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Nevanlinna theory for the upper half disc-I

SUBHAS S. BHOOSNURMATH', RENUKADEVI S. DYAVANAL*? AND MAHESH BARKI?

L2 Department of Mathematics, Karnatak University, Dharwad-580003, Karnataka, India.
3 Department of Mathematics, Davangere University, Davangere-577007, Karnataka, India.

Received 12 December 2021; Accepted 17 March 2022

Abstract. In this paper, we prove the Poisson Integral theorem and Poisson-Jenson formula for the upper half disc and
consequently introduce the proximity function, the counting function and the characteristic function of a meromorphic
function in the upper half disc which are basic functions of Nevanlinna theory.
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1. Preamble

Nevanlinna theory for meromorphic functions in the complex plane is about a century old and still is an
emerging active area of research. This theory has wide range of applications including complex differential
equations and value sharing of meromorphic functions etc. Nevanlinna theory for an angular domain is also
developed by some authors like ( see [4],[5],[6]) using Carleman’s formula.

In this paper, we propose a similar theory for the upper-half plane. Our main tool here is the conformal self map
of the upper half disc as defined in (2.1).
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2. Preliminaries

Let C denote the set of all complex numbers, C, the extended complex plane, Cy = {z: Imz > 0} and
C, = {z:Imz > 0}. Throughout, let D = {|¢| < R: Im¢& > 0} and D = {|¢| < R : Im& > 0} be open and
closed upper-half discs respectively.

In what follows, we see that conformal self map of upper-half disc
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2.1)

where z, £ € D plays a cardinal role in the development of the theory.

The analogous notations of Nevanlinna theory for meromorphic functions in the upper-half disc shall be
introduced as and when required.

3. Main results

We now present the core result namely Poisson Integral formula for the upper-half disc.

Theorem 3.1. Let f(z) be analytic on the closed upper-half disc D = {|¢| < R: Im& > 0}. For z = re'®
(0 <7 < R) in D, we have

1" o | R2— 2 R2-|2 1 [ 2rsing  2R2rsin¢
= Re'? — do+ — ¢ — dt (3.1

Proof. By the Cauchy’s integral formula, we have

flz) = - I e (32)

270 Jjg =R imez0 € — 2

If 2y = R; = RTQe“b, then |z1| = RTQ > R and hence z; lies outside the upper-half circle {|¢| = R : Im& > 0}.
Thus 5’:(—2 = {’:(—% is analytic on the closed upper-half disc {|{| < R : Im& > 0}.

In view of this and by the Cauchy’s theorem, we have

1 f(€
— ( 11 d¢ =0 (3.3)

210 Jig|=R,1me>0 £ — &

For z € D, % lies outside the upper-half disc {|{| < R: Im& > 0} and z; = R; is also outside the upper-half
disc {|¢| < R: Im¢& > 0}.
In view of the above observations and by using the Cauchy’s theorem again we have,

1 f€)

— Ldg =0 (3.4)
21t Jig|=R.rme=0 § — 7
and
1
— / (’22 de = 0. (3.5)
210 Jig|=R,1me>0 § — &
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Combining the above equations (3.2) — (3.5) we get

! /(&) 1 §iG)
frng d o
e 210 Jjg|=R.1mez0 € — % ¢ 270 Jig|=R,1me>0 § = Z a
! 1) 1 (€)
" 210 Jig|=R,1me>0 § — i 270 Jj¢|=R,tme>0 € — R2 ¢
1 1 1 1 1
= - — d
270 J\¢|=R, Ime>0 f&) lf -z £-Z + £ — 372 = R;} 3
1 1 1 z z
" 2mi |&|=R,Img>0 /) [5 -z £-% TR £z R%— fz} d (3.6)
1 R -1 R
27 Jigi-Rameo © E—2)(R?-¢2) (£-2)(R?—&2) de 3.7
Equation (3.6) can also be rewritten as
-1 (-2 R*(z — %) }d 3.8
T®)= 3 \szR,Imezof ¢ [(5 —2)(§-%) (R?-¢&2)(R?—¢€7) ¢ 3.8)

For & = & + &, where §; = Re?, 0 < 0 < mand & =+, —R <t < R and in view of (3.7) and (3,8), we
have
2 2 2 R . 2 .
z R — |z 1 2rsing  2Rrsin ¢
/ (R O el 1 PR Y L0 o _ oL
o IS—ZI [ 2r J g lz—t* |R2— |

The above Poisson Integral formula for the upper-half disc leads to the following result. This result plays a
cardinal role in the development of the Nevanlinna theory for the upper-half disc.

