
MALAYA JOURNAL OF MATEMATIK
Malaya J. Mat. 11(02)(2023), 167–180.
http://doi.org/10.26637/mjm1102/006

Common fixed point theorem for set of quasi triangular α-orbital
admissible mappings in complete metric space with application

RAKESH TIWARI1 AND SHASHI THAKUR*2

1 Department of Mathematics, Government V. Y. T. Post-Graduate Autonomous College, Durg 491001, Chhattisgarh, India.
2 Department of Mathematics, C. L. C. Government Arts and Commerce College, Dhamdha, Chhattisgarh, India.

Received 28 June 2022; Accepted 22 March 2023

Abstract. The purpose of this paper is to construct a common fixed point theorem for pair of quasi triangular α-orbital
admissible with an interpolative (φ,ψ)- Banach-Kannan-Chatterjea type Z-contraction mappings with reference to simulation
function in complete metric space. We adopt an example to validate our main result. Our result extends the result of M. S.
Khan et al. [15]. As an application, we provide the existence of a solution for a nonlinear Fredholm integral equations.
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1. Introduction

The Banach contraction principle is pivotal tools in fixed point theory. Many inventors expanded and
generalized the Banach contraction principle to many orientations [3, 5, 24, 27, 28]. Samet et al. [25] found the
conception of α− ψ contraction type mapping and take advantage of their new concept to established and found
several fixed point theorems. Several inventors used the concept of α-admissible mapping to established new
results in many spaces [10, 21, 22, 26, 30]. In 2014, Popescu [20] found the two new concept α-orbital
admissible and triangular α-orbital admissible and gave the result each α-admissible mapping is an α-orbital
admissible mapping and each triangular α-admissible mapping is an triangular α-orbital admissible mapping.
Many inventors gave the fixed point and common fixed point result for α-orbital admissible mapping
[1, 7, 9, 18, 19]. In 2015, Khojasteh et al.[17] found the notion of simulation function. In the same year, Argoubi
et al. [6] clarified the conception of simulation function. Many inventors found the fixed point and common
fixed point result for simulation function in discrete spaces [2, 4, 11, 12, 14, 23, 29].
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2. Preliminaries

We recall some useful definitions that will be needed in the sequel.

Definition 2.1. [25] Let Q : Y → Y be a mapping and α : Y × Y → [0,∞) be a function. Then Q is
α-admissible if α(u, v) ≥ 1 implies α(Qu,Qv) ≥ 1.

Definition 2.2. [13] Let Q : Y → Y be a function and α : Y × Y → [0,∞) be a function. Then Q is said to be
triangular α-admissible if Q fulfills the following conditions:

1. Q is α-admissible,

2. if α(u,w) ≥ 1 and α(w, v) ≥ 1 implies α(u, v) ≥ 1.

Qawagneh et al. [22] introduced the notion of triangular α-admissible for set of self mappings on Y .

Definition 2.3. [22] Let H,Q : Y → Y be two mappings and α : Y × Y → [0,∞) be a function such that the
following conditions hold:

1. if α(u, v) ≥ 1 then α(Hu,Qv) ≥ 1 and α(QHu,HQv) ≥ 1;

2. if α(u,w) ≥ 1 and α(w, v) ≥ 1 implies α(u, v) ≥ 1.

Then we say that the pair (H,Q) is triangular α-admissible.

Definition 2.4. [20] Let Q : Y → Y be a mapping and α : Y × Y → [0,∞) be a function. Then Q is said to be
α-orbital admissible if α(u,Qu) ≥ 1 implies α(Qu,Q2u) ≥ 1.

Definition 2.5. [20] Let Q : Y → Y be a mapping and α : Y × Y → [0,∞) be a function. Then Q is said to be
triangular α-orbital admissible if Q satisfies the following conditions:

1. if Q is α-orbital admissible,

2. if α(u, v) ≥ 1 and α(v,Qv) ≥ 1 implies α(u,Qv) ≥ 1.

Definition 2.6. [19] Let H,Q : Y → Y be two mappings and αs : Y × Y → [0,∞) be a function such that the
following condition hold:

1. if αs(u,Qu) ≥ s2 and αs(u,Hu) ≥ s2 then αs(Qu,HQu) ≥ s2 and αs(Hu,QHu) ≥ s2.

Then the set (H,Q) is αs-orbital admissible.

Definition 2.7. [19] Let H,Q : Y → Y be two mappings and αs : Y × Y → [0,∞) be a function such that the
following conditions hold:

1. the self mappings H,Q are αs-orbital admissible,

2. if αs(u, v) ≥ s2, αs(v,Hv) ≥ s2 and αs(v,Qv) ≥ s2 implies αs(u,Hv) ≥ s2 and αs(u,Qv) ≥ s2.

Then the set (H,Q) is triangular αs-orbital admissible.

