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On distinguishing labelling of groups for the conjugation action
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Abstract. In this paper, the conjugation action of various classes of groups on themselves is studied to obtain their
distinguishing numbers along with a distinguishing labelling for the said action. An equivalent condition concerning the
existence of a 2-distinguishing labelling for the action of a group G on a G-set X and a partition of X into two subsets is
established. Also, the distinguishing number for the conjugation action of a group acting on itself is completely
characterized.
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1. Introduction

The concept of distinguishing number originated from an elementary problem known as the Frank Rubin’s
Key problem [5], which states that:

Professor X has n keys on a circular key ring, but he can not see them. Now, the question arises: How many
shapes does Professor X need to use in order to keep n keys on the ring and still be able to select the proper key
by feel?

Albertson and Collins [1] popularized the aforementioned problem and took it in the realm of graphs by
connecting it with the action of symmetries of a graph on its set of vertices. They define the distinguishing
number for a graph G to be the minimum k for which the vertices of G can be labeled from 1 to k such that no
non-trivial symmetry (automorphism) of the graph G preserves all of the vertex labels.

The surprise answer to the above problem is that only two different handle shapes are required if six or more
keys are there in the key ring; but minimum three different handle shapes are required to distinguish the keys for
three, four and five keys in the key ring. This motivated us to study and understand the concept of distinguishing
labelling and distinguishing number for the conjugation action of a group on itself.

Further, in [6], Tymoczko generalized the notion of the distinguishing number for an arbitrary group action
that is, the distinguishing number for the action of an arbitrary group G on a G-set X which is not necessarily the
action of the automorphism group of a graph on the set of vertices of that graph.

The main objective of this paper is to compute the distinguishing number and a distinguishing labelling for
the conjugation action of some well known classes of groups such as Q4n (dicyclic group), V8n, U6n and SD8n

(semi-dihedral group) acting on itself. It is observed that for each of these classes of groups the distinguishing
number is 2 and this concurrence of the distinguishing number for the conjugation action for all aforementioned
groups arises a natural question as follows:

Does there exist any group G with distinguishing number more than 2 for its conjugation action on itself?
This question stimulates us to completely characterize the distinguishing number for the conjugation of a

group on itself. We answer the above question in the sixth section of this paper. In order to achieve this aim,
an equivalent condition for the existence of a 2-distinguishing labelling for the action of a group on a G-set
X is established. In addition, by using this condition and some other results, we completely characterize the
distinguishing number for the group action of a group G, acting on itself by the conjugation action.

The main results proved in the present paper are:
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(1) The distinguishing numbers and a corresponding distinguishing labelling for the conjugation action of some
well known classes of groups such as Q4n (Dicyclic group), V8n, U6n and SD8n (semi-dihedral group) are
computed.

(2) A relation between a distinguishing labelling for the action of a group G on a G-set X and a partition of the
underlying set X has been identified.

(3) The distinguishing number for the conjugation action of a group on itself is completely characterized.

Our notations are as follows: G is a group and X is a G-set. The stabilizer of a subset A ⊆ X is StabG(A) =

{g ∈ G : ga = a for all a ∈ A}. We begin this article with the following definitions:

Definition 1.1. [6] Let G be a group acting on a nonempty set X . A map ϕ : X −→ {1, 2, ..., k} is said to be
a k-distinguishing labelling of the action of G on the set X if the only group elements that preserve the labelling
are in StabG(X ). Equivalently, the map ϕ is a k-distinguishing labelling if {g : ϕ ◦ g (x) = ϕ(x) for all x ∈
X} = StabG(X ).

Definition 1.2. [6] The distinguishing number DG(X ) of the set X with a given group action of G on X is the
minimum k for which there is a k-distinguishing labelling.

It is also pertinent to notice that if the G-set X is equal to G, then under the conjugation action of the group
G on X , the set StabG(X ) = {g ∈ G : ghg−1 = h for all h ∈ X} = Z(G), is the center of the group G. In this
case, a map ϕ : X −→ {1, 2, ..., k} is said to be a k-distinguishing labelling for the conjugation action of G on
the set X if the only group elements that preserve the labelling are in the center of the group G. More precisely,
{g : ϕ(ghg−1) = ϕ(h) for all h ∈ G} = Z(G). Also, the minimum k for which there exists a k-distinguishing
labelling ϕ satisfying the above equality is the distinguishing number for the conjugation action of a group on
itself.

Moreover, it is not difficult to see that a non-Abelian group G, under the conjugation action, cannot act on
itself by fixing each of its elements.

The above observation, in view of Proposition 2.1 [6], leads to the following theorem.

Theorem 1.3. The distinguishing number for the conjugation action of a non-Abelian group G acting on itself,
is at least 2.

Throughout this paper, the action of a group G represents the conjugation action of the group G on itself,
unless stated otherwise.

2. Distinguishing Labelling for the Dicyclic group Q4n

In group theory, a dicyclic group, G = Q4n = ⟨a, b : a2n = 1, an = b2, ab = ba−1⟩ is a non-Abelian group
of order 4n for n > 1, which can be viewed as an extension of the cyclic group of order 2 by a cyclic group of
order 2n, described by an exact sequence as follows:

1 −→ Z2 −→ Q4n −→ Z2n −→ 1.

The dicyclic group is a subgroup of the unit quaternions generated by the elements a and j; where a = e
iπ
n is an

nth root of unity. Further, the number of conjugacy classes in Q4n is n+ 3 namely;
{1},
{an},
{ar, a−r}; (1 ≤ n ≤ n− 1),
{a2jb : 0 ≤ j ≤ n− 1},
{a2j+1b : 0 ≤ j ≤ n− 1}.
Note that one can realize the set of elements of the group Q4n as Q4n = {ak, akb : k = 0, 1, 2, ..., 2n − 1}

and we begin this section with the following lemma.
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Lemma 2.1. For the dicyclic group Q4n, we have

(1) baj = a−jb, for any integer j.

(2) For n > 1, Z(Q4n) = {1, an}.

As the group Q4n is non-Abelian for n ≥ 2, while it is Abelian for n = 1, therefore in consideration of
Proposition 2.1 [6], we have

Proposition 2.2. If Q4 acts on itself by conjugation, then DQ4
(Q4) = 1.