Theorem 3.2. Poisson Jensen formula for upper-half disc
Let f(z) be analytic in the closed upper-half disc D = {|¢| < R : Im& > 0} except for the poles by, ba, ..., by, in
D and a1, as, ..., am be zeros of f(z) in D. Then for any z # am,, by, in D, we have

1 /" | [ R?—|z|? RQ—\zF} 1 /R’ {2rsinq§ 2R2rsin¢}
1 = — 1 R - o+ — 1 t — dt
e |/(=)] 27r/0 og 7 (e )){ € -z ez on ) VO T P

(R? —@p2) R(z— @) (R? —b,2) R(z—b,)
— I I 3.9
l;ﬂ | R = am) (B2 = am2) ngm Bl RG—bn) (R —baz)| O
Proof. Set
(Zfén)
(Z_bn)
bn|<R,Imby,>0
glz) = ! —f(2) (3.10)
H (z—am)
(ZfEM)

|am |<R,Imay,>0

Then ¢(z) is analytic in D having no zeros and poles in D and hence there exists an analytic branch log g(z) in
D. In view of the Poisson Integral formula for the upper-half disc i. e. by (3.1), we have

1 s ) R2 _ 2 R2 _ 2 1 R 9 . 2R
logg(z) = %/ 1Ogg(Re”9){ |Z| . |72’2‘ }d@—f— 7/ logg(t) T‘Sln(b rsin ¢ it
0
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1 [ , 1 [F
= %/ B4 1ogg(Reze)d9+%/ B=2log g(t)dt (3.11)

0 -R

where )

— 2> R

B = —

K—A € -2

and

2rsing 2R?rsing
lz—t?*  |R2— 2t

B =

Taking real part on both sides of equation (3.11), we get

log|g(2) / Bllog|g Re”’ |d0+—/ B2 log |g(t)| dt 3.12)
By (3.10), we get
loglg(=)| =log /(=) + 3 log|Zmllo 3 jeg|iTim (3.13)
glg(2)| = log b e :
|br | <R,Imb, >0 |am|<R,Imam,m>0
and
log g(t)] = log | f(t)] + > log | L= 0n | _ > log | L 9m (3.14)
glg(t)| = log 8,3, 8l .
|6y, |[<R,Imb, >0 |@m |<R,Ima.,,>0
Since , (3.14) leads to
log [g(t)| = log | f(t)] (3.15)
Using (3.13) and (3.15) in (3.12), we get
_bn m
log |f(2)] + Z log | o Z log i_g
|by | <R,Imby, >0 2= On [@m | <R,Imam>0
_ 1 i 0 Re*® — b, _ ReY — a,,
_ 27T/O By [Iog‘f(Re )‘ + Y log BT T 3 log | oo _am‘] 0
|bn|<R,Imby >0 lam |<R,Imay,>0
1 R
+ g5 [ maloslre)ar
1" 0 1 (" — by,
=3 Brlog |f(Re”)|[do+ — [ PBalog|f(t)|dt+ — 51 og | ——="|df
T Jo 2 J_p — by,
\b,L|<R Imb,L>0
_ —/ B1 log Rew ’d& (3.16)
|am\<R Imam,>0
Since » »
0 _ = i
Re_ gm _ R —a,,e (3.17)
Re® —a,, R — ae®
and » o
) _bn _bn )
Re” = bn) _ | R=bne (3.18)
Re® —b,| |R—Dbye?
S
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In view of (3.17) and (3.18), (3.16) becomes.

log |f(2)] + > log

[bn|<R,Imby, >0

1 & . 1 R
= %/ ﬁllog|f(R619)’d9+%/_ Bz log | f(t)| dt

b 60
+ —/ Bllog‘R - */ 5110g

|b,L|<R I'mb, >0 |a,,L\<R Iman,>0

z — by,
z— by,

— Z log

[am|<R,IMmam>0

o (3.19)

> s are zeros of f(z) in D, we have L@ # 0 in D and hence there exists an analytic branch of
R

Since a,, o

log (%) in D. By the Poisson Integral formula for the upper-half disc, we get

R_M R am,
) L)