M. S. Khan et al. [15] introduced the concept of quasi triangular α-orbital admissible mappings as follows:

Definition 2.8. [15] Let Q : Y → Y be a mapping and α : Y × Y → [0,∞) be a function. Then Q is said to be
quasi triangular α-orbital admissible if Q satisfies the following conditions:

1. if Q is α-orbital admissible,

2. if α(u, v) ≥ 1 implies α(u,Qv) ≥ 1.
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Definition 2.9. [17] A mapping ζ : [0,∞)× [0,∞) → R is called a simulation function, if it fulfils the following
conditions:

1. ζ(0, 0) = 0;

2. ζ(v, u) < u− v for all u, v > 0;

3. if {vn}, {un} are sequences in (0,∞) such that limn→+∞ vn = limn→+∞ un > 0, then
limn→+∞ sup ζ(vn, un) < 0.

The set of all simulation functions is denoted by Z .

Definition 2.10. [17] Let (Y, d) be a metric space and Q : Y → Y be mapping. if there exists ζ ∈ Z such that

ζ(d(Qu,Qv), d(u, v)) ≥ 0.

for all u, v ∈ Y . Then Q is called Z-contraction with respect to ζ.

Definition 2.11. [16] A continuous function φ : [0,∞) → [0,∞) is called an altering distance if it is non-
decreasing and φ(l) = 0 if and only if l = 0.

Definition 2.12. [8] A function ψ : [0,∞) → [0,∞) is called comparison function if it is monotonically
increasing and ψn(l) → 0 as n→ ∞ for all l > 0.

M. S. Khan et al.[15] gave (φ,ψ)-type Z-contraction with respect to simulation function ζ using an
interpolative (φ,ψ) approach in the setting of metric spaces as follows:

Definition 2.13. [15] A mapping Q : Y → Y is called an interpolative (φ,ψ)-Banach-Kannan-Chatterjea type
Z-contraction with respect to ζ if there exists α : Y × Y → R, ζ ∈ Z, φ ∈ Φ, ψ ∈ Ψ, θ1, θ2 ∈ (0, 1) such that
φ(t) > ψ(t), for t > 0, ψ > 0 and θ1 + θ2 < 1 fulfilling the inequality

ζ(α(u, v)φ(d(Qu,Qv)), ψ(B(u, v))) ≥ 0 for all u, v ∈ Y,

where

B(u, v) = [d(u, v)]θ1 .[
1

2
(d(u,Qu) + d(v,Qv))]θ2 .[

1

2
(d(u,Qv) + d(v,Qu))]1−θ1−θ2

In this paper, we construct a common fixed point theorem for set of quasi triangular α-orbital admissible
mappings which form an interpolative (φ,ψ)-Banach-Kannan-Chatterjea type Z-contraction with reference to
simulation function in complete metric space.

3. Main Result

In this section, we introduced the conception of quasi triangular α-orbital admissible mapping for set of self
mappings H and Q on Y and discuss (φ,ψ)-type Z-contraction with reference to simulation function.

Definition 3.1. Let H,Q : Y → Y be two mappings and α : Y × Y → [0,∞) be a function such that the
following conditions hold.

1. if α(u,Qu) ≥ 1 and α(u,Hu) ≥ 1 then α(Qu,HQu) ≥ 1 and α(Hu,QHu) ≥ 1;

2. if α(u, v) ≥ 1 implies α(u,Qv) ≥ 1 and α(u,Hv) ≥ 1 .

Then the pair (H,Q) is called quasi triangular α-orbital admissible.
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In the following example shows that the mapping (H,Q) is quasi triangular α-orbital admissible but it is not
a triangular α-admissible.

Example 3.2. Let Y = {0, 1, 2} with usual metric d(u, v) = |u − v|. Let H : Y → Y , Q : Y → Y and
α : Y × Y → R be mappings defined by

HY =

(
0 1 2

1 0 0

)
, QY =

(
0 1 2

1 0 2

)
, α(u, v) =

{
1, if (u, v) ∈ A,
0, otherwise

where, A = {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2)}. Since (0, 1), (1, 0) ∈ A, then we have
α(0, Q0) = α(Q0, HQ0) = α(1, 0) = 1, α(0, H0) = α(H0, QH0) = α(1, 0) = 1 and
α(1, Q1) = α(Q1, HQ1) = α(0, 1) = 1, α(1, H1) = α(H1, QH1) = α(0, 1) = 1. Then (H,Q) is α-orbital
admissible mappings. Further, we have

α(0, 1) = α(0, Q1) = α(0, 0) = 1 and α(0, 1) = α(0, H1) = α(0, 0) = 1,
α(1, 0) = α(1, Q0) = α(1, 1) = 1 and α(1, 0) = α(1, H0) = α(1, 1) = 1

α(1, 2) = α(1, Q2) = α(1, 2) = 1 and α(1, 2) = α(1, H2) = α(1, 0) = 1.

