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The sequence of the hyperbolic k-Padovan quaternions
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Abstract. This work introduces the hyperbolic k-Padovan quaternion sequence, performing the process of complexification
of linear and recurrent sequences, more specifically of the generalized Padovan sequence. In this sense, there is the study of
some properties around this sequence, deepening the investigative mathematical study of these numbers.
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1. Introduction and Background

Studies of recursive linear sequences have been noticed in the mathematical literature. Based on this, there is
the concern to carry out an investigative study on the process of complexification of certain sequences. So soon,
in this work, the hyperbolic quaternion k-Padovan sequence is introduced, presenting algebraic properties around
these numbers.

The Padovan sequence is a linear and recurrent third-order sequence, named after the Italian architect Richard
Padovan. Thus, its recurrence is given by: Pn = Pn−2 + Pn−3, n ≥ 3 and being P0 = P1 = P2 = 1 your initial
conditions [13–16].

The quaternions were developed by Willian Rowan Hamilton (1805-1865), arose from the attempt to
generalize complex numbers in the form z = a + bi in three dimensions [10]. Thus are presented as formal
sums of scalars with usual vectors of three-dimensional space, existing four dimensions. Second Halici (2012)
[8], a quaternion is a hyper-complex number and is described by:

q = a+ bi+ cj + dk
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where a, b, c are real numbers or scalar and i, j, k the orthogonal part at the base R3. The quaternionic product
being i2 = j2 = k2 = ijk = −1, ij = k = −ji, jk = i = −kj and ki = j = −ik.

Being q1 = a1 + b1i + c1j + d1k and q2 = a2 + b2i + c2j + d2k two distinct quaternions. The addition,
equality and multiplication scalar operations between them are:

q1 + q2 = (a1 + a2) + (b1 + b2)i+ (c1 + c2)j + (d1 + d2)k.

q1 = q2 only if a1 = a2, b1 = b2, c1 = c2, d1 = d2. And for α ∈ R, we have αq1 = αa1 + αb1i + αc1j +

αd1k. The conjugate of the quaternion is denoted by q = a− bi− cj − dk.
There are also other works, such as [3, 6, 7, 9] that address the quaternions in the scope of numerical

sequences, which are also used as a basis for this research.
As for hyperbolic numbers, the set of these numbers H can be described as:

H =
{
z = x+ hy|h /∈ R, h2 = 1, x, y ∈ R

}
.

The addition and multiplication of two of these hyperbolic numbers n1 e n2,are given by [12]:

n1 ± n2 = (x1 + hy1)± (x2 + hy2) = (x1 ± x2) + h(y1 ± y2)

n1n2 = (x1 + hy1)(x2 + hy2) = (x1x2) + h(y1y2) + h(x1y2 + x2y1)

In this sense, there are works on hyperbolic numbers and the quaternion sequence, used as a basis for this
investigative process [1, 2, 4, 5, 11].

2. The hyperbolic k-Padovan quaternions

The sequence of k-Padovan is defined by Pk,n = Pk,n−2 + kPk,n−3, n ≥ 3, k ⩾ 1 with initial values Pk,0 =

Pk,1 = Pk,2 = 1. In turn, we have the characteristic polynomial of this sequence as being x3 − x− k = 0.

Definition 2.1. The hyperbolic k-Padovan quaternions are given by:

HPk,n = Pk,n + iPk,n+1 + jPk,n+2 + kPk,n+3,

where i2 = j2 = k2 = −1,ij = k = −ji,jk = i = −kj,ki = j = −ik.

According to the definitions presented, a study is carried out on the operations of addition, subtraction, and
multiplication of hyperbolic k-Padovan quaternions.

HPk,n ±HPk,m = (Pk,n ± Pk,m) + i(Pk,n+1 ± Pk,m+1) + j(Pk,n+2 ± Pk,m+2)

+ k(Pk,n+3 ± Pk,m+3),

HPk,nHPk,m = (Pk,nPk,m + Pk,n+1Pk,m+1 + Pk,n+2Pk,m+2 + Pk,n+3Pk,m+3)

+ i(Pk,nPk,m+1 + Pk,n+1Pk,m + Pk,n+2Pk,m+3 − Pk,n+3Pk,m+2)

+ j(Pk,nPk,m+2 + Pk,n+2Pk,m − Pk,n+1Pk,m+3 + Pk,n+3Pk,m+1)