Before proceeding further, for convenience sake, we partition the set of elements of Q4n for n ≥ 2, as follows:

Q4n = X
′

n ∪ Xn, where

X ′

n = {an+1, an+2, ..., a2n−1, a2b, a3b} and Xn = Q4n\X
′

n = {1, a, ..., an, b, a4b, a6b, ..., a2n−2b, ab, a5b, a7b,

..., a2n−1b}.

Proposition 2.3. The stabilizer of the subset X ′

n = {an+1, an+2, ..., a2n−1, a2b, a3b} in Q4n is StabQ4n
(X ′

n) =

{1, an}.

Proof. By Lemma 2.1(2), it is enough to show that StabQ4n
(X ′

n) ⊆ {1, an}. For this, let g ∈ StabQ4n
(X ′

n) ∩
Q4n. Then ghg−1 = h, for all h ∈ X ′

n and we know that an element in Q4n is of the form aibj , where
0 ≤ i ≤ 2n − 1, j = 0, 1, so is g. We claim that if g = aibj ∈ StabQ4n

(X ′

n), then j = 0. If possible, let
j ̸= 0, this implies that g = aib, in this case there exists an element h = an+1 ∈ X ′

n satisfying ghg−1 =

(aib)an+1(b−1a−i) = a−n−1 = an−1 ̸= an+1 = h, as n ≥ 2. This forces j to be 0. Thus, an element
g ∈ StabQ4n

(X ′

n) can be of the form ai, 0 ≤ i ≤ 2n−1. Now, for h = a2b ∈ X ′

n, we have ghg−1 = h if and only
if (ai)a2b(a−i) = a2b if and only if a2i+2b = a2b if and only if i = 0 or n. Thus StabQ4n

(X ′

n) ⊆ {1, an}. ■

The next theorem provides a 2-distinguishing labelling for the conjugation action of Q4n on itself.

Theorem 2.4. Let Q4n with n ≥ 2, acts on itself by conjugation. Then the map ϕ : Q4n −→ {1, 2} defined by

ϕ(x) =

{
1 ; if x ∈ Xn

2 ; otherwise
, is a 2-distinguishing labelling of Q4n.

Proof. Define a labelling, ϕ : Q4n −→ {1, 2} for the conjugation action of Q4n on itself by ϕ(x) = 1, for
all x ∈ Xn and ϕ(x) = 2 otherwise. Now, for ϕ to be a 2-distinguishing labelling, it is sufficient to prove
that {g ∈ Q4n : ϕ(ghg−1) = ϕ(h), for all h ∈ Q4n} = {1, an}. Further, by Proposition 2.3, it is enough to
show that if g ∈ Q4n \ {1, an}, there exists an element h ∈ X ′

n such that ghg−1 /∈ X ′

n, that is ghg−1 ∈ Xn.
For this assume that g ∈ Q4n \ {1, an}, if g = ai; i ∈ {0, 1, 2, ..., 2n − 1} \ {0, n}, choose h = a2b ∈ X ′

n,
then ghg−1 = aia2ba−i = a2i+2b and clearly, for i ∈ {0, 1, 2, ..., 2n − 1} \ {0, n}, a2i+2b ∈ Xn. On the
other hand, if g = aib; i ∈ {0, 1, 2, ..., 2n − 1} and if i ̸= 2 or n + 2, take h = a2b ∈ X ′

n, then ghg−1 =

(aib)a2b(b−1a−i) = ai−2ba−i = a2i−2b ∈ Xn. Otherwise, when i = 2 or n + 2, choose h = a3b ∈ X ′

n

and we have ghg−1 = (aib)a3b(b−1a−i) = ai−3ba−i = a2i−3b = ab ∈ Xn. Thus {g ∈ Q4n : ϕ(ghg−1) =

ϕ(h), for all h ∈ Q4n} ⊆ {1, an} and the result follows from Lemma 2.1. ■

By combining Theorem 1.3 and Theorem 2.4 we have

Theorem 2.5. If Q4n (n > 1) acts on itself by conjugation, then DQ4n
(Q4n) = 2.
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3. Distinguishing Labelling for V8n action

The group V8n is introduced by James and Liebeck [4], for an odd positive integer n as follows:

V8n = ⟨a, b : a2n = b4 = 1, aba = b−1, ab−1a = b⟩.

Later, Darafsheh and Poursalavati [2], observed that with the above presentation, the group V8n can also be
defined for an arbitrary n. However, the conjugacy classes of the group V8n differ, depending upon whether n is
an even or an odd positive integer. When n is odd, the group V8n has 2n+ 3 conjugacy classes precisely;

{1},
{b2},
{a2r+1, a−2r−1b2}; (r = 0, 1, ..., n− 1),
{a2s, a−2s},
{a2sb2, a−2sb2}; (s = 1, 2, ..., n−1

2 ),

{ajbk : j even, k = 1 or 3} and
{ajbk : j odd, k = 1 or 3}.

While when n is even, the group V8n has 2n+ 6 conjugacy classes namely;
{1},
{b2},
{an},
{anb2},
{a2r+1, a−2r−1b2}; (r = 0, 1, ..., n− 1),

{a2s, a−2s},
{a2sb2, a−2sb2}; (s = 1, 2, ..., n

2 − 1),

{a2kb(−1)k : 0 ≤ k ≤ n− 1},
{a2kb(−1)k+1

: 0 ≤ k ≤ n− 1},
{a2k+1b(−1)k : 0 ≤ k ≤ n− 1} and
{a2k+1b(−1)k+1

: 0 ≤ k ≤ n− 1}.
Clearly, V8n is a non-Abelian group of order 8n and its elements are of the form ar, arb, arb2, arb3; where

r = 0, 1, ..., 2n− 1.

Lemma 3.1. Let G = V8n = ⟨a, b : a2n = 1 = b4, aba = b−1, ab−1a = b⟩. Then we have

(1) baj = a−jb(−1)j .

(2) b2aj = ajb2.

(3) b3aj = a−jb(−1)j+1

.

(4) Z(V8n) =

{
⟨an, b2⟩; if 2 | n
⟨b2⟩; if 2 ∤ n .

Proof. (1) We will prove the result by induction on j. By hypothesis, ba = a−1b−1. Assume that the result
holds for all positive integers up to j − 1, so we have, baj−1 = a1−jb(−1)j−1

. Further, baj = (baj−1)a =

(a1−jb(−1)j−1

)a = a1−j(b(−1)j−1

a) = a−jb(−1)j , as b−1a = a−1b and b−1a−1 = ab. Thus, baj = a−jb(−1)j

holds for every non negative integer j. Similarly, we can prove by induction that ba−j = ajb(−1)j holds for any
non negative integer j. Therefore, (1) holds for any j ∈ Z.