Hence, (H,Q) is quasi triangular α-orbital admissible mappings. Since α(u, v) = α(1, 2) = 1,
α(v,Qv) = α(2, Q2) = α(2, 2) = 0 and α(v,Hv) = α(2, H2) = α(2, 0) = 0 but
α(1, 2) = α(1, Q2) = α(1, 2) = 1 and α(1, 2) = α(1, H2) = α(1, 0) = 1. This shows that the condition
α(v,Qv) and α(v,Hv) for triangular α-orbital admissible are not necessity for quasi triangular α-orbital
admissible. On the other hand, we have α(1, 2) = 1, α(H1, Q2) = α(0, 2) = 0 and
α(QH1, HQ2) = α(1, 0) = 1 as (0, 2)∄Y , so (H,Q) is not α-admissible mapping. Further, we have
α(0, 1) = α(1, 2) = 1, but α(0, 2) = 0, so (H,Q) is not triangular α-admissible mapping.

Lemma 3.3. Let H,Q : Y → Y be two mappings and α : Y × Y → [0,∞) such that the set (H,Q) is quasi
triangular α-orbital admissible. Assume that there exists u0 ∈ Y in this manner α(u0, Hu0) ≥ 1. Define a
sequence {un} in Y by Hu2n = u2n+1 and Qu2n+1 = u2n+2. Then α(un, um) ≥ 1 for all m,n ∈ N ∪ {0}
with n < m.

Proof. Since α(u0, Hu0) = α(u0, u1) ≥ 1 and H,Q are α-orbital admissible self mappings,

α(u0, Hu0) ≥ 1 implies

α(Hu0, QHu0) = α(u1, Qu1) = α(u1, u2) ≥ 1

and α(u1, Qu1) ≥ 1 implies

α(Qu1, HQu1) = α(u2, Hu2) = α(u2, u3) ≥ 1

also α(u2, Hu2) ≥ 1 implies

α(Hu2, QHu2) = α(u3, Qu3) = α(u3, u4) ≥ 1

Applying the above argument repeatedly, we obtain α(un, un+1) ≥ 1 for all n ∈ N∪ {0}. Since (H,Q) is quasi
triangular α-orbital admissible mapping and α(un, un+1) ≥ 1 for all n ∈ N∪{0}, then we get α(un, Qun+1) =

α(un, un+2) ≥ 1 and α(un, Hun+1) = α(un, un+2) ≥ 1. By continuing the process, we get that α(un, um) ≥ 1

for all m,n ∈ N ∪ {0} with n < m.

Definition 3.4. The mappings H,Q : Y → Y are called an interpolative (φ,ψ)-Banach-Kannan-Chatterjea
type Z-contraction with respect to ζ if there exists α : Y × Y → R, ζ ∈ Z, φ ∈ Φ, ψ ∈ Ψ, θ1, θ2, θ3 ∈ (0, 1) in
this manner φ(t) > ψ(t), for t > 0, ψ > 0 and θ1 + θ2 + θ3 < 1 fulfilling the inequality

ζ(α(u, v)φ(d(Hu,Qv)), ψ(B(u, v))) ≥ 0 for all u, v ∈ Y, (3.1)
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where

B(u, v) = [d(u, v)]θ1 .[
1

2
(d(u,Hu) + d(v,Qv))]θ2 .[

1

2
(d(u,Qv) + d(v,Qu))]θ3 .

[
1

2
(d(u,Hv) + d(v,Hu))]1−θ1−θ2−θ3

Now, we state and prove our main results as follows:

Theorem 3.5. Let H and Q be self mappings on a metric space (Y, d) which is complete. Suppose that (H,Q)

is a quasi triangular α-orbital admissible and forms an interpolative (φ,ψ)-Banach-Kannan-Chatterjea type
Z-contraction with respect to ζ. If there exists u0 ∈ Y such that α(u0, Hu0) ≥ 1 and H and Q are continuous,
then the mappings H and Q have a unique common fixed point.

Proof. Let u0 ∈ Y be such that α(u0, Hu0) ≥ 1. Define a sequence {un} in Y such that u2n+1 = Hu2n and
u2n+2 = Qu2n+1 for all n ∈ N. If un0 = un0+1 for some n0 ∈ N, then it is very easy to show that H and Q
have a common fixed point. Hereof, uniquitously the proof we shall assume that un ̸= un+1 and hence we have
d(un, un+1) > 0 for all n ∈ N. Now, since the pair (H,Q) is α-orbital admissible, then

α(u0, Hu0) ≥ 1 implies

α(Hu0, QHu0) = α(u1, Qu1) = α(u1, u2) ≥ 1

and α(u1, Qu1) ≥ 1 implies

α(Qu1, HQu1) = α(u2, Hu2) = α(u2, u3) ≥ 1

also α(u2, Hu2) ≥ 1 implies

α(Hu2, QHu2) = α(u3, Qu3) = α(u3, u4) ≥ 1

Applying the above argument repeatedly, we get α(un, un+1) ≥ 1 for all n ∈ N∪{0}. By the definition of quasi
triangular α-admissibility, we can find that for any n,m ∈ N with m > n, we have α(un, um) ≥ 1.

