in nonlinear analysis. For example, every Banach lattice is a partially lattice ordered
Banach space. The details of the lattice structure of the Banach spaces appear in Birkhoff [1].

As a consequence of Remark 2.4, we obtain
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Theorem 2.5. Let Br[x] denote the partial closed ball centered at x of radius r for some real number r > 0, in
a regular partially lattice ordered Banach space

(
E, || · ∥,⪯,

)
and let T : E → E be a monotone nondecreasing

and partial contraction operator with contraction constant q. If there exists an element x0 ∈ X such that
x0 ⪯ T x0 or x0 ⪰ T x0 satisfying (2.5), then T has a unique fixed point ξ∗ in Br[x0] and the sequence
{T nx0}∞0 of successive iterations converges monotonically to ξ∗.

If a Banach X is partially ordered by an order cone K in X , then in this case we simply say X is an ordered
Banach space which we denote it by (X,K). Similarly, an ordered Banach space (X,K), where partial order
⪯ defined by the cone K is a lattice order, then (X,K) is called the lattice ordered Banach space. Clearly,
an ordered Banach space

(
C(J,R),K

)
of continuous real-valued functions defined on the closed and bounded

interval J is lattice ordered Banach space, where the cone K is given by K = {x ∈ CJ,R) | x ⪰ 0}. The details
of the cones and their properties appear in Guo and Lakshmikantham [15]. Then, we have the following useful
results concerning the ordered Banach spaces proved in Dhage [3, 4].

Lemma 2.6 (Dhage [3, 4]). Every ordered Banach space (X,K) is regular.

Lemma 2.7 (Dhage [3, 4]). Every partially compact subset S of an ordered Banach space (X,K) is a Janhavi
set in X .

As a consequence of Lemmas 2.6 and 2.7 we obtain the following hybrid fixed point theorem which we need
in what follows.

Theorem 2.8 (Dhage [8] and Dhage et al. [10]). Let S be a non-empty partially compact subset of an ordered
Banach space (X,K) and let T : S → S be a partially continuous and monotone nondecreasing operator. If
there exists an element x0 ∈ S such that x0 ⪯ Tx0 or x0 ⪰ Tx0, then T has a fixed point ξ∗ ∈ S and the
sequence {T nx0}∞0 of successive iterations converges monotonically to ξ∗.

Theorem 2.9 (Dhage [8]). Let Br[x] denote the partial closed ball centered at x of radius r for some real number
r > 0, in an ordered Banach space

(
X,K

)
and let T : (X,K) → (X,K) be a monotone nondecreasing and

partial contraction operator with contraction constant q. If there exists an element x0 ∈ X such that x0 ⪯ T x0

or x0 ⪰ T x0 satisfying (2.5), then T has a unique comparable fixed point ξ∗ in Br[x0] and the sequence
{T nx0}∞0 of successive iterations converges monotonically to ξ∗. Furthermore, if every pair of elements in X

has a lower or upper bound, then ξ∗ is unique.

Theorem 2.10 (Dhage [8]). Let Br[x] denote the partial closed ball centered at x of radius r for some real
number r > 0, in a lattice ordered Banach space

(
X,K

)
and let T : (X,K) → (X,K) be a monotone

nondecreasing and partial contraction operator with contraction constant q. If there exists an element x0 ∈ X

such that x0 ⪯ T x0 or x0 ⪰ T x0 satisfying (2.5), then T has a unique fixed point ξ∗ in Br[x0] and the sequence
{T nx0}∞0 of successive iterations converges monotonically to ξ∗.

The details of the notions of partial order, Janhavi set, regularity of ordered space, monotonicity of mappings,
partial continuity, partial closure, partial completeness, partial compactness and partial contraction etc. and
related applications appear in Dhage [3–8], Dhage and Dhage [9], Dhage et al. [10, 13] and references therein.

3. Local Approximation Results

We consider the following set of hypotheses in what follows.

(H1) The function f is continuos anf bounded on J × R× R with bound Mf .

(H2) f(t, x, y) is nondecreasing in x and y for each t ∈ J .

(H3) g(t, x) is nondecreasing in x for each t ∈ J.
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(H4) f(t, α0, y) ≥ 0 for all t ∈ J and y ≥ 0.

(H5) g(t, α0) ≥ 0 for all t ∈ J .

Then we have the following useful lemma.