(2) and (3) follow by using (1), repeatedly.
(4) Straightforward. ■
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Next, we partition the set of elements in the group V8n, n odd, as follows:

V8n = X
′

n ∪ Xn, where

X ′

n = {a−1b2, a−3b2, ..., a1−2nb2, a−2, a−4, ..., a1−n, a−2b2, a−4b2, ..., a1−nb2, b3, ab3} and Xn = V8n \ X ′

n =

{1, a, ..., an, b, a4b, a6b, ..., a2n−2b, ab, a5b, a7b, ..., a2n−1b}.

Proposition 3.2. The stabilizer StabV8n
(X ′

n) of the subset X ′

nin V8n, n odd, is the set {1, b2}.

Proof. Let g ∈ StabV8n(X
′

n) ∩ V8n. Then, by definition ghg−1 = h, for all h ∈ X ′

n. Also, an element g ∈ V8n

will be of the form aibj , where −n < i ≤ n and j = 0, 1, 2, 3. We claim that if g ∈ StabV8n(X
′

n), then
j ̸= 1, 3. Otherwise, g = aib or aib3, where −n < i < n. In this case, there exists an element h = ab3 ∈ X ′

n

satisfying ghg−1 =

{
a2i−1b; if 2 | i
a2i−1b3; if 2 ∤ i

. Clearly, ghg−1 = h = ab3 if and only if i = 1. Furthermore, if

i ̸= 1, then ghg−1 ̸= h, for h = ab3 and in the case when i = 1, replace h = ab3 with b3 ∈ X ′

n. Then
ghg−1 = a2b ̸= b3 = h. Therefore, an element g ∈ StabV8n

(X ′

n) must be of the form aibj , where −n < i ≤ n

and j = 0, 2.
Next, we shall show that if g ∈ StabV8n

(X ′

n), then i = 0. For this, set h = ab3 ∈ X ′

n. Then ghg−1 ={
a2i+1b3; if 2 | i
a2i+1b; if 2 ∤ i

. Again, ghg−1 = h = ab3 if and only if i = 0. Thus, StabV8n
(X ′

n) ⊆ {1, b2}. Further, by

Lemma 3.1(4), for any subset S of V8n, ⟨b2⟩ ⊂ StabV8n(S). Hence StabV8n(X
′

n) = {1, b2}. ■

In the forthcoming theorem, we establish a 2-distinguishing labelling for the conjugation action of V8n, n
odd, acting on itself.

Theorem 3.3. If V8n, n odd, acts on itself by conjugation, then the map ϕ : V8n −→ {1, 2} defined by ϕ(x) ={
1 ; if x ∈ Xn

2 ; otherwise
, is a 2-distinguishing labelling.

Proof. Suppose V8n, n odd, acts on itself by conjugation. Define a labelling, ϕ : V8n −→ {1, 2} by ϕ(x) = 1

for all x ∈ Xn and ϕ(x) = 2 otherwise. Note that for ϕ to be a 2-distinguishing labelling, it is enough to show
that

{g ∈ V8n : ϕ(ghg−1) = ϕ(h), for all h ∈ V8n} = {1, b2}.

Clearly, by Proposition 3.2, it is equivalent to prove that if g ∈ V8n \ {1, b2}, then there exists an element h ∈ X ′

n

such that ghg−1 /∈ X ′

n, that is ghg−1 ∈ Xn. For this, assume that g ∈ V8n \ {1, b2}. If the element g = ai

or aib2; −n < i ≤ n, i ̸= 0, then we can choose h = ab3 ∈ X ′

n, then ghg−1 =

{
a2i+1b3; if 2 | i
a2i+1b; if 2 ∤ i

. Clearly,

a2i+1b /∈ X ′

n, for 2 ∤ i. Moreover, if 2 | i, then a2i+1b3 ∈ X ′

n if and only if i = 0, which is not possible.
On the other hand, the element g should only be of the form g = aibj ; −n < i ≤ n, j = 1 or 3. Take

h = ab3 ∈ X ′

n, then ghg−1 =

{
a2i−1b; if 2 | i
a2i−1b3; if 2 ∤ i

. Again, if 2 | i, then a2i−1b /∈ X ′

n and observe that in case

2 ∤ i, then a2i−1b3 ∈ X ′

n if and only if i = 1 or i = 1−n. Note that i = 1−n is not possible, as n is an odd positive
integer and 2 ∤ i. Thus, assume that i ̸= 1, this implies that ghg−1 /∈ X ′

n. Otherwise, when i = 1, the element g
will be either ab or ab3. In any of these cases, for h = b3, we have ghg−1 = abb3b−1a−1 = ab3a−1 = a2b /∈ X ′

n.
This infers that, whenever g ∈ V8n \ {1, b2}, there always exists an element h ∈ X ′

n such that ghg−1 ∈ Xn.
Therefore, we conclude that {g ∈ V8n : ϕ(ghg−1) = ϕ(h), for all h ∈ V8n} ⊆ {1, b2} and hence the result. ■

Now, we turn our attention to examine the distinguishing labelling and distinguishing number for the
conjugation action of the group V8n, when n is even. Observe that in this case

98



On distinguishing labelling of groups for the conjugation action

Z(V8n) = StabV8n
(V8n) = {1, an, b2, anb2}.

Assume that n ∈ 2Z+ and we partition the set of elements in the group V8n as follows:

V8n = Y
′

n ∪ Yn, where

Y ′

n = {a−1b2, a−3b2, ..., a1−2nb2, a−2, a−4, ..., a2−n, a−2b2, a−4b2, ..., a2−nb2, a2b, a3b, a2b3, a3b3} and Yn =

V8n \Y
′

n. This partition will be used to define a 2-distinguishing labelling for the conjugation action of the group
V8n, for even n.

Proposition 3.4. The stabilizer StabV8n(Y
′

n) of the subset Y ′

n is {1, an, b2, anb2}.