Suppose u2n ̸= u2n+1 for all n ∈ N, by Lemma 3.3, we have α(u2n, u2n+1) ≥ 1, for all n ∈ N. From (3.1),
we obtain

0 ≤ ζ
(
α(u2n, u2n+1)φ(d(Hu2n, Qu2n+1)), ψ(B(u2n, u2n+1))

)
= ζ

(
α(u2n, u2n+1)φ(d(u2n+1, u2n+2)), ψ(B(u2n, u2n+1))

)
(3.2)

< ψ(B(u2n, u2n+1))− α(u2n, u2n+1)φ(d(u2n+1, u2n+2))

where

B(u2n, u2n+1) = [d(u2n, u2n+1)]
θ1 .[

1

2
(d(u2n, Hu2n) + d(u2n+1, Qu2n+1))]

θ2 .[
1

2
(d(u2n, Qu2n+1)

+ d(u2n+1, Qu2n))]
θ3 .[

1

2
(d(u2n, Hu2n+1) + d(u2n+1, Hu2n))]

1−θ1−θ2−θ3

= [d(u2n, u2n+1)]
θ1 .[

1

2
(d(u2n, u2n+1) + d(u2n+1, u2n+2))]

θ2

.[
1

2
(d(u2n, u2n+2)]

1−θ1−θ2 (3.3)
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Consequently, we arrive

φ(d(u2n+1, u2n+2)) ≤ α(u2n, u2n+1)φ(d(u2n+1, u2n+2))

< ψ(B(u2n, u2n+1))

= ψ
(
[d(u2n, u2n+1)]

θ1 .[
1

2
(d(u2n, u2n+1) + d(u2n+1, u2n+2))]

θ2 .

[
1

2
(d(u2n, u2n+2)]

1−θ1−θ2
)

≤ ψ
(
[d(u2n, u2n+1)]

θ1 .[
1

2
(d(u2n, u2n+1) + d(u2n+1, u2n+2))]

1−θ1). (3.4)

Suppose d(u2n, u2n+1) < d(u2n+1, u2n+2), for n ≥ 1, then from (3.4), we obtain

φ(d(u2n+1, u2n+2)) ≤ ψ(d(u2n+1, u2n+2)) < φ(d(u2n+1, u2n+2)).

This is a contradiction. Accordingly, we obtain

d(u2n+1, u2n+2) ≤ d(u2n, u2n+1), for all n ≥ 1.

Identically, we can show that d(u2n, u2n+1) ≤ d(u2n−1, u2n). So, we conclude that d(un, un+1) ≤ d(un−1, un).
Hence d(un, un+1) is a monotonic decreasing sequence of positive real numbers. So, there exists l ≥ 0 such that
limn→+∞ d(un, un+1) = l. Now, we show that l = 0. We claim that l > 0. Now, we have

0 ≤ ζ
(
α(un−1, un)φ(d(un, un+1)), ψ(B(un−1, un))

)
< ψ(B(un−1, un))− α(un−1, un)φ(d(un, un+1)). (3.5)

Consequently, we obtain

φ(d(un, un+1) ≤ α(un−1, un)φ(d(un, un+1)) ≤ ψ(B(un−1, un))

≤ φ(B(un−1, un))

≤ φ(d(un−1, un)) (3.6)

Letting limit as n→ +∞ in (3.6), we get

limn→+∞α(un−1, un)φ(d(un, un+1)) = limn→+∞ψ(B(un−1, un)) = φ(l). (3.7)

Setting sn = α(un−1, un)φ(d(un, un+1)), tn = ψ(B(un−1, un)) in (3.5), then by definition of simulation
function

0 ≤ limn→+∞supζ(α(un−1, un)φ(d(un, un+1)), ψ(B(un−1, un))) < 0.

Which is a contradiction and thus we have limn→+∞ d(un, un+1) = 0. Now, we show that {un} is a Cauchy
sequence. Suppose not, there exists ϵ > 0 for which we can find two sequences mk and nk, for all k ≥ 1 with
umk

> unk
≥ k such that d(unk

, umk
) ≥ ϵ. Further, we assume that mk is the smallest number greater than nk,

then d(unk
, umk−1

) < ϵ.

By triangular inequality, we get

ϵ ≤ d(unk
, umk

) ≤ d(unk
, umk−1

) + d(umk−1
, umk

) < ϵ+ d(umk−1
, umk

).

Taking limit as k → +∞, we obtain

lim
k→+∞

d(unk
, umk

) = ϵ. (3.8)
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Again by triangular inequality, we obtain

d(unk
, umk

) ≤ d(unk
, unk+1

) + d(unk+1
, umk+1

) + d(umk+1
, umk

).

Also we obtain
d(unk+1

, umk+1
) ≤ d(unk+1

, unk
) + d(unk

, umk
) + d(umk

, umk+1
).