Lemma 3.1. If h ∈ L1(J,R), then the IVP of ordinary first order linear differential equation

x′(t) = h(t), t ∈ J, x(t0) = α0, (3.1)

is equivalent to the integral equation

x(t) = α0 +

∫ t

t0

h(s) ds, , t ∈ J. (3.2)

Theorem 3.2. Sppose that the hypotheses (H1), through (H5) hold. Furthermore, if Mf a ≤ r and Mf ≤ M ,
then the HIGDE (1.1) has a solution x∗ in BM

r [x0], where, x0 ≡ α0, and the sequence {xn}∞n=0 of successive
approximations defined by

x0(t) = α0, t ∈ J,

xn+1(t) = α0 +

∫ t

t0

f
(
s, xn(s),

∫ s

t0

g(τ, xn(τ)) dτ
)
ds, t ∈ J,

 (3.3)

where n = 0, 1, . . . , is monotone nondecreasing and converges to x∗.

Proof. Set X = C(J,R). Clearly, (X,K) is a partially ordered Banach space. Let x0 be a constant function on
J such that x0(t) = α0 for all t ∈ J and define a closed ball BM

r [x0] in X defined by (2.4). By Lemma 2.1,
BM

r [x0] is a compact subset of X . By Lemma 3.1, the HIGDE (1.1) is equivalent to the nonlinear hybrid integral
equation (HIE)

x(t) = α0 +

∫ t

t0

f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds, t ∈ J. (3.4)

Now, define an operator T on BM
r [x0] into X by

T x(t) = α0 +

∫ t

t0

f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds, t ∈ J. (3.5)

We shall show that the operator T satisfies all the conditions of Theorem 2.8 on BM
r [x0] in the following

series of steps.

Step I: The operator T maps BM
r [x0] into itself.

Firstly, we show that T maps BM
r [x0] into itself. Let x ∈ BM

r [x0] be arbitrary element. Then,

|T x(t)− x0(t)| =
∣∣∣∣∫ t

t0

f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

∣∣∣∣
≤

∫ t

t0

∣∣∣f(s, x(s),∫ s

t0

g(τ, x(τ)) dτ
)∣∣∣ ds

= Mf

∫ t0+a

t0

ds

= Mf a ≤ r.

Taking the supremum over t in the above inequality yields

∥T x− x0∥ ≤ Mf a ≤ r,
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which implies that T x ∈ Br[x0] for all x ∈ BM
r [x0]. Next, let t1, t2 ∈ J be arbitrary. Then, we have

|T x(t1)− T x(t2)| ≤
∣∣∣∣∫ t2

t1

∣∣∣f(s, x(s),∫ s

t0

g(τ, x(τ)) dτ
)∣∣∣ ds∣∣∣∣

≤ Mf |t1 − t2|
≤ M |t1 − t2|.

Therefore, T x ∈ BM
r [x0] for all x ∈ BM

r [x0] As a result, we have T (BM
r [x0]) ⊂ BM

r [x0].

Step II: T is a monotone nondecreasing operator.

Let x, y ∈ BM
r [x0] be any two elements such that x ⪰ y. Then, since (H2) and (H3) hold, we have that

T x(t) = α0 +

∫ t

t0

f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

≥ α0 +

∫ t

t0

f
(
s, y(s),

∫ s

t0

g(τ, y(τ)) dτ
)
ds

= T y(t)

for all t ∈ J . So, T x ⪰ T y, that is, T is monotone nondecreasing on BM
r [x0].

Step III: T is partially continuous operator.

Let C be a chain in BM
r [x0] and let {xn} be a sequence in C converging to a point x ∈ C. Then, by dominated

cnonvergence theorem, we have

lim
n→∞

T xn = lim
n→∞

[
α0 +

∫ t

t0

f
(
s, xn(s),

∫ s

t0

g(τ, xn(τ)) dτ
)
ds

]
= α0 + lim

n→∞

∫ t

t0

f
(
s, xn(s),

∫ s

t0

g(τ, xn(τ)) dτ
)
ds

= α0 +

∫ t

t0

[
lim
n→∞

f
(
s, xn(s),

∫ s

t0

g(τ, xn(τ)) dτ
)]

ds

= α0 +

∫ t

t0

f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

= T x(t)

for all t ∈ J . Therefore, T xn → T x pointwise on J . As {T xn} ⊂ BM
r [x0], {T xn} is an equicontinuous

sequence of points in X . As a reult, we have that T xn → T x uniformly on J . Hence T is partially continuouus
operator on BM

r [x0].

Step IV: The element x0 ∈ BM
r [x0] satisfies the order relation x0 ⪯ T x0.

