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Abstract. A real or complex valued function defined on the set of all positive integers is called an arithmetic function and an
arithmetic function is said to be completely multiplicative function if f is not identically zero and f(mn) = f(m)f(n) for all
m,n. The objective of this paper is to present a result of completely multiplicative function of two variables using primitive
function module.
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1. Introduction

A real or complex valued function defined on the set of all positive integers is called an arithmetic function.
An arithmetic function f is said to be multiplicative function in one argument if f is not identically zero and
f(mn) = f(m)f(n) whenever (m,n) = 1. The function f(m,n) of two variables defined for pairs of positive
integers m and n is said to be multiplicative in both the arguments m and n if f(1, 1) = 1 and f (m1 m2,n1n2) =

f (m1, m2) f (m2,n2) where (m1n1, m2n2) = 1. Many identities have been established by various researchers
discussed in [3, 7, 9].

Definition 1.1. An arithmetic function is said to be completely multiplicative function if f is not identically zero
and f(mn) = f(m)f(n) for all m,n.

Definition 1.2. Strongly Multiplicative function: A multiplicative arithmetic function f is said to be strongly
multiplicative function if for every prime P, we have

f(p) = f
(
p2
)
= f

(
p3
)
= · · · . . . . . . . . . . . .

Definition 1.3. An arithmetic function f(n, r) is said to be primitive function module r if f(n, r) = f(γ(n, r), r)

for all γ(n, r) = γ((n, r)).
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Definition 1.4. An arithmetic function f(n, r) is said to be completely primitive function module r if f(n, r) =
f (n′, r′) for all n, n1 and all positive r, r′ Such that

γ(r)

γ(n, r)
=

γ (r′)

γ (n′, r′)

Let g(r) and h(r) be two arithmetic functions.
Define

f(n, r) =
∑
d|(n,r)

h(d)g
( r
d

)
µ
( r
d

)
(1.1)

and

F (r) = f(0, r) =
∑
d|r

h(d)g
( r
d

)
µ
( r
d

)
. (1.2)

2. Preliminaries

We use the following lemma proved by E.Cohen ([4],P404).

Lemma 2.1. Suppose f(n, r) is completely primitive module r. Then

f(n, r) =
∑
d|γ(r)

(d,n)=r1

G(d)⇔ G (r1) =
∑
d|r1

f
(r1
d
, d
)
µ
(r1
d

)

for any square free r1.

Lemma 2.2. Let h(v) is completely multiplicative function. Then F (v) = h
(

v
γ(v)F (γ(v))

)
.

Proof. From (1.2), We have

F (v) =
∑
d|n

h(d)g
(v
d

)
µ
(v
d

)
=
∑
dδ=v

h
(v
δ

)
g(δ)µ(δ)

=
∑
dδ=v

h

(
v

γ(v)
· γ(n)

δ

)
g(δ)µ(δ)

= h

(
v

γ(v)

) ∑
dδ=v

h

(
γ(v)

δ

)
g(δ)µ(δ)

= h

(
v

γ(v)

)
F (γ(v)).

Because of factor µ(δ), since µ(δ) = 0 for square number. Hence ranging d over divisor of v or over divisor
of γ(v) is same. This completes the lemma.

�

Also we need the following result:

Lemma 2.3. Let g(r) be multiplicative, h(r) is completely multiplicative and for all primes P, h(p) 6= 0, h(p) 6=
g(P ). Then F (r) 6= 0 for all r.
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Proof. Since F (1) = 1 We may assume that r > 1. Note that F (r) = (h ∗ µg)(r).
F (r) is multiplicative, since h(r), g(r) and µ(r) are multiplicative functions. To prove F (Pα) 6= 0 for all

primes P and α > 1.
Consider

F (Pα) =

α∑
k=0

h
(
P k
)
g
(
Pα−k

)
µ
(
Pα−k

)
= h (Pα)− h

(
Pα−1

)
g(P )

= h(P )α−1[h(P )− g(P )]
6= 0.

Since h(P )− g(P ) 6= 0, h(P ) 6= 0.
�

3. Main Results

Theorem 3.1. If g(r) is multiplicative, h(r) is completely multiplicative and for all prime P, h(P ) 6= 0, h(P ) 6=
g(P ), then ∑

d|r
(d,n)=1

g(d)

F (d)
µ2(d) =

h(r)

F (r)

F ((n, r))

h((n, r))
.