Proof. Let g ∈ StabV8n
(Y ′

n) ∩ V8n. By hypothesis ghg−1 = h, for all h ∈ Y ′

n. Also, an element g ∈ V8n will
be of the type aibj , where −n < i ≤ n and j = 0, 1, 2, 3. We claim that if g ∈ StabV8n

(Y ′

n), then j ̸= 1, 3.
Otherwise, either g = aib or aib3, where −n < i ≤ n and there exists an element h = a2b3 ∈ Y ′

n satisfying

ghg−1 =

{
a2i−2b3; if 2 | i
a2i−2b; if 2 ∤ i

. Note that ghg−1 = h = a2b3 if and only if 2 | i and i = 2 or 2 − n. Thus, if

i ̸= 2 or 2 − n, then ghg−1 ̸= h for h = a2b3. Now, if i = 2 or 2 − n, then replace h = a2b3 with a3b3 ∈ X ′

n

and we have ghg−1 = ab ̸= a3b3 = h. Therefore, an element g ∈ StabV8n(Y
′

n) will be of the form aibj , where
−n < i ≤ n and j = 0, 2.

Next, we further show that if g ∈ StabV8n(Y
′

n), then either i = 0 or i = n. For this, set h = a2b3 ∈

Y ′

n, then ghg−1 =

{
a2i+2b3; if 2 | i
a2i+2b; if 2 ∤ i

. Clearly, ghg−1 = h = a2b3 if and only if i = 0 or n. Hence,

an element g ∈ StabV8n
(Y ′

n) should be of the form aibj ; where i = 0, n and j = 0, 2, so StabV8n
(Y ′

n) ⊆
{1, an, b2, anb2}. Further, since Z(V8n) = {1, an, b2, anb2}, so {1, an, b2, anb2} ⊆ StabV8n

(Y ′

n). Hence,
StabV8n

(Y ′

n) = {1, an, b2, anb2}. ■

Theorem 3.5. Let V8n, n even, acts on itself by conjugation. Then there exists a map ϕ : V8n −→ {1, 2} defined

by ϕ(x) =

{
1 ; if x ∈ Yn

2 ; otherwise
, is a 2-distinguishing labelling.

Proof. Suppose that the group V8n, n even, acts on itself by conjugation. Define a labelling, ϕ : V8n −→ {1, 2}
for this action by ϕ(x) = 1 for all x ∈ Yn and ϕ(x) = 2 otherwise. On imitating the same process as in
Theorem 3.3, it suffices to show that

{g ∈ V8n : ϕ(ghg−1) = ϕ(h), for all h ∈ V8n} = {1, an, b2, anb2}.

Moreover, by Proposition 3.4, it is equivalent to prove that if g ∈ V8n \ {1, an, b2, anb2}, then there exists an
element h ∈ Y ′

n such that ghg−1 /∈ Y ′

n. For this, assume that g ∈ V8n \ {1, an, b2, anb2} and in case the
element g = ai or aib2; −n < i ≤ n, then it is trivial to see that, i can not take the values 0 and n. Thus, set

h = a2b3 ∈ Y ′

n and we have ghg−1 =

{
a2i+2b3; if 2 | i
a2i+2b; if 2 ∤ i

. Also, note that if 2 ∤ i, then a2i+2b ∈ Y ′

n, if and only

if i = 0 or n. Again, if 2 | i, then a2i+2b3 ∈ Y ′

n if and only if i = 0, n. Thus, ghg−1 /∈ Y ′

n, because i cannot take
the values 0 and n.

On the other hand, if g = aib or aib3; −n < i ≤ n. In this case, take h = a2b3 ∈ Y ′

n, then ghg−1 ={
a2i−2b; if 2 ∤ i
a2i−2b3; if 2 | i

. Note that a2i−2b ∈ Y ′

n if and only if 2 ∤ i and i = 2 or 2 − n, which is not possible, as

n is even. Further, if 2 | i, then a2i−2b3 ∈ Y ′

n if and only if i = 2 or −n + 2. Hence, if i ̸= 2,−n + 2, then
ghg−1 /∈ Y ′

n. Moreover, if we choose h = a3b3 and if i = 2 or −n+ 2, then ghg−1 = ab /∈ Y ′

n. Thus, we have
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proved that if g ∈ V8n \{1, an, b2, anb2}, then there exists an element h ∈ Y ′

n such that ghg−1 /∈ Y ′

n. Therefore,
we conclude that {g ∈ V8n : ϕ(ghg−1) = ϕ(h), for all h ∈ V8n} ⊆ {1, an, b2, anb2} and by using Lemma 3.1
the reverse inclusion is immediate. ■

By combining Theorem 1.3, Theorem 3.3 and Theorem 3.5, we have Theorem 3.6, which provides the
distinguishing number for the conjugation action of the group V8n on itself, for an arbitrary n.

Theorem 3.6. If V8n acts on itself by conjugation action, then DV8n(V8n) = 2.

4. Distinguishing Labelling for action of the group U6n

Recall from [4] that G = U6n is a non-Abelian group of order 6n and it is generated by two elements a and b

such that a2n = 1, b3 = 1, ba = ab−1. The group U6n can be represented as follows:

U6n = ⟨a, b : a2n = 1, b3 = 1, ba = ab−1⟩.

However, group U6n can be viewed as a group isomorphic to the semi direct product of a cyclic group of order 3
by a cyclic group of order 2n. Clearly, the subgroup generated by the generator b is a normal subgroup of order 3
and the subgroup generated by a is a cyclic subgroup of order 2n. In addition, the group U6n has 3n conjugacy
classes namely:

{a2r},
{a2rb, a2rb2},
{a2r+1, a2r+1b, a2r+1b2}; (r = 0, 1, 2, ..., n− 1).

Lemma 4.1. Let G = U6n = ⟨a, b : a2n = 1, b3 = 1, ba = ab−1⟩ and j be an arbitrary integer. Then we have

(1) baj =

{
ajb2; if 2 ∤ j
ajb; if 2 | j

(2) b2aj =

{
ajb; if 2 ∤ j
ajb2; if 2 | j

(3) Z(U6n) = ⟨a2⟩.

Proof. (1) First we shall show by induction that for any non-negative integer j, baj =

{
ajb2; if 2 ∤ j
ajb; if 2 | j

. Clearly,

by group relation ba = a−1b and suppose this holds for all positive integers up to m − 1. Now, consider

bam = (bam−1)a =

{
(am−1b2)a; if 2 ∤ m− 1

(am−1b)a; if 2 | m− 1
=

{
amb2; if 2 ∤ m
amb; if 2 | m

. Hence, the result holds for all non

negative integers. Moreover, by imitating the same process we can similarly prove by induction that baj ={
ajb2; if 2 ∤ j
ajb; if 2 | j

holds for any negative integer j and this completes the proof.