Since (H4) and (H5) hold, one has

x0(t) = α0 +

∫ t

t0

f
(
s, x0(s),

∫ s

t0

g(τ, x0(τ)) dτ
)
ds

≤ x0(t) +

∫ t

t0

f
(
s, α0,

∫ s

t0

g(τ, α0) dτ
)
ds

= α0 +

∫ t

t0

f
(
s, x0(s),

∫ s

t0

g(τ, x0(τ)) dτ
)
ds

= T x0(t)
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for all t ∈ J . As a result, we have that x0 ⪯ T x0. This shows that the constant function x0 in BM
r [x0] serves as

to satisfy the operator inequality x0 ⪯ T x0.

Thus, the operator T satisfies all the conditions of Theorem 2.8, and so T has a fixed point x∗ in BM
r [x0]

and the sequence {T nx0}∞n=0 of successive iterations converges monotone nondecreasingly to x∗ ⊂ Br+ϵ(x0)

for arbitrary ϵ > 0. Since every open ball is a neighborhood of its center point, we infer that the HIE (3.4) and
consequently the HIGDE (1.1) has a local solution x∗ and the sequence {xn}∞n=0 of successive approximations
defined by (3.3) converges monotone nondecreasingly to x∗. This completes the proof. □

Next, we prove an approximation result for existence and uniqueness of the solution simultaneously under
weaker form of partial Lipschitz condition. We need the following hypotheses in what follows.

(H6) There exists a constant k > 0 such that

0 ≤ f(t, x1, x2)− f(t, y1, y2) ≤ ℓ1(x1 − y1) + ℓ2(x2 − y2)

for all t ∈ J and x1, y1, x2, y2 ∈ R with x1 ≥ y1, x2 ≥ y2, where
(
ℓ1a+ ℓ2k a

2
)
< 1.

(H7) There exists a constant k > 0 such that

0 ≤ g(t, x)− g(t, y) ≤ k (x− y)

for all t ∈ J and x, y ∈ R with x ≥ y.

Theorem 3.3. Suppose that the hypotheses (H1), (H4) - (H5) and (H6) - (H7) hold. Furthermore, if

Mfa ≤
[
1−

(
ℓ1a+ ℓ2k a

2
)]
r,

(
ℓ1a+ ℓ2k a

2
)
< 1, (3.6)

for some real number r > 0, then the HIGDE (1.1) has a unique solution x∗ in Br[x0] defined on J , where
x0 ≡ α0, and the sequence {xn}∞n=0 of successive approximations defined by (3.3) is monotone nondecreasing
and converges to x∗.

Proof. Set (X,K) =
(
C(J,R),⪯

)
which is a lattice ordered Banach space w.r.t. to the lattice operations

x∨ y = max{x, y} and x∧ y = min{x, y}, and so every pair of elements of X has a lower and an upper bound.
Let r > 0 be a fixed real number and consider the closed ball Br[x0] centered at x0 ∈ C(J,R) of radius r in the
partially ordered Banach space (X,K).

Define an operator T on X into X by (3.5). Clearly, T is monotone nondecreasing on X . To see this, let
x, y ∈ X be any two elements such that x ⪰ y. Then, by hypotheseis (H2) and (H3), we obtain

T x(t)− T y(t)

=

∫ t

t0

[
f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
− f

(
s, y(s),

∫ s

t0

g(τ, y(τ)) dτ
)]

ds

≥ 0

for all t ∈ J . Therefore, T x ⪰ T y and consequently T is monotone nondecresing on X .
Next, we show that T is a partial contraction on X . Let x, y ∈ X be such that x ⪰ y. Then, by hypotheses
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(H6) and (H7), we obtain

|T x(t)− T y(t)| =
∣∣∣∣∫ t

t0

f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

−
∫ t

t0

f
(
s, y(s),

∫ s

t0

g(τ, y(τ)) dτ
)
ds ds

∣∣∣∣
≤

∣∣∣∣∫ t

t0

∣∣∣f(s, x(s),∫ s

t0

g(τ, x(τ)) dτ
)
ds

− f
(
s, y(s),

∫ s

t0

g(τ, y(τ)) dτ
)∣∣∣ ds∣∣∣∣

≤
∣∣∣∣∫ t

t0

[
ℓ1
(
x(s)− y(s)

)
+ ℓ2

∫ s

t0

k
(
x(τ)− y(τ)