By using the above two inequalities and taking limit as k → +∞ with (3.8), we get

lim
k→+∞

d(unk+1
, umk+1

) = ϵ. (3.9)

Furthermore, we obtain

d(unk
, umk

) ≤ d(unk
, unk+1

) + d(unk+1
, umk

) ≤ d(unk
, umk

) + 2d(umk
, umk+1

).

Taking limit as k → +∞, we obtain

lim
k→+∞

d(unk+1
, umk

) = ϵ. (3.10)

Similarly, we get

d(unk
, umk

) ≤ d(unk
, umk+1

) + d(umk+1
, umk

) ≤ d(unk
, umk

) + 2d(umk
, umk+1

).

Taking limit as k → +∞, we get

lim
k→+∞

d(unk
, umk+1

) = ϵ. (3.11)

Since (H,Q) is quasi triangular α-orbital admissible, by lemma 3.3, we get B(unk
, umk

) ≥ 1, for all numbers
mk, nk such that mk > nk, where k ≥ 1. From (3.1), we get

0 ≤ ζ
(
α(unk

, umk
)φ(d(Hunk

, Qumk
), ψ(B(unk

, umk
))
)

= ζ
(
α(unk

, umk
)φ(d(unk+1

, umk+1
), ψ(B(unk

, umk
))
)

< ψ(B(unk
, umk

))− α(unk
, umk

)φ(d(unk+1
, umk+1

).

Consequently,

φ(d(unk+1
, umk+1

) ≤ α(unk
, umk

)φ(d(unk+1
, umk+1

)

≤ ψ(B(unk
, umk

)) < φ(B(unk
, umk

)),

where

B(unk
, umk

) = [d(unk
, umk

)]θ1 .[
1

2
(d(unk

, Hunk
) + d(umk

, Qumk
))]θ2 .[

1

2
(d(unk

, Qumk
)

+ d(umk
, Qunk

))]θ3 .[
1

2
(d(unk

, Humk
) + d(umk

, Hunk
))]1−θ1−θ2−θ3

Taking limit as k → +∞ together with (3.8), (3.9), (3.10) and (3.11), we get

0 ≤ φ(ϵ) < φ(0) = 0 ⇒ φ(ϵ) = 0 if and only if ϵ = 0.

Which is a contradiction and hence {un} is a Cauchy sequence in Y . Since Y is complete, there exists
w ∈ Y such that limn→∞ un = w. Since H and Q are continuous, we find that
Hw = limn→∞Hun = limn→∞ un+1 = w and Qw = limn→∞Qun = limn→∞ un+1 = w. Therefore w is
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the common fixed point of H and Q.

To demonstrate the uniqueness of the common fixed point, we suppose that w∗ is another common fixed point
of H and Q and α(w,w∗) ≥ 1. Assume that w ̸= w∗. From (3.1), we get

ζ(α(w,w∗)φ(d(Hw,Qw∗)), ψ(B(w,w∗))) ≥ 0

ζ(α(w,w∗)φ(d(w,w∗)), ψ(B(w,w∗))) ≥ 0

ψ(B(w,w∗))− α(w,w∗)φ(d(w,w∗)) ≥ 0

−α(w,w∗)φ(d(w,w∗)) ≥ 0.

Which is contradiction and therefore the mappings H and Q have a unique common fixed point.

Remark 3.6. For H = Q in Theorem 3.5, we get the following result of M. S. Khan et al.[15]

Corollary 3.7. Let Q be a self mapping on a metric space (Y, d) which is complete. Suppose that Q is
quasi triangular α-orbital admissible and forms an interpolative (φ,ψ)-Banach-Kannan-Chatterjea type Z-
contraction with respect to ζ. If there exists u0 ∈ Y such that α(u0, Qu0) ≥ 1 and Q is continuous, then Q has
a unique fixed point.

Remark 3.8. Setting ζ(u, v) = ψ(v)− u for all u, v > 0 in Theorem 3.5, we get the following result.

Corollary 3.9. Let H,Q : Y → Y be self mappings on a metric space (Y, d) which is complete. If there exists
α : Y ×Y → R, φ ∈ Φ, ψ ∈ Ψ, θ1, θ2, θ3 ∈ (0, 1) such that φ(t) > ψ(t), for t > 0, ψ > 0 and θ1+ θ2+ θ3 < 1

satisfying the inequality

α(u, v)φ(d(Hu,Qv)) ≤ ψ(B(u, v)) for all u, v ∈ Y.

If there exists u0 ∈ Y such that α(u0, Hu0) ≥ 1 and H and Q are continuous. Then the mappings H and Q
have a unique common fixed point.

Remark 3.10. By letting α(u, v) = 1 for all u, v ∈ Y and φ = IY in Corollary 3.9, we find the following result.

Corollary 3.11. Let H,Q : Y → Y be self mappings on a metric space (Y, d) which is complete. If there exists
ψ ∈ Ψ, θ1, θ2, θ3 ∈ (0, 1) such that θ1 + θ2 + θ3 < 1 satisfying the inequality

d(Hu,Qv) ≤ ψ(B(u, v)) for all u, v ∈ Y.