+ k(Pk,nPk,m+3 + Pk,n+3Pk,m + Pk,n+1Pk,m+2 − Pk,n+2Pk,m+1)

̸= HPk,mHPk,n

The conjugate of the hyperbolic k-Padovan quaternary numbers is represented by:

HP k,n = Pk,n − iPk,n+1 − jPk,n+2 − kPk,n+3.
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Theorem 2.2. Let Pk,n be the nth term of the k-Padovan sequence and HPk,n the nth term of the quaternionic
k-Padovan sequence hyperbolic, for n ⩾ 1 the following relations are given:

(i)HPk,n+3 = HPk,n+1 + kHPk,n;

(ii)HPk,n − iHPk,n+1 + jHPk,n+2 − kHPk,n+3 = Pk,n + Pk,n+2 + Pk,n+4 + Pk,n+6.

Proof. (i) Based on Definition 2.1, we have:

HPk,n+1 + kHPk,n = Pk,n+1 + iPk,n+2 + jPk,n+3 + kPk,n+4

+ k(Pk,n + iPk,n+1 + jPk,n+2 + kPk,n+3)

= (Pk,n+1 + kPk,n) + i(Pk,n+2 + kPk,n+1) + j(Pk,n+3 + kPk,n+2)

+ k(Pk,n+4 + kPk,n+3)

= Pk,n+3 + iPk,n+4 + jPk,n+5 + kPk,n+6

= HPk,n+3

For (ii), we have:

HPk,n − iHPk,n+1 + jHPk,n+2 − kHPk,n+3 = Pk,n + iPk,n+1 + jPk,n+2 + kPk,n+3

− i(Pk,n+1 + iPk,n+2 + jPk,n+3 + kPk,n+4)

− j(Pk,n+2 + iPk,n+3 + jPk,n+4 + kPk,n+5)

− k(Pk,n+3 + iPk,n+4 + jPk,n+5 + kPk,n+6)

= Pk,n + Pk,n+2 − kPk,n+3 + jPk,n+4 + kPk,n+3

+ Pk,n+4 − iPk,n+5 − jPk,n+4 + iPk,n+5 + Pk,n+6

= Pk,n + Pk,n+2 + Pk,n+4 + Pk,n+6

■

Theorem 2.3. Let HP k,n be the quaternionic conjugate of hyperbolic k-Padovan, then:

HPk,n +HP k,n = 2Pk,n

Proof. According to Definition 2.1, we have:

HPk,n +HP k,n = Pk,n + iPk,n+1 + jPk,n+2 + kPk,n+3

+ Pk,n − iPk,n+1 − jPk,n+2 − kPk,n+3

= 2Pk,n

■

3. Some properties

Hereinafter, some properties of the hyperbolic quaternion k-Padovan sequence are studied, based on the
definitions discussed in the previous section.

Theorem 3.1. The generating function of the hyperbolic k-Padovan quaternions is given by:

g(HPk,n, x) =
HPk,0 +HPk,1x+ (HPk,2 −HPk,0)x

2

1− x2 − kx3
.
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Proof. Performing the multiplication of the function by x2, kx3 in the equations below, we have:

g(HPk,n, x) =

∞∑
n=0

HPk,nx
n = HPk,0 +HPk,1x+HPk,2x

2 + . . .+HPk,nx
n + . . . (3.1)

x2g(HPk,n, x) = HPk,0x
2 +HPk,1x

3 +HPk,2x
4 + . . .+HPk,n−2x

n + . . . (3.2)

kx3g(HPk,n, x) = HPk,0kx
3 +HPk,1kx

4 +HPk,2kx
5 + . . .+HPk,n−3kx

n + . . . (3.3)

Based on the Equation (3.1-3.2+3.3), we have:
(1− x2 − kx3)g(HPk,n, x) = HPk,0 + HPk,1x+ (HPk,2 − HPk,0)x

2 + (HPk,3 − HPk,1 − HPk,0)x
3

+ . . .+ (HPk,n − HPk,n−2 − HPk,n−3)x
n + . . .

Thus:

(1− x2 − kx3)g(HPk,n, x) = HPk,0 +HPk,1x+ (HPk,2 −HPk,0)x
2

g(HPk,n, x) =
HPk,0 +HPk,1x+ (HPk,2 −HPk,0)x

2

1− x2 − kx3
.