Results (2) and (3) are straightforward.
■

Moreover, we can write U6n as a disjoint union of two subsets X ′

n and Xn, where X ′

n = {aib2 : i =

1, 2, ..., 2n− 1} and Xn = Q4n \ X ′

n.

Proposition 4.2. The stabilizer of the subset X ′

n = {aib2 : i = 1, 2, ..., 2n− 1} is StabU6n(X
′

n) = ⟨a2⟩.
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Proof. By Lemma 4.1(3), it is sufficient to show that StabU6n(X
′

n) ⊆ ⟨a2⟩. For this, let g ∈ StabU6n(X
′

n)∩U6n.
Then by hypothesis, ghg−1 = h, for all h ∈ X ′

n. Also, an element in U6n will be of the form aibj , where
0 ≤ i ≤ 2n− 1 and j = 0, 1, 2, and so is g. We claim that if g = aibj ∈ StabU6n(X

′

n), then j = 0. If possible,
let j ̸= 0, then the element g will be of the form aib or aib2. Now, in case g = aib and 2 ∤ i, then choose h = b2,
else in the other case 2 | i, choose h = ab2. Thus by using Lemma 4.1, it follows that ghg−1 ̸= h. On the other
hand, when g = aib2 and 2 ∤ i, choose h = ab2 or in case 2 | i, take h = b2. Further, by Lemma 4.1, we observe
that in either of these cases ghg−1 ̸= h. Thus, the element g must be of the form ai, where 0 ≤ i ≤ 2n − 1.
Further, for h = b2 ∈ X ′

n, we have ghg−1 = h if and only if 2 | i and hence, StabU6n(X
′

n) ⊆ ⟨a2⟩. ■

In the upcoming theorem we obtain a 2-distinguishing labelling for the conjugation action of U6n on itself.

Theorem 4.3. The map ϕ : U6n −→ {1, 2} defined by ϕ(x) =

{
1 ; if x ∈ Xn

2 ; otherwise
, is a 2-distinguishing labelling

of U6n.

Proof. Define a map, ϕ : U6n −→ {1, 2}, by ϕ(x) = 1, for all x ∈ Xn and ϕ(x) = 2, otherwise. In order to
prove that ϕ is a 2-distinguishing labelling, it is sufficient to show that {g ∈ U6n : ϕ(ghg−1) = ϕ(h), for all h ∈
U6n} = ⟨a2⟩. Now, in light of Proposition 4.2, it is equivalent to prove that for every g ∈ U6n \ ⟨a2⟩, there
exists an element h ∈ X ′

n such that ghg−1 ∈ Xn. Let g ∈ U6n \ ⟨a2⟩. Then, g will be of the form g = ai; i /∈
{0, 2, ..., 2n− 2}. Fix h = ab2 ∈ X ′

n and we have ghg−1 = ab and certainly, ab ∈ Xn. Otherwise, the element
g will be of the form g = aib or g = aib; 0 ≤ i ≤ 2n − 1. In either case, if 2 ∤ i, set h = b2 ∈ X ′

n, then by
using Lemma 4.1 (2), we get ghg−1 = aib2a−i = b, as 2 ∤ i. Clearly, ghg−1 = b /∈ Xn. Further, if 2 | i, then for
g = aib choose h = ab2, we have ghg−1 = (aib)ab2(b−1a−i) = aibaba−i = ai+1b−1ba−i = a. Furthermore,
for g = aib2, take h = ab2 ∈ X ′

n and we get ghg−1 = (aib2)ab2(b−1a−i) = aib2a−i+1 = ab /∈ X ′

n. Thus
{g ∈ U6n : ϕ(ghg−1) = ϕ(h), for all h ∈ U6n} ⊆ ⟨a2⟩ and the result follows by using Lemma 4.1 (3). ■

The following theorem is a direct consequence of Theorem 1.3 and Theorem 4.3.

Theorem 4.4. If U6n acts on itself by conjugation, then DU6n
(U6n) = 2.

5. Distinguishing Labelling for semi-dihedral group SD8n action

The semi-dihedral group, SD8n [3] is a non-Abelian group of order 8n. For n ≥ 2, this group can be
presented as follows:

SD8n = ⟨a, b : a4n = b2 = 1, bab = a2n−1⟩.

Clearly, the elements of the semi-dihedral group are of the form ar or bar; r = 0, 1, ..., 4n− 1. As observed
in the case of V8n, the group SD8n has 2n+ 3 or 2n+ 6 conjugacy classes, when n is even or odd respectively.
We begin with the following definition

Definition 5.1. [3] Define Ceven := C1 ∪ Ceven
2 ∪ Ceven

3 and Codd := C1 ∪ Codd
2 ∪ Codd

3 , where C1 :=

{0, 2, 4, ..., 2n}, Ceven
2 := {1, 3, ..., n − 1}, Ceven

3 := {2n + 1, 2n + 3, 2n + 5, ..., 3n − 1} and Codd
2 :=

{1, 3, 5, ..., n}, Codd
3 := {2n + 1, 2n + 3, 2n + 5, ..., 3n}. Also, define C†

even := C1 \ {0, 2n}, C†
odd :=

Ceven
2 ∪ Ceven

3 , Codd
2,3 := Codd

2 ∪ Codd
3 and Ceven

∗ := Ceven \ {0, 2n}, Codd
∗ := Codd \ {0, n, 2n, 3n}.

The next proposition provides us with the conjugacy classes of SD8n.

Proposition 5.2. [3] The conjugacy classes of SD8n, n ≥ 2, are as follows:

• If n is even, then there are 2n+ 3 conjugacy classes. Precisely,

– 2 classes of size one being [1] = {1} and [a2n] = a2n,
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– (2n− 1) classes of size two being [ar] = {ar, a(2n−1)r}, where r ∈ Ceven
∗ and

– 2 classes of size 2n being [b] = {ba2t : t = 0, 1, ..., 2n−1} and [ba] = {ba2t+1 : t = 0, 1, ..., 2n−1}.

• If n is odd, then there are 2n+ 6 conjugacy classes. Precisely,

– 4 classes of size one being [1] = {1}, [an] = {an}, [a2n] = {a2n} and [a3n] = {a3n},

– (2n− 2) classes of size two being [ar] = {ar, a(2n−1)r}, where r ∈ Codd
∗ and

– 4 classes of size n being [b] = {ba4t : t = 0, 1, ..., n−1}, [ba] = {ba4t+1 : t = 0, 1, ..., n−1}, [ba2] =
{ba4t+2 : t = 0, 1, ..., n− 1}, and [ba3] = {ba4t+3 : t = 0, 1, ..., n− 1}.