Then the mappings H and Q have a unique common fixed point.

Now, we illustrate an example to validate our main Theorem 3.5.

Example 3.12. Let Y = (−1, 1] and d : Y × Y → R defined by d(u, v) = |u − v|. Define the mappings
H,Q : Y → Y by

HY =

{
u
3 , if u ∈ (−1, 0)
u
9 , if u ∈ [0, 1]

, QY =

{
u
2 , if u ∈ (−1, 0)
u
3 , if u ∈ [0, 1].

Also, we define the function α : Y × Y → [0,∞) by

α(u, v) =

{
1, if u, v ∈ [0, 1]

0, otherwise.

Taking ζ(u, v) = ψ(v)− u, for all u, v > 0 in Theorem 3.5, we get

α(u, v)φ(d(Hu,Qv)) ≤ ψ(B(u, v)),
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for all u, v ∈ Y . Let φ(t) = t, ψ(t) = kt, where k = 1√
3
, θ1 = 1

2 , θ2 = 1
4 , θ3 = 1

6 , then φ(t) ≥ ψ(t). Since
0 ≤ u, v ≤ 1, then we get

0 ≤ |u− v| ≤ 1 ⇒ 0 ≤ |u− v| 12 ≤ 1,

0 ≤ 1

2
[|u−Hu|+ |v −Qv|] = [(

1

9
)(4u+ 3v)]

1
4 ≤ (

7

9
)

1
4 ,

0 ≤ 1

2
[|u−Qv|+ |v −Qu|] = [

1

6
(|3u− v|+ |3v − u|)] 16 ≤ (

2

3
)

1
6 and

and 0 ≤ 1

2
[|u−Hv|+ |v −Hu] = [

1

18
(|9u− v|+ |9v − u|)] 1

12 ≤ (
8

9
)

1
12 .

By simple calculation for all u, v ∈ Y , we obtain

α(u, v)φ(d(Hu,Qv)) = α(u, v)|Hu−Qv| = 3

9
|u− 3v| = 1

3
|u− 3v|

≤ 1√
3
|u− v| 12 .[(1

9
)(4u+ 3v)]

1
4 .[

1

6
(|3u− v|+ |3v − u|)] 16 .

[
1

18
(|9u− v|+ |9v − u|)] 1

12

= ψ(B(u, v)).

Therefore the set (H,Q) is an interpolative (φ,ψ)-Banach-Kannan-Chatterjea type Z-contraction with reference
to ζ. If {un} is a sequence in Y such that α(un, un+1) ≥ 1 for all n ∈ N, then {un} ⊆ [0, 1] for all n ∈ N.
Since ([0, 1], d) is a complete metric space, then the sequence {un} converges to u in [0, 1] ⊆ Y . If α(u, v) ≥ 1,
then u, v ∈ [0, 1]. So, Hu,Qv,QHu,HQv ∈ [0, 1]. Therefore, α(u,Qu) = 1 and α(u,Hu) = 1 then
α(Qu,HQu) = 1 and α(Hu,QHu) = 1. Also if α(u, v) = 1 implies α(u,Qv) = 1 and α(u,Hv) = 1. This
implies that the pair (H,Q) is a quasi triangular α-orbital admissible in Y .
Let {un} ⊆ [0, 1] for all n ∈ N. This implies that

lim
n→∞

Hun = lim
n→∞

1

9
un =

1

9
u = Hu,

and
lim

n→∞
Qun = lim

n→∞

1

3
un =

1

3
u = Qu,

This implies that the mappings H and Q are continuous. Thus, all supposition of Theorem 3.5 are fulfilled.
Hence H and Q have a unique common fixed point u = 0.

In the following theorem, we put back the continuity of H and Q with the notion of α-regularity.

Theorem 3.13. Let H and Q be self mappings on a metric space (Y, d) which is complete. Suppose that (H,Q)

is a quasi triangular α-orbital admissible and forms an interpolative (φ,ψ)-Banach-Kannan-Chatterjea type
Z-contraction with respect to ζ. If there exists u0 ∈ Y such that α(u0, Hu0) ≥ 1 and {un} in Y is α-regular,
then the mappings H and Q have a unique common fixed point.