■

Theorem 3.2. For n ∈ N, the Binet formula of the hyperbolic k-Padovan quaternions is expressed by:

Q
(n)
k,n = C1r

n
1 + C2r

n
2 + C3r

n
3 ,

where C1, C2, C3 are the coefficients of the Binet formula of the sequence and r1, r2, r3 the roots of the
characteristic polynomial (x3 − x− k = 0).

Proof. Based on the k-Padovan sequence recurrence formula, its respective defined initial values and its
characteristic polynomial whose roots are r1, r2, r3, it is possible to obtain, by solving the linear system of
equations, the values of coefficients C1, C2, C3.

The discriminant ∆ = (−k)2

4 − 1
27 , referring to the 3rd degree polynomial, determines how the roots of the

polynomial will be. Thus, when ∆ ̸= 0 all roots will be distinct, concluding that k2 ̸= 64
27 . Note also that

r1r2r3 = k, r1 + r2 + r3 = 0 and that when k ̸= 0, there will be at least one root equal to zero, there being no
Binet formula for this case. ■

Theorem 3.3. For n geqslant2 and n in mathbbN , the matrix form of the hyperbolic k-Padovan quaternions is
given by: 0 1 k

1 0 0

0 1 0

n Qk,2 Qk,1 Qk,0

Qk,1 Qk,0 Qk,−1

Qk,0 Qk,−1 Qk,−2

 =

Hk,n+2 Hk,n+1 Hk,n

Hk,n+1 Hk,n Hk,n−1

Hk,n Hk,n−1 Hk,n−2

 .

Proof. Through the finite induction principle, for n = 2, we have:0 1 k

1 0 0

0 1 0

2 Hk,2 Hk,1 Hk,0

Hk,1 Hk,0 Hk,−1

Hk,0 Hk,−1 Hk,−2

 =

1 k 0

0 1 k

1 0 0

Hk,2 Hk,1 Hk,0

Hk,1 Hk,0 Hk,−1

Hk,0 Hk,−1 Hk,−2


=

Hk,2 + kHk,1 Hk,1 + kHk,0 Hk,0 + kHk,−1

Hk,1 + kHk,0 Hk,0 + kHk,−1 Hk,−1 + kHk,−2

Hk,2 Hk,1 Hk,0


=

Hk,4 Hk,3 Hk,2

Hk,3 Hk,2 Hk,1

Hk,2 Hk,1 Hk,0

 .
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Checking the validity for any n = z, z ∈ N, one has:0 1 k

1 0 0

0 1 0

z Hk,2 Hk,1 Hk,0

Hk,1 Hk,0 Hk,−1

Hk,0 Hk,−1 Hk,−2

 =

Hk,z+2 Hk,z+1 Hk,z

Hk,z+1 Hk,z Hk,z−1

Hk,z Hk,z−1 Hk,z−2

 .

Therefore, it turns out to be valid for n = z + 1 = 1 + z:0 1 k

1 0 0

0 1 0

1+z Hk,2 Hk,1 Hk,0

Hk,1 Hk,0 Hk,−1

Hk,0 Hk,−1 Hk,−2

 =

0 1 k

1 0 0

0 1 0

0 1 k

1 0 0

0 1 0

z Hk,2 Hk,1 Hk,0

Hk,1 Hk,0 Hk,−1

Hk,0 Hk,−1 Hk,−2


=

0 1 k

1 0 0

0 1 0

Hk,z+2 Hk,z+1 Hk,z

Hk,z+1 Hk,z Hk,z−1

Hk,z Hk,z−1 Hk,z−2


=

Hk,z+1 + kHk,z Hk,z + kHk,z−1 Hk,z−1 + kHk,z−2

Hk,z+2 Hk,z+1 Hk,z

Hk,z+1 Hk,z Hk,z−1


=

Hk,z+3 Hk,z+2 Hk,z+1

Hk,z+2 Hk,z Hk,z

Hk,z+1 Hk,z Hk,z−1

 .

■

4. Conclusion

The study allowed for a mathematical analysis of the k-Padovan sequence and its complex form. Thus,
the hyperbolic k-Padovan quaternion sequence was introduced, addressing some mathematical properties and
theorems. It is noteworthy that for the particular case of k = 1, it is possible to notice that we have the hyperbolic
quaternionic Padovan sequence.
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