Lemma 5.3. [3] Let G = SD8n = ⟨a, b : a4n = 1 = b2, bab = a2n−1⟩. Then

(1) akb = ba(2n−1)k.

(2) Z(V8n) =

{
⟨an⟩; if 2 ∤ n
⟨a2n⟩; if 2 | n

.

For n even, we can partition the set of elements of SD8n as a disjoint union of two subsets X ′

n and Xn of
SD8n, where X ′

n = {ar(2n−1) : r = 2, 4, 6, ..., 2n− 2, 1, 3, 5, ..., n− 1, 2n+1, 2n+3, ..., 3n− 1}∪ {ba2, ba3}
and Xn = SD8n \X

′

n. This partition will be used to define a 2-distinguishing labelling for the conjugation action
of the group SD8n, for an even n.

Proposition 5.4. The stabilizer StabSD8n
(X ′

n) of the subset X ′

n is {1, a2n}.

Proof. Let g ∈ StabSD8n
(X ′

n)∩SD8n. Then by definition ghg−1 = h, for all h ∈ X ′

n. Also, an element g in the
group SD8n will be of the form aibj , where 0 ≤ i ≤ 4n− 1 and j = 0, 1. We claim that if g ∈ StabSD8n

(X ′

n),
then j ̸= 1. If not, then g = aib and we have h = a2n−1 ∈ X ′

n such that ghg−1 = aiba2n−1b−1a−i =

ai(ba2n−1b)a−i = aiaa−i = a. Now, ghg−1 = h = a2n−1 if and only if n = 1, which is not possible, as n ≥ 2.
Therefore, an element g ∈ StabSD8n

(X ′

n) should be of the form ai, for some 0 ≤ i ≤ 4n − 1. Next, we show
that either i = 0 or i = 2n. For this, set h = ba2 ∈ X ′

n, then ghg−1 = aiba2a−i = aiba2−i = ba(2n−1)i+2−i =

ba2i(n−1)+2. Again, ghg−1 = h = ba2 if and only if 2i(n − 1) ≡ 0(mod 4n) if and only if 2i ≡ 0(mod 4n).
Therefore, we have i = 0 or 2n. Thus, StabSD8n

(X ′

n) ⊆ {1, a2n}. Obviously, {1, a2n} ⊆ StabSD8n
(X ′

n), as
the center Z(SD8n) = {1, a2n}. Hence StabSD8n

(X ′

n) = {1, a2n}. ■

Theorem 5.5. Let SD8n, n even, acts on itself by conjugation. Then the map ϕ : SD8n −→ {1, 2} defined by

ϕ(x) =

{
1 ; if x ∈ Xn

2 ; otherwise
, is a 2-distinguishing labelling of SD8n.

Proof. Define a labelling, ϕ : V8n −→ {1, 2} of this action by ϕ(x) = 1, for all x ∈ Xn and ϕ(x) = 2,
otherwise. From the Definition 1.1, for ϕ to be a 2-distinguishing labelling, it suffices to show that {g ∈ SD8n :

ϕ(ghg−1) = ϕ(h), for all h ∈ SD8n} = {1, a2n}. Now, by Proposition 5.4, it is equivalent to prove that if g ∈
SD8n\{1, a2n}, then there exists an element h ∈ X ′

n such that ghg−1 /∈ X ′

n. For this, let g ∈ SD8n\{1, a2n} and
g = ai; i ∈ {0, 1, 2, ..., 4n−1}\{0, 2n}. Then choose h = ab2 ∈ X ′

n, so that ghg−1 = aiba2a−i = ba2i(n−1)+2.
Now, ba2i(n−1)+2 ∈ X ′

n, if and only if a2i(n−1)+2 = a2 or a3 if and only if 2i(n − 1) + 2 ≡ 2 or 3 (mod 4n).
Clearly, 2i(n − 1) + 2 ≡ 3(mod 4n), is not possible, as n is even. Also, 2i(n − 1) + 2 ≡ 2(mod 4n) holds if
and only if 2i(n− 1) ≡ 0(mod 4n) if and only if i = 0, 2n, which is not possible. On the other hand, if g = bai;
0 ≤ i ≤ 4n−1, then in this case, fix h = a2n−1 ∈ X ′

n, which leads to ghg−1 = aiba2n−1b−1a−i = aiaa−i = a

and certainly ghg−1 = a /∈ X ′

n. Thus {g ∈ SD8n : ϕ(ghg−1) = ϕ(h), for all h ∈ SD8n} ⊆ {1, a2n} and the
reverse inclusion follows by using Lemma 5.3 (2). ■
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Next, we shall examine the distinguishing labelling for the conjugation action of the semi-dihedral
group, when n is an odd positive integer.

For n odd, we can partition the group SD8n as follows:

SD8n = Y
′

n ∪ Yn,

where Y ′

n = {ar(2n−1) : r = 2, 4, 6, ..., 2n−2, 1, 3, 5, ..., n−2, 2n+1, 2n+3, ..., 3n−2}∪{ba4, ba5, ba6, ba7}
and Yn = SD8n \Y

′

n. Also, we use this partition to define a 2-distinguishing labelling for the conjugation action
of the group SD8n acting on itself.

Proposition 5.6. The stabilizer StabSD8n
(Y ′

n) of the subset Y ′

n is {1, an, a2n, a3n}.