Proof. Let u0 ∈ Y be such that α(u0, Hu0) ≥ 1. Define a sequence {un} in Y such that u2n+1 = Hu2n and
u2n+2 = Qu2n+1 for all n ∈ N. Since the pair (H,Q) is α-orbital admissible, we find that α(un, un+1) ≥ 1,
for all n ∈ N. We suppose that un ̸= un+1 and hence we have d(un, un+1) > 0 for all n ∈ N. By repeating the
process as in the proof of Theorem 3.5, we derived that {un} converges to w. Since {un} in Y is α-regular, then
there exists a subsequence unk

of {un} such that α(unk
, w) ≥ 1, for each k ∈ N ∪ {0}. From (3.1), we get

ζ(α(u2nk
, w)φ(d(Hu2nk

, Qw)), ψ(B(u2nk
, w)) ≥ 0

ζ(α(u2nk
, w)φ(d(u2nk+1

, Qw)), ψ(B(u2nk
, w)) ≥ 0

ψ(B(u2nk
, w))− α(u2nk

, w)φ(d(u2nk+1
, Qw) ≥ 0
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Consequently, we arrive

φ(d(u2nk+1
, Qw) ≤ α(u2nk

, w)φ(d(u2nk+1
, Qw)) < ψ(B(u2nk

, w)) < φ(B(u2nk
, w))

where

B(u2nk
, w) = [d(u2nk

, w)]θ1 .[
1

2
(d(u2nk

, Hu2nk
) + d(w,Qw))]θ2 .[

1

2
(d(u2nk

, Qw)

+ d(w,Qu2nk
))]θ3 .[

1

2
(d(u2nk

, Hw) + d(w,Hu2nk
))]1−θ1−θ2−θ3

= [d(u2nk
, w)]θ1 .[

1

2
(d(u2nk

, u2nk+1
) + d(w,Qw))]θ2 .[

1

2
(d(u2nk

, Qw)

+ d(w, u2nk+1
))]θ3 .[

1

2
(d(u2nk

, Hw) + d(w, u2nk+1
))]1−θ1−θ2−θ3

Taking k → +∞, we get φ(d(w,Qw)) = 0 which implies d(w,Qw) = 0. This shows that w is a fixed point of
Q. Similarly, we can show that (Hw,w) = 0. Hence the mappings H and Q have a common fixed point.

To demonstrate the uniqueness of the common fixed point, we suppose that w∗ is another common fixed point
of H and Q and α(w,w∗) ≥ 1. Assume that w ̸= w∗. From (3.1), we get

ζ(α(w,w∗)φ(d(Hw,Qw∗)), ψ(B(w,w∗))) ≥ 0

ζ(α(w,w∗)φ(d(w,w∗)), ψ(B(w,w∗))) ≥ 0

ψ(B(w,w∗))− α(w,w∗)φ(d(w,w∗)) ≥ 0

−α(w,w∗)φ(d(w,w∗)) ≥ 0.

which is contradiction and hence the mappings H and Q have a unique common fixed point.

Remark 3.14. For H = Q in Theorem 3.13, we get Theorem 2.2 of M. S. Khan et al. [15]

Corollary 3.15. Let Q be a self mapping on a metric space (Y, d) which is complete. Suppose that Q is
quasi triangular α-orbital admissible and forms an interpolative (φ,ψ)-Banach-Kannan-Chatterjea type Z-
contraction with respect to ζ. If there exists u0 ∈ Y such that α(u0, Qu0) ≥ 1 and {un} in Y is α-regular, then
Q has a unique fixed point in Y .

Remark 3.16. Setting ζ(u, v) = ψ(v)− u for all u, v > 0 in Theorem 3.13, we get the following result.

Corollary 3.17. Let H,Q : Y → Y be self mappings on a metric space (Y, d) which is complete. If there exists
α : Y ×Y → R, φ ∈ Φ, ψ ∈ Ψ, θ1, θ2, θ3 ∈ (0, 1) such that φ(t) > ψ(t), for t > 0, ψ > 0 and θ1+ θ2+ θ3 < 1

satisfying the inequality

α(u, v)φ(d(Hu,Qv)) ≤ ψ(B(u, v)) for all u, v ∈ Y.

If there exists u0 ∈ Y such that α(u0, Hu0) ≥ 1 and {un} in Y is α-regular. Then the mappings H and Q have
a unique common fixed point.

Remark 3.18. By letting α(u, v) = 1 for all u, v ∈ Y and φ = IY in Corollary 3.17, we get the following result.

Corollary 3.19. Let H,Q : Y → Y be two self mappings on a complete metric space. If there exists ψ ∈
Ψ, θ1, θ2, θ3 ∈ (0, 1) such that θ1 + θ2 + θ3 < 1, for t > 0, ψ > 0 satisfying the inequality

d(Hu,Qv) ≤ ψ(B(u, v)) for all u, v ∈ Y.

Then the mappings H and Q have a unique common fixed point.
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4. Application

We apply our outcome to find an existence theorem for Fredholm integral equations. Let Y = C[a, b] be
a set of all real continuous functions on [a, b] equipped with metric d(e, j) = maxt∈[a,b]|e(t) − j(t)| for all
e, j ∈ C[a, b]. Then (Y, d) is a complete metric space.
Now, we consider Fredholm integral equations

u(t) = h(t) +

∫ b

a

K(t, s, u(s))ds (4.1)

v(t) = h(t) +

∫ b

a

K(t, s, v(s))ds (4.2)

where t, s ∈ [a, b]. Assume that K : [a, b]× [a, b]× Y → R and h : [a, b] → R continuous.