)
dτ

]
ds

∣∣∣∣
= ℓ1

∫ t

t0

|x(s)− y(s)| ds+ ℓ2k

∫ t

t0

(t− s)
(
x(s)− y(s))ds

≤ ℓ1

∫ t0+a

t0

∥x− y∥ ds+ ℓ2 k a

∫ t0+a

t0

∥x− y∥ ds

=
[
ℓ1a+ ℓ2k a

2
]
∥x− y∥

= λ∥x− y∥

for all t ∈ J , where λ =
[
ℓ1a+ ℓ2k a

2
]
< 1. Taking the supremum over t in the above inequality yields

∥T x− T y∥ ≤ λ ∥x− y∥

for all comparable elements x, y ∈ X . This shows that T is a partial contraction on X with contraction constant
λ. Furthermore, it can be shown as in the proof of Theorem 3.2 that the element x0 ∈ BM

r [x0] satisfies the
relation x0 ⪯ T x0 in view of hypothesis (H4) and (H5). Finally, by hypothesis (H1) and condition (3.6), one has

∥x0 − T x0∥ = sup
t∈J

∣∣∣∣∫ t

t0

f
(
s, x0(s),

∫ s

t0

g(τ, x0(τ)) dτ
)
ds

∣∣∣∣
≤ sup

t∈J

∫ t

t0

∣∣∣f(s, α0,

∫ s

t0

g(τ, α0) dτ
)∣∣∣ ds

≤ Mf a

≤
[
1−

(
ℓ1a+ ℓ2k a

2
)]
r

which shows that the condition (2.5) of Theorem 2.10 is satisfied. Hence T has a unique fixed point x∗ in Br[x0]

and the sequence {T nx0}∞n=0 of successive iterations converges monotone nondecreasingly to x∗. This further
implies that the HIE (3.4) and consequently the HIGDE (1.1) has a unique local solution x∗ defined on J and the
sequence {xn}∞n=0 of successive approximations defined by (3.3) converges monotone nondecreasingly to x∗.
This completes the proof. □

Remark 3.4. The conclusion of Theorems 3.2 and 3.3 also remains true if we replace the hypothesis (H4) with
the following one.

(H′
4) The fuction f satisfiies the relation f(t, x0, y) < 0 for all t ∈ J and y ≥ 0.

In this case, the HDE (1.1) has a local solution x∗ defined on J and the sequence {xn}∞n=0 of successive
approximations defined by (3.3) is monotone nonincreasing and converges to the solution x∗.
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Remark 3.5. If the initial condition in the equation (1.1) is such that α0 > 0, then under the conditions of
Theorem 3.2, the HIGDE (1.1) has a local positive solution x∗ defined on J and the sequence {xn}∞n=0 of
successive approximations defined by (3.3) converges monotone nondecreasingly to the positive solution x∗.
Similarly, under the conditions of Theorem 3.3, the HIGDE (1.1) has a unique local positive solution x∗ defined on
J and the sequence of successive approximations given by (3.3) {xn}∞n=0 converges monotone nondecreasingly
to the unique positive solution x∗.

4. Approximation of Local Ulam-Hyers Stability

The Ulam-Hyers stability for various dynamic systems has already been discussed by several authors under the
conditions of classical Schauder fixed point theorem (see Tripathy [18], Huang et al. [16] and references therein).
Here, in the present paper, we discuss the approximation of the Ulam-Hyers stability of local solution of the
HIGDE (1.1) under the conditions of hybrid fixed point principle stated in Theorem 2.10. We need the following
definition in what follows.

Definition 4.1. The HIGDE (1.1) is said to be locally Ulam-Hyers stable if for ϵ > 0 and for each local solution
y ∈ Br[x0] of the inequality ∣∣∣∣dydt − f

(
t, y(t),

∫ t

t0

g(s, y(s)) ds
)∣∣∣∣ ≤ ϵ, t ∈ J,

y(t0) = α0 ∈ R,

 (∗)

there exists a constant Kf > 0 such that ∣∣y(t)− ξ(t)
∣∣ ≤ Kf ϵ (∗∗)

for all t ∈ J , where ξ ∈ Br[x0] is a local solution of the HIGDE (1.1) defined on J . The solution ξ of the HIGDE
(1.1) is called Ulam-Hyers stable local solution on J .

Theorem 4.2. Assume that all the hypotheses of Theorem 3.3 hold. Then the HIGDE (1.1) has a unique
Ulam-Hyers stable local solution x∗ ∈ Br[x0], where x0 ≡ α0, and the sequence {xn}∞n=0 of successive
approximations given by (3.3) converges monotone nondecreasingly to x∗.