Proof. Let g ∈ StabSD8n
(Y ′

n) ∩ SD8n. Then by definition ghg−1 = h, for all h ∈ Y ′

n. Also, an element g
in SD8n will be of the form aibj , where 0 ≤ i ≤ 4n − 1 and j = 0, 1. We claim that if g ∈ StabSD8n

(Y ′

n),
then j ̸= 1. If not, then g = aib and we have h = a2n−1 ∈ Y ′

n such that ghg−1 = aiba2n−1b−1a−i =

ai(ba2n−1b)a−i = aiaa−i = a. Now, ghg−1 = h if and only if a = a2n−1 if and only if n = 1, which
is not possible, as n ≥ 2. This infers that an element g ∈ StabSD8n

(X ′

n) will be of the form ai, for some
0 ≤ i ≤ 4n − 1. Next, we show that i ∈ {0, n, 2n, 3n}. For this, choose h = ba4 ∈ Y ′

n and we have
ghg−1 = aiba4a−i = aiba4−i = ba(2n−1)i+4−i = ba2i(n−1)+4. Again, ghg−1 = h = ba4 if and only if
2i(n − 1) ≡ 0(mod 4n) if and only if i ≡ 0(mod n), as n is odd. This implies that i = 0 or n or 2n or 3n.
Thus StabSD8n

(Y ′

n) ⊆ {1, an, a2n, a3n}. Furthermore, {1, an, a2n, a3n} ⊆ StabSD8n
(Y ′

n), since Z(SD8n) =

{1, an, a2n, a3n}. Hence StabSD8n
(Y ′

n) = {1, an, a2n, a3n}. ■

Theorem 5.7. If SD8n, n odd, acts on itself by conjugation, then the map ϕ : SD8n −→ {1, 2} defined by

ϕ(x) =

{
1 ; if x ∈ Yn

2 ; otherwise
, is a 2-distinguishing labelling of SD8n.

Proof. Suppose that the group SD8n, n odd acts on itself by conjugation. Define a labelling, ϕ : V8n −→ {1, 2}
of this action by ϕ(x) = 1, for all x ∈ Yn and ϕ(x) = 2, otherwise. Again, for ϕ to be a 2-distinguishing
labelling, it is required to show that {g ∈ SD8n : ϕ(ghg−1) = ϕ(h), for all h ∈ SD8n} = {1, an, a2n, a3n}.
Now, by the definition of ϕ and Proposition 5.6, it is equivalent to prove that for g ∈ SD8n \ {1, an, a2n, a3n},
there exists an element h ∈ Y ′

n such that ghg−1 /∈ Y ′

n. For this, assume that g ∈ SD8n \ {1, an, a2n, a3n} and
g = ai; i ∈ {0, 1, 2, ..., 4n−1}\{0, n, 2n, 3n}. One can choose h = ab4 ∈ Y ′

n and we get ghg−1 = aiba4a−i =

ba2i(n−1)+4. Now, ba2i(n−1)+4 ∈ Y ′

n, if and only if 2i(n−1)+4 ≡ 4 or 5 or 6 or 7 (mod 4n). Clearly, 2i(n−1)+

4 ≡ 5, 6, 7(mod 4n), is not possible, as n is an odd positive integer. Also, 2i(n−1)+4 ≡ 4(mod 4n) holds if and
only if 2i(n−1) ≡ 0(mod 4n) if and only if i = 0, n, 2n, 3n, which is not possible. On the other hand, if g = bai;
0 ≤ i ≤ 4n − 1, then in this case, we fix h = a2n−1 ∈ Y ′

n, then ghg−1 = aiba2n−1b−1a−i = aiaa−i = a and
certainly ghg−1 = a /∈ Y ′

n. Thus {g ∈ SD8n : ϕ(ghg−1) = ϕ(h), for all h ∈ SD8n} ⊆ {1, an, a2n, a3n} and
by using Lemma 5.3 (2) the reverse inclusion follows immediately. ■

Finally in light of Theorem 1.3, Theorem 5.5 and Theorem 5.7, we have the following theorem which provides
the distinguishing number for the conjugation action of SD8n on itself, for arbitrary n.

Theorem 5.8. If SD8n acts on itself by conjugation action, then DSD8n(SD8n) = 2.

6. Some Characterizations

Theorem 2.5 in [6], along with the conclusions from each section discussed so far, arise a natural question that
Whether there exists a non-Abelian group acting via conjugation action on itself with the distinguishing

number other than 2?
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The main purpose of this section is to find the answer of the aforementioned question and surprisingly, we
answer it in negative at the end of this section. Before reaching a conclusion, we need some characterizations for
the existence of a 2-distinguishing labelling, in general, for the action of a group G on a G-set X , not necessarily
the conjugation action of G on itself. First, we give some basic definitions:

Definition 6.1. Let G be a group acting on a set X . A subset A of the G-set X is called G-invariant, if the subset
{ga : g ∈ G, a ∈ A} ⊆ A, under the action of G restricted to A.

It is easy to see that the orbits of a G-set X are G-invariant subsets of X . Moreover, if A is a G-invariant
subset of a G-set X , then it is always a union of orbits of a G-set X .

Definition 6.2. Let G be a group acting on a set X and g ∈ G. A subset A of the G-set X is called g-invariant, if
the subset {ga : g ∈ G, a ∈ A} ⊆ A, under the action of G restricted to A.

Theorem 6.3. Let G be a group acting on a set X . If the G-set X can be partitioned into a disjoint union of two
subsets (say) X1 and X2, which are not g-invariant, for every g ∈ StabG(X )

c, then there exists a 2-distinguishing
labelling for the action of G on the set X .

Proof. Assume that X can be partitioned as a disjoint union of two subsets X1 and X2 such that for each g ∈
StabG(X )

c, the subsets X1 and X2 are not invariant under the action of g. Define a labelling ϕ : X −→ {1, 2}
by ϕ(x) = 1, if x ∈ X1 and ϕ(x) = 2, otherwise. Claim that the labelling ϕ : X −→ {1, 2}, is a 2-distinguishing
labelling. For this, it suffices to prove that {g ∈ G : ϕ ◦ g (x) = ϕ(x) for all x ∈ X} ⊆ StabG(X ). Equivalently,
we will prove that if g ∈ G \ StabG(X ), then the element g can not be a member of the set {g ∈ G : ϕ ◦ g (x) =

ϕ(x), for all x ∈ X}. If not, then clearly by the definition of ϕ and the fact that X is a disjoint union of X1 and
X2, we have g.x ∈ X1 or X2 for x ∈ X1 or X2 respectively, for some g ∈ G \ StabG(X ). Therefore, for some
g ∈ StabG(X )

c, the subsets X1 and X2 are g-invariant, which is a contradiction to the given hypothesis. Thus,
{g ∈ G : ϕ ◦ g (x) = ϕ(x) for all x ∈ X} ⊆ StabG(X ) and hence ϕ is a 2-distinguishing labelling. ■

The upcoming theorem provides a characterization for the existence of a 2-distinguishing labelling for a group
acting on a set. Also, it is observed that the conclusion of the above theorem still remains true if at least one of
the partitioning components is not invariant under the action of each element of the group.