Theorem 4.1. Let (Y, d) be a metric space equipped with metric d(e, j) = maxt∈[a,b]|e(t)−j(t)| for all e, j ∈ Y

and H,Q : Y → Y are operator on Y defined by

Hu(t) = h(t) +

∫ b

a

K(t, s, u(s))ds (4.3)

Qv(t) = h(t) +

∫ b

a

K(t, s, v(s))ds (4.4)

where t, s ∈ [a, b]. Assume that K : [a, b] × [a, b] × Y → R and h : [a, b] → R is continuous. Further, assume
that the following conditions hold:
(i) If there exists a continuous function q : [a, b]× [a, b] → [0,∞), θ1, θ2, θ3 ∈ (0, 1) with θ1 + θ2 + θ3 < 1 that
for all u, v ∈ Y, s, t ∈ [a, b] fulfilling the following inequality

|K(t, s, u(s))−K(t, s, v(s))| ≤ q(t, s)M(u(s), v(s)) (4.5)

where M(u(s), v(s)) = [|u(s)− v(s)|]θ1 .[ 1
2
(|u(s)−Hu(s)|+ |v(s)−Qv(s)|)]θ2 .

[
1

2
(|u(s)−Qv(s)|+ |v(s)−Qu(s)|)]θ3 [ 1

2
(|u(s)−Hv(s)|

+ |v(s)−Hu(s)|)]1−θ1−θ2−θ3

(ii) If there exists k ∈ [0, 1) and α : Y × Y → (0,∞) such that for each u ∈ Y , we have

maxt∈[a,b]

∫ b

a

q(t, s)ds ≤ k

α(u, v)
.

(iii) If there exists u0 ∈ Y such that α(u0, Hu0) ≥ 1.

Then the integral equations have a unique common solution in Y .
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Proof. From (4.3), (4.4) and (4.5), we obtain

|Hu(t)−Qv(t)| = |
∫ b

a

K(t, s, u(s))ds−
∫ b

a

K(t, s, v(s))ds|

=

∫ b

a

|K(t, s, u(s))−K(t, s, v(s))|ds

≤
∫ b

a

q(t, s)M(u(s), v(s))ds

≤
∫ b

a

q(t, s)([|u(s)− v(s)|]θ1 .[ 1
2
(|u(s)−Hu(s)|+ |v(s)−Qv(s)|)]θ2 .

[
1

2
(|u(s)−Qv(s)|+ |v(s)−Qu(s)|)]θ3 .[ 1

2
(|u(s)−Hv(s)|

+ |v(s)−Hu(s)|)]1−θ1−θ2−θ3)ds.

Taking maximum on both sides for all t ∈ [a, b], we get

d(Hu,Qv) = maxt∈[a,b]|Hu(t)−Qv(t)|

≤ maxt∈[a,b]

∫ b

a

q(t, s)([|u(s)− v(s)|]θ1 .[ 1
2
(|u(s)−Hu(s)|+ |v(s)−Qv(s)|)]θ2 .

[
1

2
(|u(s)−Qv(s)|+ |v(s)−Qu(s)|)]θ3 .

[
1

2
(|u(s)−Hv(s)|+ |v(s)−Hu(s)|)]1−θ1−θ2−θ3)ds

≤ (maxt∈[a,b]([|u(s)− v(s)|]θ1 .[ 1
2
(|u(s)−Hu(s)|+ |v(s)−Qv(s)|)]θ2 .

[
1

2
(|u(s)−Qv(s)|+ |v(s)−Qu(s)|)]θ3 .[ 1

2
(|u(s)−Hv(s)|

+ |v(s)−Hu(s)|)]1−θ1−θ2−θ3))

∫ b

a

q(t, s)ds

≤ [d(u, v)]θ1 .[
1

2
(d(u,Hu) + d(v,Qv))]θ2 .[

1

2
(d(u,Qv) + d(v,Qu))]θ3 .

[
1

2
(d(u,Hv) + d(v,Hu))]1−θ1−θ2−θ3maxt∈[a,b]

∫ b

a

q(t, s)ds

≤ k

α(u, v)
B(u, v)

or α(u, v)d(Hu,Qv) ≤ kB(u, v).

Since Y = C[a, b] is complete metric space. Hence, all the suppositions of Theorem 3.5 are satisfied by
setting ζ(v, u) = ψ(u) − v with ψ(l) = kl and φ(l) = l for all l > 0, where k ∈ [0, 1) and hence the integral
equations have a unique common solution.

5. Conclusion

From our investigations, we conclude that the existence and uniqueness of common fixed point theorem for
pair of quasi triangular α-orbital admissible with an interpolative (φ,ψ)- Banach-Kannan-Chatterjea type Z-
contraction mappings with reference to simulation function in complete metric space. As an application, we find
the existence and uniqueness of common solution for nonlinear Fredholm integral equations. An example is given
in support of our main result. Our result provides new path for the researchers in the concerned field.
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