Proof. Let ϵ > 0 be given and let y ∈ Br[x0] be a solution of the functional inequality (*) on J , that is, we have∣∣∣∣dydt − f
(
t, y(t),

∫ t

t0

g(s, y(s)) ds
)∣∣∣∣ ≤ ϵ, t ∈ J,

y(t0) = α0 ∈ R+.

 (4.1)

By Theorem 3.3, the HIGDE (1.1) has a unique local solution ξ ∈ Br[x0]. Then by Lemma 2.1, one has

ξ(t) = α0 +

∫ t

t0

f
(
s, ξ(s),

∫ s

t0

g(τ, ξ(τ)) ds
)
ds, t ∈ J. (4.2)

Now, by integration of (4.1) yields the estimate:∣∣∣∣y(t)− α0 −
∫ t

t0

f
(
s, y(s),

∫ s

t0

g(τ, y(τ)) dτ
)
ds

∣∣∣∣ ≤ a ϵ, (4.3)

for all t ∈ J .
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Next, from (4.2) and (4.3) we obtain

∣∣y(t)− ξ(t)
∣∣ = ∣∣∣∣y(t)− α0 −

∫ t

t0

f
(
s, ξ(s),

∫ s

t0

g(τ, ξ(τ)) dτ
)
ds

∣∣∣∣
≤

∣∣∣∣y(t)− α0 −
∫ t

t0

f
(
s, y(s),

∫ s

t0

g(τ, y(τ)) dτ
)
ds

∣∣∣∣
+

∣∣∣∣∫ t

t0

[
f
(
s, y(s),

∫ s

t0

g(τ, y(τ)) dτ
)
− f

(
s, ξ(s),

∫ s

t0

g(τ, ξ(τ)) dτ
)]

ds

∣∣∣∣
≤ a ϵ+

∣∣∣∣∫ t

t0

[
ℓ1
(
y(s)− ξ(s)

)
+ ℓ2

∫ s

t0

k
(
y(τ)− ξ(τ)

)
dτ

]
ds

∣∣∣∣
= a ϵ+ ℓ1

∫ t

t0

|y(s)− ξ(s)| ds+ ℓ2k

∫ t

t0

(t− s)
(
y(s)− ξ(s))

)
≤ a ϵ++ℓ1

∫ t0+a

t0

∥y − ξ∥ ds+ ℓ2 k a

∫ t0+a

t0

∥y − ξ∥ ds

= a ϵ+
[
ℓ1a+ ℓ2k a

2
]
∥y − ξ∥

= a ϵ+ λ∥y − ξ∥

Taking the supremum over t, we obtain

∥y − ξ∥ ≤ a ϵ+ λ∥y − ξ∥

or

∥y − ξ∥ ≤
[

a

1− λ

]
ϵ,

(
∵ λ =

[
ℓ1a+ ℓ2k a

2
]
< 1

)
.

Letting Kf =

[
a

1− λ

]
> 0, we obtain

∣∣y(t)− ξ(t)
∣∣ ≤ Kf ϵ

for all t ∈ J . As a result, ξ is a Ulam-Hyers stable local solution of the HIGDE (1.1) on J and the sequence
{xn}∞n=0 of successive approximations defined by (3.3) converges monotone nondecreasingly to ξ. Consequently
the HIGDE (1.1) is a locally Ulam-Hyers stable on J . This completes the proof. □

Remark 4.3. If the given initial condition in the equation (1.1) is such that α0 > 0, then under the conditions of
Theorem 4.2, the HIGDE (1.1) has a unique Ulam-Hyers stable local positive solution x∗ defined on J and the
sequence {xn}∞n=0 of successive approximations defined by (3.3) converges monotone nondecreasingly to x∗.

Remark 4.4. The local approximation results, Theorems 3.2, 3.3 and 4.2 of this paper includes the local
approximation results for the HDE (1.2) and HIGDE (1.3) on J .

5. The Examples

Below in the following we present a couple of numerical examples to illustrate the abstract ideas involved in the
approximation results of this paper for existence, uniqueness and Ulam-Hyer stability of the solution.

Example 5.1. Given a closed and bounded interval J = [0, 1] in R, consider the IVP of nonlinear first order
HIGDE,

dx

dt
= tanhx(t) +

∫ t

0

tanhx(s) ds, t ∈ [0, 1]; x(0) =
1

4
. (5.1)
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Here, α0 = 1
4 , g(t, x) = tanhx, (t, x) ∈ [0, 1]×R and f(t, x, y) = tanhx+y for (t, x, y) ∈ [0, 1]×R×R.