Using |R2 — Emt} = ’RQ — amt| and taking real part part on both sides of above equation, we get

R? -G,z — e
1 1 de 3.20
©8 R R2 — amz / frlog | 7= R — apmei? (3:20)
Similarly,
R%2 —b,2 R 1 [7 R — bpet?
1 =— log | =————|df 3.21
o8 R R2—-b,2 2 /0 frlog ‘ R —b,e? 3.21)
From equations (3.19), (3.20) and (3.21), we have
z — bn Am
lo z)| + lo = lo
glf(2)] > 8l 3, > gz_am’

|by |<R,Imb, >0 [am | <R, Iman,>0

1 g ) 1 R
= ﬂ/o B110g|f(R€19)’d9+g/_RﬁzlogU(t”dt

RZ -0,z R
LD log’ R R by

|bn|<R,Imby, >0

_ Z 1o R2 — Amz R
& R R? —a,,z
|@m |[<R,Imam,>0
Hence
log | () / By log |£(Re) |d0+—/ By log | ()] dt

R? — b,z R(z —by)
R(z—by) R?—bpz

R? — @z R(z —ap)
R(z —am) R2—anz

Z log

[brm | <R, Imb., >0

- Z log

|@m | <R, Imamn, >0
Substituting the values of 3; and 3, in the above equation, we obtain the desired equality
1 [7 | [R2—|2)> R*—|z? 1 (B 2rsing 2R?*rsin¢
log| f(2)] = 5 [ log] Rez‘{ - d9+—/ log | f(t - dt
1) = o [ s |pre)| e ey pae 5 [ eslso - R
S e

7 Z o (R? —@mz) R(z—am) (R* —bnz) R(z—by)
SRz —am) (RZ —amz) R(z —byn) (R? — bn2)
|am |<R,Imap >0 |bn |<R,Imby >0
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4. Nevanlinna functions in the upper-half disc D

Poisson-Jensen formula for upper-half disc enables us to define Nevanlinna functions in the upper-half disc D:

For a meromorphic function f in D and a € D, we define

Definition 4.1. Proximate function of f — a in D

2 0

1 [ o | R2—lal*  R2—|a?
m(D,a, f): = — 1og+|f<Re9>|{ laff _ & o] }

€—af®  |¢-a?

1 (B 2rsing  2R?*rsin¢
+ —/ log™ | f(t — dt
om | 108 If()l{a_t|2 B o]

where, log™ is the positive logarithmic function.
Briefly we write this as

m(D,CL, f) = ml(Dvaa f) +m2(D7a7f)

where,

1 [7 o | RZ=1a®> R2—la
D _ 1 + 0 _
mi(D; a, f) 27T/o og" |f(Re )|{ €—af  e—af ;

1 (B o2rsing  2R%*rsing
mo(D,a, f) = — log™ |f(t — dt
(D) =g [ gLﬂ){m_ﬂz it

Definition 4.2. Counting function of f in D

(R? —b,a) R(a—by,) ‘

N(va) :N(D,oo,f) = Z log’ R(a—bn) (R2 _bna)

|by |<R,Imb, >0

where b,,’s are poles of [ in D, appearing according to their multiplicities.
and

_ 1y oo | (B —@ma) Rla—an)
N(Dya,f)—N(va_a)_ Z lg’R(a—am) (RQ_ama)

|am | <R, Imamu,>0

where a,’s are zeros of f — a in D, appearing according to their multiplicities.
N(D, f), N (D, a, f) denotes the distinct poles f and zeros of f — a in D, respectively.

Definition 4.3. Characteristic function of f — ain D

T(D,a, f) :=m(D,a, f) + N(D,a, f)

5. Properties of Nevanlinna functions in D

As in the Nevanlinna theory for the whole complex plane, we have the following basic results in (D)
Let f;(i = 1,2, ..., p) be p meromorphic functions in D, we have

p p
m <D7a'azf’i> S Zm(D7a'7 fZ) +10gp
i=1

i=1
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P P
m (D,a, H) <> m(D.a,f) (5.2)
i=1

(5.3)

7 N
Q
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p p
N (D,a,H> < Z (D, a, f;) (5.4)
=1 1=1
p
(D a Zf,) <D T(D.a,f;) +logp (5.5)
p p
T (D,a,H> <> T(D,a,f) (5.6)
=1 ]
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