Proof. Denote

J(n, r) =
h(r)

F (r)

F ((n, r))

h((n, r))
. (3.1)

J(n, r) is properly defined since F (r) 6= 0, h(n, r) 6= 0.
By Lemma 2.2, we get,

J(n, r) =
h(r)h

(
n,r

γ(n,r)

)
F (γ(n, r))

h
(

r
γ(r)

)
F (γ(r))h((n, r))

=
h(r)h((n, r))F (γ(n, r))h(γ(r))

h(γ(n, r))h(r)F (γ(r))h((n, r))

=
h(γ(r))F (γ(n, r))

h(γ(n, r))F (γ(r))

=
h
(

γ(r)
γ(n,r)

)
F
(

γ(r)
γ(n,r)

)
=
h(m)

F (m)
,

where m = γ(r)
γ(n,r) .

Thus

J(n, r) =
h(m)

F (m)
, where m =

γ(r)

γ(n, r)
. (3.2)
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Now we prove that

J(n, r) is completely primitive (modr). (3.3)

That is, we have to show that J(n, r) = J
(
n1, r1

)
for all n, n1, r, r1 with

γ(r)

γ(n, r)
=

γ
(
r1
)

γ (n1, r1)

By (3.2), we have

J(n, r) =
h
(

γ(r)
γ(n,r)

)
F
(

γ(r)
γ(n,r)

)

=

h

(
γ(r′)
γ(n′,r′)

)
F
(

γ(r′)
γ(n′,r′)

)
= J (n′, r′) .

Therefore by Lemma 2.1, we have

J(n, r) =
∑
d|γ(r)
(d,n)=1

G(d)⇔ G (r1) =
∑
d|r1

J
(r1
d
, r1

)
µ
(r1
d

)
.

Consider
G (r1) =

∑
d|r1

J
(r1
d
, r1

)
µ
(r1
d

)
.

=
∑
d|r1

h(d)

F (d)
µ
(r1
d

)
by (3.2)

which by multiplicativity of µ(r) and F (r) gives

=
µ (r1)

F (r1)

∑
d|r1

h(d)µ(d)F
(r1
d

)
=
µ (r1)

F (r1)

∑
d|r1

h(d)µ(d)
∑

Dδ=
r1
d

h(D)g(δ)µ(δ),

where E = Dd. But ∑
d|E

µ(d) =

{
1 if E = 1

0 if E > 1.

Therefore,

G (r1) =
µ (r1)

F (r1)
g (r1)µ (r1)

=
µ2 (r1) g (r1)

F (r1)
.
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Now we have

J(n, r) =
∑
d|γ(r)
(d,n)=1

G(d)

=
∑
d|γ(r)
(d,n)=1

µ2(d)g(d)

F (d)
.

�

Theorem 3.2.
F (r)

∑
d|r

(d,n)=1

h(d)

F (d)
· µ
( r
d

)
= µ(r)

∑
d|(n,r)

h(d)f
( r
d

)
,

where f(n) = g(n)µ(n).

Proof. Let

Q(n, r) = F (r)
∑
d|r

(d,n)=1

h(d)

F (d)
µ
( r
d

)
.

Let

Q(n, r) = F (r)
∑
d|r

(d,n)=1

h(d)

F (d)
µ
( r
d

)
.

Let r1 and r2 be the uniquely determined positive integers such that r = r1r2 where (r1, r2) = 1, γ (r2) =

γ(n, r).
Then

Q(n, r) = F (r)µ (r2)
∑
d1|r1

h(d)

F (d)
µ
(r1
d

)
= F (r)µ (r2)G (r1)

= F (r1)F (r2)µ (r2)
µ2 (r1) g (r1)

F (r1)

= µ(r)µ (r1) g (r1)
∑
d|(n,r)

h(d)g
(r2
d

)
µ
(r2
d

)
.

In view of the presence of µ(r) and the fact that γ (r2) = γ(n, r), we have

Q(n, r) = µ(r)
∑
d|(n,r)

h(d)g
( r
d

)
µ
( r
d

)
.

That is,

F (r)
∑
d|r

(d,n)=1

h(d)

F (d)
µ
( r
d

)
= µ(r)

∑
d|(n,r)

h(d)f
( r
d

)
,

where f(n) = µ(n)g(n). �
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Remark 3.3. Substituting h(n) = nk, f(n) = µ(n) and F (r) = Jk(r) in Theorem 3.2, we get a well known
identity known as Brauer - Rademacher identity.

Jk(r)
∑
d|r

dk

Jk(d)
µ
( r
d

)
= µ(r)

∑
d|(n,r)

dkµ
( r
d

)
.
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