We show that the functions g and f satisfy all the conditions of Theorem 3.2. Clearly, f is bounded on [0, 1]×R×R
with bound Mf = 2 and so the hypothesis (H1) is satisfied. Also the function f(t, x, y) is nondecreasing in x

and y for each t ∈ [0, 1]. Therefore, hypothesis (H2) is satisfied. Next, g(t, x) is nondecreasing in x for each
t ∈ [0, 1], so the hypothesis (H3) is satisfied. Moreover, we have

f(t, α0, y) = f
(
t,
1

4
, y
)
= tanh

(1
4

)
+ y ≥ 0

for each t ∈ [0, 1] and y ≥ 0, so the hypothesis (H4) holds. Finally, g(t, α0) = tanh( 14 ) ≥ 0 for all t ∈ [0, 1] and
hypothesis (H5) is satisfied. If we take r = 2 and M = 1, all the conditions of Theorem 3.2 are satisfied. Hence,
the HIGDE (5.1) has a local solution x∗ in the closed ball B1

2 [
1
4 ] of C(J,R) which is positive in view of Remark

3.5. Moreover, the sequence {xn}∞n=0 of successive approximations defined by

x0(t) =
1

4
, t ∈ [0, 1],

xn+1(t) =
1

4
+ xn+1(t) =

1

4
+

∫ t

0

tanhxn(s) ds+

∫ t

0

(t− s) tanhxn(s) ds, t ∈ [0, 1],

converges monotone nondecreasingly to x∗.

Example 5.2. Given a closed and bounded interval J = [0, 1] in R, consider the IVP of nonlinear first order
HIGDE,

dx

dt
=

1

4
tan−1 x(t) +

1

4

∫ t

0

tan−1 x(s) , t ∈ [0, 1]; x(0) =
1

4
. (5.2)

Here, α0 =
1

4
and g(t, x) = tan−1 x for (t, x) ∈ [0, 1] × R. Again, f(t, x, y) =

1

2
tan−1 x + y for each

t ∈ [0, 1]. We show that f satisfies all the conditions of Theorem 3.3. Clearly, f is bounded on [0, 1] × R × R
with bound Mf = 11

14 and so, the hypothesis (H1) is satisfied. Next, let x, y ∈ R be such that x ≥ y. Then there
exists a constant ξ with x < ξ < y satisfying

0 ≤ g(t, x)− g(t, y) ≤ 1

1 + ξ2
(x− y) ≤ (x− y)

for all t ∈ [0, 1]. So the hypothesis (H7) holds with k = 1. Moreover, g(t, α0) = g
(
t, 1

4

)
= tan−1

(
1
4

)
≥ 0 for

each t ∈ [0, 1], and so the hypothesis (H4) holds. Similarly,

f(t, α0, y) =
1

4
tan−1 α0 + y = tan−1

(1
4

)
+ y ≥ 0

for each t ∈ [0, 1] and for all positive number y, so the hypothesis (H4) is satisfied. Next, let x1, y1, x2, y2 ∈ R
with x1 ≥ y1, x2 ≥ y2. Then,

0 ≤ f(t, x1, x2)− f(t, y1, y2) ≤
1

4
· (x1 − y2) +

1

4
(x2 − y2)

for each t ∈ [0, 1]. Therefore, hypothesis (H6) holds with ℓ1 = 1
4 = ℓ2. If we take r = 2, then we have

Mfa =
11

14
≤

(
1− 1

2

)
· 2 =

[
1−

(
ℓ1a+ ℓ2k a

2
)]
r

and so, the condition (3.6) is satisfied. Thus, all the conditions of Theorem 3.3 are fulfilled. Hence, the HIGDE
(5.2) has a unique local solution x∗ in the closed ball B2[

1
4 ] of C(J,R) which is positive in view of Remark 3.5.
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Moreover, the sequence {xn}∞n=0 of successive approximations defined by

x0(t) =
1

4
, t ∈ [0, 1],

xn+1(t) =
1

4
+

1

4

∫ t

0

tan−1 xn(s) ds+

∫ t

0

(t− s) tan−1 xn(s) ds, t ∈ [0, 1],

converges monotone nondecreasingly to x∗. Furthermore, the unique local positive solution x∗ is Ulam-Hyers
stable on [0, 1] in view of Definition 4.1. Consequently the HIGDE (5.2) is a locally Ulam-Hyers stable on the
interval [0, 1].
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