Theorem 6.4. Let X be a G-set. Then the following statements are equivalent:

(1) There is a 2-distinguishing labelling for the action of the group G on the set X .

(2) The G-set X can be partitioned as a disjoint union of two subsets X1 and X2 such that for every g ∈
StabG(X )

c, at least one of them is not g-invariant.

(3) The G-set X can be partitioned as a disjoint union of two subsets X1 and X2 that are not g-invariant, for
every g ∈ StabG(X )

c.

Proof. (1) ⇒ (2) : Assume that there exists a 2-distinguishing labelling ϕ, for the action of the group G on the
set X . Partition the G-set X as the disjoint union of two subsets X1 and X2, where Xi = {x ∈ X : ϕ(x) = i},
for i = 1, 2. Next, we shall show that for every g ∈ StabG(X )

c, the set X1 is not g-invariant. On the contrary,
let us assume that X1 is StabG(X )

c-invariant. Therefore, by definition, for g /∈ StabG(X ) and x ∈ X1, we have
gx ∈ X1. Then clearly, if x ∈ X2 we have gx ∈ X2. Otherwise, for some x ∈ X2, we have y = gx ∈ X1. Note
that since StabG(X ) is a group, so if g /∈ StabG(X ), then g−1 /∈ StabG(X ). Consequently, we have y ∈ X1,
while g−1(y) = g−1gx = x ∈ X2, which is not possible. Thus, there is an element g outside the set StabG(X )

that preserves the labelling, which is a contradiction, as ϕ is a 2-distinguishing labelling.
(2) ⇒ (3) : Suppose that the G-set X can be partitioned into a disjoint union of two subsets X1 and X2 of X

such that for every g ∈ StabG(X )
c, at least one of the Xi is not g-invariant. Without loss of generality, we can

assume that X1 is not g-invariant. Therefore, there exists an element x ∈ X1 such that for some g /∈ StabG(X ),

104



On distinguishing labelling of groups for the conjugation action

we have x ̸= y = gx /∈ X1. Thus y = gx ∈ X2. Note that g /∈ StabG(X ) if and only if g−1 /∈ StabG(X ).
Clearly, there is y ∈ X2 and g−1 /∈ StabG(X ) satisfying g−1y = x ∈ X1. Thus X2 is not g-invariant, for all
g ∈ StabG(X )

c. Similarly, for all g ∈ StabG(X )
c if X2 is not g-invariant, then so is X1. Hence, the G-set X can

be partitioned as a union of two disjoint subsets X1 and X2 which are not g-invariant.
(3) ⇒ (1) : Follows from Theorem 6.3. ■

An immediate consequence of the above theorem is

Corollary 6.5. Let G be a group acting on a set X and ϕ : X −→ {1, 2} be a 2-distinguishing labelling for the
action of G on the set X . Then the subset Xi = {x ∈ X : ϕ(x) = i}, i = 1, 2, cannot be a union of orbits.

Also, we have

Corollary 6.6. Let X = P1 ⊔ P2 be a partition of a G-set X . If the partitioning subsets P1 and P2 are a union
of orbits of G, then the action of G on X can not be 2-distinguishable.

In the forthcoming results, we completely characterize the distinguishing number for conjugation action. In
fact, we find a connection of the distinguishing number for the above specified group action depending on the
fact whether the group is an Abelian group or not.

Theorem 6.7. If a group G acts on itself by conjugation, then DG(G) = 1 if and only if G is an Abelian group.

Proof. Note that G is Abelian if and only if G = Z(G) = {g : ghg−1 = h, for all h ∈ G} if and only if under
the conjugation action, the group G acts on itself by fixing each of its elements. Thus, the result follows by using
Proposition 2.1 [6]. ■

Finally, when a group G acts on itself by conjugation, we have

Theorem 6.8. A group G is non-Abelian if and only if DG(G) = 2.

Proof. Clearly, Theorem 6.7 guarantees that if the distinguishing number for the conjugation action of a group
G on itself is 2, that is, DG(G) = 2, then the group G is non-Abelian. This completes the sufficient part of the
present theorem.

For the necessary part, assume that a non-Abelian group G acts on itself by conjugation. Then, in view of
Theorem 1.3, it is sufficient to prove that there exists a 2-distinguishing labelling for the action of the group
G. However, using Theorem 6.4, it is enough to prove that the non-Abelian group G can be partitioned as the
disjoint union of two subsets X and Y such that for every g /∈ Z(G), at least one of the partitioning subsets is not
g-invariant. Next, we construct such a partition of G as follows:

Let X be the set constructed by taking exactly one element from each conjugacy class and Y = G \ X .
Clearly, G = X ⊔ Y . Note that an element of a group belongs to its center if and only if its conjugacy class
contains exactly one element. Moreover, a group is non-Abelian if and only if it has a conjugacy class containing
at least two elements. Thus, we conclude that the partitioning components X and Y are non empty and satisfy
the property that Z(G) ⊊ X and Y ̸= G \ Z(G), as G is non-Abelian.

We claim that the partition X ⊔ Y of G satisfies the condition: for every g /∈ Z(G), at least one of the
partitioning subset X or Y is not g-invariant. If not, then for every g /∈ Z(G), both the partitioning subsets X
and Y are g-invariant. In particular, for every g /∈ Z(G) and x ∈ X , we have gxg−1 ∈ X . Now, we shall
show that X = G. For this, let g ∈ G. Clearly, if g ∈ Z(G), then g ∈ X . However, if g ∈ G \ (Z(G) ∪ X ),
then by the construction of X , we can find an element x ∈ X in the conjugacy class of g, as the set X has a
non-trivial intersection with each conjugacy class of G. Therefore, there exists an element k ∈ G \ Z(G) such
that g = k−1xk with k ̸= x. Since, Z(G) is a subgroup of G, so we conclude that k−1 /∈ Z(G). Finally, one can
choose h = k−1 /∈ Z(G) and x = kgk−1 ∈ X , so that hxh−1 = k−1(kgk−1)k = g ∈ X , as the partitioning
subset X is g-invariant. Thus, we conclude that X = G, which is a contradiction, as Y ≠ ϕ. On the other hand,
if the partitioning subset Y is g-invariant for every g /∈ Z(G), then in a similar way, this assumption leads to a
contradiction that Y = G \ Z(G). Hence, for every g /∈ Z(G), at least one of the partitioning subsets X or Y is
not g-invariant. This completes the proof. ■
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